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Quantum Injection Dots

Eliade Stefanescu
Center of Advanced Studies in Physics of the Romanian Academy

Romania

1. Introduction

In optoelectronics, quantum dots are essential elements for coupling a device to an
electromagnetic field in the infrared domain of the frequency spectrum. Such a dot is a small
semiconductor region, with a forbidden band specific to a given application, embedded in
the active i-region of the p-i-n junction of a laser structure (1), or in the sensitive i-region of
the p-i-n junction of a photovoltaic structure (2). These quantum dots have the advantage of
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Fig. 1. Quantum injection dot with the energy levels E1 and E0, in a Fabry-Perot resonator
with transmission coefficients of the mirrors T0 = 0 and T > 0. By quantum transitions
between these levels, a super radiant electromagnetic field with two counter-propagating
waves of amplitudes G and

√
1 − T G is generated.

being feasible for a large class of applications (transition frequencies). However, they have
the disadvantage that, being embedded in a bulk region, any injection or photovoltaic process
includes transport processes through the active (sensitive) region, which are very dissipative.
In such a system of quantum dots, an injected electron in the bulk active region of a laser
structure has a large probability to recombine with an electron hole before reaching a quantum
dot, where this electron becomes an active one, contributing to the laser field generation.
Similarly, an optically excited electron in a quantum dot of a photo-voltaic bulk active region,
has a large probability to meet another quantum dot, and to decay in the ground state of this
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2 Will-be-set-by-IN-TECH

quantum dot before reaching the quasi-neutral zone of the n-region, where this electron brings
its contribution to the generated current.

In this chapter, we deal with a different kind of quantum dots (figure 1), as basic elements of a
new class of power optoelectronic devices, devoted to the conversion of the environmental
heat into usable energy (3–6). Such a quantum dot is substantially different from a bulk
quantum dot (1; 2). These dots are deployed in double arrays of donor-acceptor pairs of
impurity atoms placed in quantum wells at the two sides of the i-region of an n-i-p junction.
The quantum dot density has an appropriate value to include the whole internal field of the
semiconductor junction in the quantum dot region, i.e. between the two impurity arrays
forming this region. Otherwise, spatial or mobile charge layers arise at the external sides of
the two quantum wells, altering the distance E1 − E0 between the two ground energy levels
of these wells. Thus, in a process of current injection, or of an optical current generation, the
electrons traverse the internal field region by quantum transitions between the two levels of
interest (see figure 1).

In section 2, we derive explicit expressions for electric potentials, energy levels in these
potentials, wave-functions, the quantum dot density, and transition dipole moments,
which determine the strength of the coupling of a quantum dot to a quasi-resonant
electromagnetic field, and to the dissipative environment. We obtain operation conditions
for the characteristics of the separation barriers.

In section 3, we consider the dissipative couplings of a quantum injection dot. We describe the
dissipative dynamics of such a quantum dot by a master equation for a system of Fermions,
coupled to a complex environment of other Fermions, Bosons, and the free electromagnetic
field (7). This equation depends on analytic dissipative coefficients, describing correlated
transitions of the system particles with the environmental particles, transitions stimulated
by thermal fluctuations of the self-consistent field of the environmental Fermions, and the
non-Markovian dynamics induced by these fluctuations. We derive explicit expressions of
the dissipation coefficients as functions of universal constants and physical properties of the
semiconductor structure: effective masses of electrons and electron holes, concentrations of
donors and acceptors in the conduction regions, transition frequency, dipole moments, crystal
density, elasticity coefficient, geometrical characteristics of the semiconductor structure, and
temperature.

In section 4, we consider the dissipative dynamics of an electromagnetic field interacting with
the quasi-free electrons of a semiconductor structure. By a method previously used in (7), we
obtain a master equation with coefficients depending on frequency and the effective masses,
transition dipole moments, and densities of states of these electrons. We derive field equations
coupled to the polarizations of the system of active Fermions, with explicit expressions of
the coupling and absorption coefficients, as functions of the physical properties of the active
quantum dot system, and characteristics of the dissipative environment.

In section 5, we derive equations for the density matrix elements of a quantum injection
dot interacting with a quasi-resonant electromagnetic field. We obtain equations for the
amplitude mean-values of the forward and backward electromagnetic waves, propagating
in a Fabry-Perot cavity which includes a system of such quantum dots. We derive optical
equations for a system of quantum injection dots in a resonant Fabry-Perot cavity, with
an additional term in the population equation, for describing a current injection in the
semiconductor structure (3–5).

300 Fingerprints in the Optical and Transport Properties of Quantum Dots

www.intechopen.com



Quantum Injection Dots 3

In section 6, we present the concept of quantum heat converter, as a device based on systems
of quantum injection dots. This device is conceived in two versions: (1) longitudinal quantum
heat converter, where the electromagnetic field propagates in the direction of the injected
current, i.e. perpendicularly to the semiconductor chip (3; 4), and (2) transversal quantum
heat converter, where the electromagnetic field propagates perpendicularly to the injected
current, i.e. in the plane of the semiconductor chip (3; 5). Any of these versions could be
preferred in specific applications. We derive analytical expressions of the super radiant power,
as a function of the injected current, dissipative coefficients, coupling coefficient, number of
super radiant transistors, transmission coefficient of the output mirror, and the geometrical
characteristics of the device. We get operation conditions for these parameters. We describe
the super radiant dissipative dynamics of a quantum injection dot, when a step current is
injected in the device.

In this chapter, we present an analytical model depending only on material and geometrical
characteristics, temperature, and universal constants.

2. Physical model

The essential problem of any optoelectronic device is the coupling of an electric current to
an electromagnetic field. As a function of the roles played by these physical quantities into
the input-output characteristic, one can conceive two kinds of devices. In the conventional
optoelectronics, a device with the electric current as an input and the electromagnetic field as
an output, if this field is not coherent, is called LED. If the output field is coherent, it is called
laser. Conversely, if the electric current is the output, depending on an input field, the device
is called photodiode, or photovoltaic cell if it is a power device, devoted to the electric energy
production.

The new field of the heat conversion optoelectronics, includes two similar kinds of device. In
this case, the radiant device is called quantum heat converter (3–5), while the photovoltaic
device is called quantum injection system (6). Both kinds of such devices are based on an
electron-field interaction with a potential V in the total Hamiltonian

H = HS
0 + HF + V, (1)

including a term for an electron with the electric charge −e in an electromagnetic field with

the vector potential �A,

HS
0 + V =

(�p + e�A)2

2M
+ U(�r), (2)

and the Hamiltonian of this field which, for the system represented in figure 1, is of the form

HF = h̄ω(a++a+ + a+−a− + 1), (3)

where a+ − a++, a− − a+− are the creation-annihilation operators of the two
counter-propagating waves. In equation (2), we distinguish the Hamiltonian of the
electron in the potential U(�r) of an active quantum dot

HS
0 =

�p2

2M
+ U(�r) = ∑

i

ε ic
+
i ci, (4)
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and the interaction potential

V =
e

M
�p�A, (5)

while the term in �A2 is negligible in the non-relativistic approximation. This potential depends
on the electron momentum

�p = iM ∑
ij

ωij�rijc
+
i cj, (6)

and the vector potential

�A =
h̄

e
�K
(

a+eikx + a++e−ikx + a−e−ikx + a+−eikx
)

, (7)

of the electric field

�E = i
h̄ω

e
�K
(

a+eikx − a++e−ikx + a−e−ikx − a+−eikx
)

. (8)

In these expressions, M is the electron mass, c+i − cj are Fermion operators, ωij are transition
frequencies of the active electron,�rij are dipole moments, ω is the frequency of the field, and

�K =�1y

√

α
λ

V (9)

is a vector in the y-direction of this field, depending on the wavelength λ, the fine structure

constant α = e2

4πε0h̄c ≈ 1
137 , and the quantization volume V .

From (5) and (6), we notice that the electron-field interaction of the system depends on the
transition dipole moment

�r01 =�r10 =
∫

Vs

Ψ0�rΨ1d3
�r, (10)

where

Ψ1(x, y, z) = ψ1(x)φ1(y)χ1(z) (11a)

Ψ0(x, y, z) = ψ0(x)φ0(y)χ0(z) (11b)

are eigenfunctions of the Hamiltonian (4), for the ground states of the two quantum wells.
For the potential U(�r), we distinguish seven regions, of four GaAs quantum wells, and three
AlxGa1−x As potential barriers, determined by the impurity concentrations of these regions
(see figure 1). For the two thick conduction regions with the potentials Uc and Uv, we use a
three-dimensional model, with a quantization volume Vn = 1/ND for the n-region of donor
concentration ND , and Vp = 1/NA for the p-region of acceptor concentration NA. In these
quantization volumes, for an electron with the effective mass Mn, and an electron hole with
the effective mass Mp, we consider the densities of states (8)

g(n)(Eα) = Vn

√
2M3/2

n

π2h̄3

√
Eα (12a)

g(p)(Eα) = Vp

√
2M3/2

p

π2h̄3

√
Eα, (12b)
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Quantum Injection Dots 5

and the occupation probabilities of these states with the kinetic energies Eα:

f (n)(Eα) =
1

e(Uc+Eα)/T + 1
≈ e−(Uc+Eα)/T (13a)

f (p)(Eα) =
1

e(−Uv+Eα)/T + 1
≈ e−(−Uv+Eα)/T, (13b)

where approximate expressions are taken into account for the usual case of a non-degenerate
semiconductor. Considering the integral of the number of particles occupying the states of a
quantization volume, one gets the two potentials

Uc(T) = T ln
Nc(T)

ND
, Nc(T) = 2

(
√

MnT/2π

h̄

)3

(14a)

Uv(T) = −T ln
Nv(T)

NA
, Nv(T) = 2

(

√

MpT/2π

h̄

)3

. (14b)

For the very thin layers of the quantum wells and potential barriers, we use a two-dimensional
model. For a quantization area Ae, in n and p regions, one gets the densities of states

g(1) = Ae
Mn

πh̄2
(15a)

g(2) = Ae
Mp

πh̄2
. (15b)

By using the Fermi-Dirac distribution in the particle number integral, we obtain expressions
similar to (14) for the potentials of the two GaAs quantum wells, as a function of the surface
quantum dot density Ne

U1(T) = −T ln

(

e
πh̄2 Ne
Mn T − 1

)

(16a)

U2(T) = T ln

(

e
πh̄2 Ne
Mp T − 1

)

. (16b)

Similar expressions are obtained for the separation barriers, as functions of the donor and
acceptor arrays with concentrations N3, N4 embedded in the very thin AlxGa1−x As-layers of
these barriers,

U3(T) = −T ln

(

e
πh̄2 N3
Mn T − 1

)

(17a)

U4(T) = T ln

(

e
πh̄2 N4
Mp T − 1

)

, (17b)

and for the potential barrier U0 between the two quantum wells,

U0(T) = −T ln

(

e
πh̄2 N0
Mn T − 1

)

, (18)
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with a slight donor concentration N0, controlling this potential. For these wells, we consider
harmonic wave-functions with exponential tails in the neighboring barriers

ψ1(x) = A1 cos

[

k1(x0 − x)− arctan
α1

k1

]

, x1 ≤ x ≤ x0 (19a)

ψ1(x) = A1

√

E1 − U1

U0 − U1
e−α1(x−x0), x0 ≤ x ≤ x2 (19b)

ψ1(x) = A1

√

E1 − U1

U3 − U1
e−α3(x1−x), x3 ≤ x ≤ x1 (19c)

and

ψ0(x) = A0 cos

[

k0(x − x2)− arctan
α0

k0

]

, x2 ≤ x ≤ x4 (20a)

ψ0(x) = A0

√

U2 − E0

U2 − U00
e−α0(x2−x), x0 ≤ x ≤ x2 (20b)

ψ0(x) = A0

√

U2 − E0

U2 − U4
e−α4(x−x4), x4 ≤ x ≤ x5, (20c)

while the tails beyond these barriers are neglected. These wave-functions depend on the
wave-numbers

k1 =
1

h̄

√

2Mn(E1 − U1) (21a)

k0 =
1

h̄

√

2Mp(U2 − E0), (21b)

attenuation coefficients

α1 =
1

h̄

√

2Mn(U0 − E1) (22a)

α0 =
1

h̄

√

2Mp(E0 − U00) (22b)

α3 =
1

h̄

√

2Mn(U3 − E1) (22c)

α4 =
1

h̄

√

2Mp(E0 − U4), (22d)

and normalization coefficients

A1 =
√

2

[

x0 − x1 +
h̄√

2Mn

(

1√
U0 − E1

+
1√

U3 − E1

)]−1/2

(23a)

A0 =
√

2

[

x4 − x2 +
h̄

√

2Mp

(

1√
E0 − U00

+
1√

E0 − U4

)

]−1/2

, (23b)
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while the energy eigenvalues are given by the equations:

E1 − U1 =
h̄2

2Mn(x0 − x1)2

(

arctan

√

U0 − E1

E1 − U1
+ arctan

√

U3 − E1

E1 − U1

)2

(24a)

U2 − E0 =
h̄2

2Mp(x4 − x2)2

(

arctan

√

E0 − U00

U2 − E0
+ arctan

√

E0 − U4

U2 − E0

)2

. (24b)

We take the two energy eigenvalues as E1 = Uc, E0 = Uv. In this case, the whole internal
potential of the n-i-p junction is included on the distance d between the two charge layers of
the quantum dot region, which means a quantum dot surface density

Ne = ε
E1 − E0

e2d
, (25)

while this distance can be approximated as

d =
1

2
(x2 − x0 + x4 − x1). (26)

The energy levels E1 = Uc and E0 = Uv can be obtained from (14), as functions of the donor
and acceptor concentrations ND and NA of the conduction regions. By choosing appropriate
values for the separation and quantum dot barriers, from (17) and (18) one gets the surface
concentrations N3, N4 and N0 of these barriers. With the widths x1 − x3 and x5 − x4, the
separation barrier must have a higher penetrability P than the necessary value to provide the
injected current I through the device area AD, which means that the density of this current
must be smaller than the thermal current 1

6 eNDvTP emergent from a unit volume with the

thermal velocity vT =
√

T/Mn, and crossing the barrier. We get the conditions

α3(x1 − x3) <
1

2
ln

(

eND AD

6I

√

T

Mn

)

(27a)

α4(x5 − x4) <
1

2
ln

(

eNA AD

6I

√

T

Mp

)

. (27b)

Thus, a quantum injection dot is a two-level system, with the energy levels E0 and E1, in a
quantization volume shaped as a parallelepiped with the basis area A = 1

Ne
and the height

x5 − x3. In this volume, we consider the two wave-functions (19)-(20) for the coordinate x,
while, for the coordinates y and z in the plane of the quantum dot array, we consider the
wave-functions φ1(y), φ0(y) and χ1(y), χ0(y), describing a thermal motion with an energy
mean-value T. For a longitudinal device, when the electromagnetic field propagates in the
direction x of the injected current, the electric component Ey of this field is coupled with the
component y01 of the transition dipole moment of the system between thermal states. For a
transversal device, when the electromagnetic field propagates in a direction y perpendicular
to the direction x of the injected current, i.e. in the plane of the quantum dot array, the electric
component Ex of this field is coupled with the transition dipole moment x01 between the two
states (19)-(20) of the system. These dipole moments also determine the dissipative couplings
of the quantum dot. They essentially depend on the width x2 − x0 of the quantum dot barrier

305Quantum Injection Dots
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of height U0, which determines the overlap of the two wave-functions ψ1(x) and ψ0(x). When
this width is chosen for reasonable values of the electron-field and dissipative couplings, and
N3, N4 for reasonable values of the separation barriers satisfying the conditions (27), from
equations (16) and (24)-(26) the geometrical characteristics x0x1, x2, x3, x4 are obtained.

As an example, for a concentration ND = NA = 3.16 × 1016 cm−3 of a super radiant junction,
working at temperature T = 10 0C, we get a transition frequency E1 − E0 = 0.1866 eV. A
quantum dot Al0.37Ga0.63As-barrier of U0 = 0.5 eV is obtained for a surface concentration of
N0 = 6.4243 × 106 m−2 donors, and separation barriers of U3 − Uc = Uv − U4 = 0.05 eV
are obtained for the surface concentrations of these barriers N3 = 8.01 × 1013 m−2 and N4 =
2.552 × 1013 m−2. For a width x2 − x0 = 5.5 nm of the quantum dot barrier, we get a quantum
dot surface concentration Ne = 1.476 × 1016 m−2 and the widths of the two quantum dot
wells x0 − x1 = 4.189 nm and x4 − x2 = 1.576 nm, while separation barriers with widths
x1 − x3 = 10 nm and x5 − x4 = 3 nm satisfy the conditions (27) for an injected current I = 45 A
in a device with an area AD = 4 cm2.

3. Dissipative dynamics of quantum injection dots

We consider a quantum injection dot with two energy levels E1, E0, coupled to a super radiant
field and a complex dissipative environment of a semiconductor structure as it is represented
in figure 1: (1) the quasi-free electrons of the n-conduction region x < x3, (2) the quasi-free
holes of the p-conduction region x > x5, (3) the phonons of the crystal at temperature T, and
(4) the photons of the free electromagnetic field existing at temperature T (see figure 2). In (3)

−Ln/2 0 Ln/2 −Lp/2 0 Lp/2

n-region
- quasi-free electrons

p-region
- quasi-free holes

quantum
dots

✾

�R0

✶
�kP

�
�kFEF

〈α0|V(n)(�R0)|β1〉 〈α0|V(p)(�R0)|β1〉
Eβ

Eα

Eα

Eβ

E1

E0

Vn

Vn

Vp

Vp

Fig. 2. Dissipative couplings of a quantum injection dot to the environment. A decay
|1〉 → |0〉 of the active electron is correlated with: (1) a transition |β〉 → |α〉 of a quasi-free
electron in a quantization volume Vn, (2) a transition |β〉 → |α〉 of a quasi-free hole in a

quantization volume Vp, (3) a phonon creation with a wave vector�kP, and (4) a photon

creation with a wave vector�kFEF .

we showed that, for a semiconductor structure with the characteristics mentioned at the end of
the preceding section, the decay rate corresponding to the phonon environment is dominant,
the decay rate due to the conduction electrons and holes is smaller, while the decay rate given
by the free electromagnetic field is negligible.
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Quantum Injection Dots 9

We consider a system of interest, including a system of Fermions S with the Hamiltonian HS
0

and an electromagnetic field F with the Hamiltonian HF , in a dissipative environment with
the Hamiltonian HE. Taking into account a potential of interaction V between the Fermion
system S and the field F, and a system-environment potential VE, the dynamics of the total
system is described by an equation of motion of the form:

d

dt
χ̃(t) = − i

h̄

[

εṼ(t) + εṼE(t), χ̃(t)
]

. (28)

In this equation, tilde denotes operators in the interaction picture, e.g.

χ̃(t) = e
i
h̄ (HE+HS

0 +HF)tχ(t)e−
i
h̄ (HF+HS

0 +HE)t. (29)

According to a general procedure disclosed in (9), we take a total density of the form

χ̃(t) = R ⊗ ρ̃(t) + εχ̃(1)(t) + ε2χ̃(2)(t) + ... , (30)

where ρ(t) is the reduced density matrix of the system of interest, while R is the density matrix
of the dissipative environment at the initial moment of time, t = 0, the time-evolution of the

environment being described by the higher-order terms χ̃(1)(t), χ̃(2)(t), .... The parameter ε is
introduced to handle the orders of the terms in this series expansion, and is set to 1 in the final
results. The reduced density of the system is

ρ̃(t) = TrE{χ̃(t)}, (31)

while the higher-order terms of the total density have the property:

TrE{χ̃(1)} = TrE{χ̃(2)} = ... = 0. (32)

If initially the environment is in the equilibrium state R, the density matrix of the total system
is of the form χ(0) = Rρ(0). We suppose that at time t = 0, due to the interaction V of the
system of Fermions with the electromagnetic field, or due to a non-equilibrium initial state
ρ(0) 	= ρT, a time-evolution begins, while the reduced density satisfies a quantum dynamical
equation of the form

d

dt
ρ̃(t) = εB̃(1)(ρ̃(t), t) + ε2B̃(2)(ρ̃(t), t) + ... . (33)

From the dynamic equation (28), with expressions (30)-(33), we obtain the quantum master
equation

d

dt
ρ(t) = − i

h̄
[H, ρ(t)]− i ∑

ij

ζij[c
+
i cj , ρ(t)]

+ ∑
ij

λij([c
+
i cjρ(t), c+j ci] + [c+i cj, ρ(t)c+j ci])

+ ∑
ijkl

ζijζkl

∫ t

t−τ
[c+i cj, e−i[φ(t′)+ 1

h̄ HS
0 (t−t′)][c+k cl , ρ(t′)]ei[φ(t′)+ 1

h̄ HS
0 (t−t′)]]dt′,

(34)

where the coefficients

ζij =
1

h̄

√

1

YF

∫

(α)
〈αi|(VF)2|αj〉 f F

α (εα)gF
α (εα)dεα (35)
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describe transitions stimulated by the thermal fluctuations of the self-consistent field of the
YF environmental Fermions in a certain quantization volume - hopping potential (10), φ(t′) is
a phase fluctuation operator, while the coefficients

λij = λF
ij + λB

ij + γij (36)

describe correlated transitions of the system Fermions with environment particles, including
explicit terms for Fermions, Bosons, and photons of the free electromagnetic field. These terms
depend on the dissipative two-body potentials VF , VB, the densities of the environment states
gF(εα), gB(εα), the occupation probabilities of these states f F(εα), f B(εα), and temperature T.
For a rather low temperature, T ≪ ε ji, j > i, these terms become

λF
ij =

π

h̄
|〈αi|VF |βj〉|2[1 − f F(ε ji)]g

F(ε ji) (37a)

λF
ji =

π

h̄
|〈αi|VF |βj〉|2 f F(ε ji)gF(ε ji), (37b)

for the Fermion environment,

λB
ij =

π

h̄
|〈αi|VB|βj〉|2[1 + f B(ε ji)]g

B
α (ε ji) (38a)

λB
ji =

π

h̄
|〈αi|VB|βj〉|2 f B(ε ji)gB

α (ε ji) (38b)

for the Boson environment, and

γij =
2α

c2 h̄3

∣

∣

∣
�rij

∣

∣

∣

2
ε3

ji(1 +
1

eε ji/T − 1
) (39)

for the Boson environment of the free electromagnetic field, where�rij are the transition dipole
moments. The dissipative terms of the master equation (34) with coefficients (36)-(39) describe
correlated transitions of the system and the environment particles, with energy conservation,
ε ji = εαβ, in agreement with the quantum-mechanical principles and the detailed balance
principle (11). The non-Markovian part of this equation takes into account the fluctuations of
the self-consistent field of the environment Fermions, with the coefficients (35).

A significant component of the dissipative dynamics comes from the Coulomb interaction of
the active electrons, mainly located in the interval (x3, x5), with the conduction electrons and
holes in the conduction regions (−∞, x3) and (x5,+∞), respectively (figure 1). We use the

notations �r for the position vector of an active electron, and �R0 + �R for the position vector

of a dissipative electron (hole), where �R0 is the position vector of an arbitrary n (p) cluster,

and �R = �1xX +�1yY +�1zZ is the position of an electron (hole) in this cluster (figure 3). In

this case, the Coulomb potential in a first-order approximation of the two-body term �R�r =
Xx + Yy + Zz is

VC(�R,�r) =
αh̄c

|�R0 + �R −�r|
≈ αh̄c

|�R0|

(

1 +
Xx + Yy + Zz

�R2
0

)

. (40)

From this expression, only the second term, bilinear in the coordinates of an active electron
and of an electron (hole) of the environment, yields contributions in the two-body transition
matrix elements of the decay (excitation) rates (37):

VF(�R0,�R,�r)=̇V(n)(�R0, �R,�r) = −V(p)(�R0,�R,�r) =
αh̄c

|�R0|3
(Xx + Yy + Zz). (41)
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Quantum dot

n-dissipative clusters p-dissipative clusters

✲

0x3−RD x5 RA

N−1/3
D N−1/3

A

✲

�r

✛

�R0✛

�R

Fig. 3. The electron of a quantum injection dot is coupled to the quasi-free electrons of the
n-dissipative clusters (n-region) and quasi-free holes of the p-dissipative clusters (p-region)

by an electric dipole-dipole interaction: VF( �R0,�R,�r) = αh̄c
|�R0|3

�R�r.

From the wave-functions derived in the preceding section, we obtain the dipole moment of a
quantum dot:

x
(Ψ)
01 = c

(x)
01

(

x2 − x0

2
− 1

α0 − α1

)

(42a)

y
(Ψ)
01 = z

(Ψ)
01 = c

(x)
01

h̄

2
√

MnT
(42b)

y
(Ψ)
10 = z

(Ψ)
10 = c

(x)
01

h̄

2
√

MpT
, (42c)

as a product of the overlap function

c
(x)
01 =

A1 A0

α0 − α1

√

(E1 − U1)(U2 − E0)

(U0 − U1)(U2 − U00)

(

e−α1(x2−x0) − e−α0(x2−x0)
)

. (43)

and a quantity that we call the state separation distance. At the same time, with the initial and
the final energies Eβ = T/2, Eα = Eβ + ε10, we obtain the dipole moments for the n-zone

X
(n)
αβ = Y

(n)
αβ = Z

(n)
αβ =

h̄

ε10

√

2ε10 + T

Mn
≈

√

2h̄

Mnω0
, (44)

and for the p-zone,

X
(p)
αβ = Y

(p)
αβ = Z

(p)
αβ =

h̄

ε10

√

2ε10 + T

Mp
≈

√

2h̄

Mpω0
, (45)
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where we used the notations ε10=̇h̄ω0=̇E1 − E0. With the quantum dot dipole moments
(42), and the environment dipole moments (44)-(45), we calculate the matrix elements of the
two-body potential (41). With these matrix elements, from (37) with the densities of states (12)
and the occupation probabilities of these states (13), one obtains the dissipative coefficients
for the coupling of a quantum dot with a dissipative cluster. By integration over all clusters of
both hemispheres of the n and p conduction regions, with the quantization volumes Vn = 1

ND

and Vp = 1
NA

as differential volumes in these integrals, we obtain the dissipation coefficients
(3):

λ
(n)
01 =

4α2c2
√

2Mn(ε10 +
T
2 )|c

(x)
01 |2µ2

01

3

(

N−1/3
D
2 − x3

)3

ε3/2
10 (e−(Uc+ε10)/T + 1)

(46a)

λ
(n)
10 =

4α2c2
√

2Mn(ε10 +
T
2 )|c

(x)
01 |2µ2

01

3

(

N−1/3
D
2 − x3

)3

ε3/2
10 (e(Uc+ε10)/T + 1)

(46b)

λ
(p)
01 =

4α2c2
√

2Mp(ε10 +
T
2 )|c

(x)
01 |2µ2

01

3

(

N−1/3
A
2 + x5

)3

ε3/2
10 (e−(−Uv+ε10)/T + 1)

(46c)

λ
(p)
10 =

4α2c2
√

2Mp(ε10 +
T
2 )|c

(x)
01 |2µ2

01

3

(

N−1/3
A
2 + x5

)3

ε3/2
10 (e(−Uv+ε10)/T + 1)

, (46d)

where

µ2
01 =

(

x2 − x0

2
− 1

α0 − α1
+

h̄√
MnT

)

(

x2 − x0

2
− 1

α0 − α1
+

h̄
√

MpT

)

. (47)

is the square of the separation distance of the two states Ψ0(�r) and Ψ1(�r). From (35), by similar
calculations we obtain the fluctuation coefficients of a quantum dot in the self-consistent field
of dissipative clusters:

[

ζ
(n)
11

]2
=

α2c2 M3/2
n T3/2

360π
√

2πh̄3
· N1/3

D [A2
1(x

3
0 − x3

1) +
1

Ne ]

Ne Nc

(

N−1/3
D
2 − x3 +

x0+x1
2

)5
(48a)

[

ζ
(p)
11

]2
=

α2c2 M3/2
p T3/2

360π
√

2πh̄3
· N1/3

A [A2
1(x

3
0 − x3

1) +
1

Ne ]

Ne Nv

(

N−1/3
A
2 + x5 − x0+x1

2

)5
(48b)

[

ζ
(n)
00

]2
=

α2c2 M3/2
n T3/2

360π
√

2πh̄3
· N1/3

D [A2
0(x

3
4 − x3

2) +
1

Ne ]

Ne Nc

(

N−1/3
D
2 − x3 +

x4+x2
2

)5
(48c)

[

ζ
(p)
00

]2
=

α2c2 M3/2
p T3/2

360π
√

2πh̄3
· N1/3

A [A2
0(x

3
4 − x3

2) +
1

Ne ]

Ne Nv

(

N−1/3
A
2 + x5 − x4+x2

2

)5
. (48d)
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The Markovian dissipative coefficients (46) describe a very strong, exponential decrease of
the decay rate with the width x2 − x0 of the quantum dot barrier, given by the square of the
overlap function (43), and a strong decrease with the distances x3 and x5 of the quantum dot
separation from the two conduction regions, which enter at the denominators with power 3.
The non-Markovian coefficients (48) describe a very strong decrease of the fluctuation rate
with the separation distances x3 and x5, which enter at the denominators with power 5.

The coupling of a quantum dot electron with a vibrational mode α is described by the potential
matrix element (3):

VEP
01α = VEP

10α = −h̄ω3/2
0

M�r01
�1α√

Mh̄/2
, (49)

where M is the mass of the phonon quantization volume VP . For the density of phonon states
of energy h̄ω0, we obtain an expression similar to (12):

gP(h̄ω0) = VP

√
2M3/2

π2h̄3

√

h̄ω0. (50)

We consider the sound velocity v from the phonon wavelength expressions

λP =
v

ν
=

2πv

ω
=

2πh̄v

ε10
, λP ≡ 2π

kP
=

2πh̄√
2Mε10

, (51)

and the crystal density

D ≡ M
VP

=
2π2h̄2

VPλ2
Pε10

. (52)

With (49)-(52), from (38) we obtain the decay (excitation) rates

λP
01 =

E2
e ε5

10

πh̄6c4v3D
· |c(x)

01 |2µ2
01

1 − e−ε10/T
(53a)

λP
10 =

E2
e ε5

10

πh̄6c4v3D
· |c

(x)
01 |2µ2

01

eε10/T − 1
, (53b)

where Ee = Mc2 is the rest energy of the electron, and v is the sound velocity, which can be
calculated from the Young elasticity coefficient E and the crystal density D:

v ≈
√

E

D
. (54)

We notice that both systems of dissipation coefficients (46) and (53) are proportional to the
squares of the state separation distance and overlap function. Expressions (53) describe a very
strong dependence of the decay rates on the transition energy ε10, being proportional to this
energy with power 5. However, they are valid for phonon wavelengths much larger than the
distance between the atoms of the crystal lattice. Otherwise, the number of the density modes
can no more be treated as a quasi-continuous function of frequency, and the probability of any
non-resonant interaction vanishes (Mösbauer effect). We also found that for the rather low
transition energies specific to the quantum injection dots, the decay rate due to the phonon
coupling is rather low, e.g. for the structure presented at the end of the preceding section
with ε10 = 0.1866 eV, we got λP

01 = 2 × 107 s−1. As we found by direct calculations (3), for
the quantum injection dots, which are separated by potential barriers from the conduction
electrons, the decay rate due to these electrons is much lower than the decay rate due to the
coupling to the phonons of the crystal lattice vibrations.
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4. Dissipative dynamics of electromagnetic field

The operation of a semiconductor device with quantum dots interacting with a quasi-resonant
electromagnetic field is based on the transparency of the host semiconductor structure, with
a band to band transition frequency much higher than the quantum dot transition frequency.
That means that this electromagnetic field is absorbed by the host semiconductor structure
mainly by intra-band transitions, essentially depending on overlap functions of thermal states
with excited states populated (depopulated) by these transitions.

The dynamics of this electromagnetic field, with a potential Ṽ(t) of interaction with a quantum
dot and a potential ṼE(t) of interaction with a conduction electron (hole), is described by a
system of equations of the form (28), (30), (31) (33), which, in the second-order approximation,
provides

d

dt
ρ̃(t) = B̃(1)[ρ̃(t), t] + B̃(2)[ρ̃(t), t] (55a)

B̃(1)[ρ̃(t), t] = − i

h̄
TrE[Ṽ(t) + ṼE(t), R ⊗ ρ̃(t)] (55b)

χ̃(1)(t) =
∫ t

0

{

− i

h̄
[Ṽ(t′) + ṼE(t′), R ⊗ ρ̃(t′)]− R ⊗ B̃(1)[ρ̃(t′), t′]

}

dt′ (55c)

B̃(2)[ρ̃(t), t] = − i

h̄
TrE[Ṽ(t) + ṼE(t), χ̃(1)(t)]. (55d)

The interaction potential Ṽ(t) is obtained from (5)-(6), while the dissipative potential ṼE(t) is
given by the similar expressions

VE =
e

M
�P�A (56)

and
�P = iM ∑

αβ

ωαβ
�Rαβc+α cβ. (57)

From (5)-(7) and (56)-(57), we derive expressions of these potentials depending only on the
positive transition frequencies ωji(j > i) and ωαβ(α > β), and take into account the so called
"rotating-wave approximation", which includes only conservative processes, when an electron
excitation is correlated only with a photon annihilation, while an electron decay is correlated
only with a photon creation:

V = i ∑
j>i

h̄ωji
�K�rij

[

c+j ci

(

a+eikx + a−e−ikx
)

− c+i cj

(

a++e−ikx + a+−eikx
)]

(58)

VE = i ∑
α>β

h̄ωαβ
�K�Rαβ

[

c+α cβ

(

a+eikx + a−e−ikx
)

− c+β cα

(

a++e−ikx + a+−eikx
)]

. (59)

We consider the time-dependent expressions of these operators in the interaction picture,

ã(t) = ae−iωt, ã+(t) = a+eiωt (60)

c̃+i (t)c̃j(t) = c+i cje
−iωjit, c̃+j (t)c̃i(t) = c+j cie

iωjit (61)

c̃+β (t)c̃α(t) = c+β cαe−iωαβt, c̃+α (t)c̃β(t) = c+α cβeiωαβt, (62)

and take equations (55) for the mean-values of the electron operators. We retain only the
slowly time varying terms, obtained from the resonance condition ωαβ = ω, while the rapidly
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varying terms are neglected. We consider the summations over the environmental states as
integrals over a quasi-continuum of states, with the densities g(εα) and g(εβ) and occupation
probabilities f (εα) and f (εβ), and neglect the thermal energies εβ ∼ T in comparison with the
transition energy h̄ω. We obtain the quantum master equation

d

dt
ρ(t) =− iω[a++a+ + a+−a−, ρ(t)]

+ ∑
j>i

ωji
�K�rij

[

〈c+j ci〉(a+eikx + a−e−ikx)− 〈c+i cj〉(a++e−ikx + a+−eikx), ρ(t)
]

+ Λ
{

[a+ρ(t), a++] + [a+, ρ(t)a++] + [a−ρ(t), a+−] + [a−, ρ(t)a+−]
}

,

(63)

with the dissipation coefficient

Λ = πh̄ω2g(h̄ω)(�K�Rαβ)
2, (64)

depending on quantities which, according to (9), (44), and (12), are of the form

K =

√

α
λ

V (65)

Rαβ =

√

2h̄

Mω
(66)

g(h̄ω) = VS

√
2M3/2

π2h̄3

√
h̄ω. (67)

Unlike the master equation for an electromagnetic field mode derived in (12), we considered
explicit expressions of the electron-field potential of interaction, and neglected the thermal
energy in comparison with the transition energy. With (65)-(67), the dissipation coefficient
(64) takes a form

Λ = Ω
VS

V (68)

depending on the quantity

Ω = 4α

√

2Mc2ω

h̄
, (69)

and the two quantization volumes, V of the electromagnetic field and VS of the dissipative
electron system. We consider a quantization volume VS = Vn = 1

ND
for an n-type region,

or VS = Vp = 1
NA

for a p-type region. From physical point of view, a quantization volume
of the electromagnetic field V means a measuring process corresponding to a confinement in
this volume. The electromagnetic field can not be quantized in a volume VS, but in a much
larger one, with much larger dimensions than the field wavelength λ. For an electromagnetic
field, we consider a unit quantization volume V = 1V = 13

L = 1m3, because, in this case,
the radiation density is equal to the electromagnetic field density times the light velocity, S =

wEc [W/m2], where wE = ε0E2

2 [J/m3] is calculated with this quantization volume in the
expression (8)-(9) of the field.

We notice that the master equation (63) describes an electromagnetic field quantized in a unit
volume V = 1m3 in interaction with an electron system occupying a much smaller volume

VS = V(n), V(p). A system of N dissipative electrons can be taken into account by multiplying
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the dissipative coefficient Λ with N. However, in such a description, the electromagnetic
field is considered of a constant amplitude inside the quantization volume V = 1V , while,
in fact, this amplitude undertakes a spatial variation due to the interaction with the system
quantized in a volume VS ≪ V , i.e. propagation characteristics as the absorption coefficient
and the refractive index inside the field quantization volume are not taken into account. We
take into account the spatial variation of the electromagnetic field by considering this field
as being given by an x dependent density matrix, as product of density matrices for the two
counter-propagating waves, ρ(x, t) = ρ+(x, t)ρ−(x, t), and taking the dissipative terms as
integrals over the paths traveled by these waves. Considering a distribution of ND dissipative
clusters over the the thickness LD of the device, from the master equation (63), we get

d

dt
ρ+(x, t)=−iω[a++a+, ρ+(x, t)]+∑

j>i

ωji
�K�rij

[

〈c+j ci〉a+eikx−〈c+i cj〉a++e−ikx, ρ+(x, t)
]

(70a)

+
ΩD

1L

∫ x

0

{

[a+ρ+(x
′, t′), a++] + [a+, ρ+(x

′, t′)a++]
}

e−ik(x−x′)dx′

d

dt
ρ−(x, t)=−iω[a+−a−, ρ−(x, t)]+∑

j>i

ωji
�K�rij

[

〈c+j ci〉a−e−ikx−〈c+i cj〉(a+−eikx, ρ−(x, t)
]

(70b)

+
ΩD

1L

∫ LD

x

{

[a−ρ−(x′, t′), a+−] + [a−, ρ−(x′, t′)a+−]
}

e−ik(x′−x)dx′,

depending on the dissipative coefficient

ΩD = Ω
12

LLD

13
L

= Ω
LD

1L
, (71)

obtained by summation over the dissipative clusters with the volume 12
LLD in the quantization

volume 13
L. The exponential factors in the integrals describe the delay of the field propagating

from the coordinate x′ of a dissipative element to the coordinate x of the density matrix of
this field at this coordinate. These equations describe the dissipative dynamics of a forward
electromagnetic wave, propagating from x′ = 0 to x′ = x, and of a backward electromagnetic
wave, propagating from x′ = LD to x′ = x < LD. With these equations, we calculate the
mean-values of the field operators

a+(x, t) = 〈a+〉 = Tr {a+ρ+(x, t)} = A+(x, t)e−iωt (72a)

a−(x, t) = 〈a−〉 = Tr {a−ρ−(x, t)} = A−(x, t)e−iωt. (72b)

For an array of two-level systems with the coordinate x, interacting with the electromagnetic
field with the frequency ω ≈ ω0, we define the time slowly-varying amplitude of the
polarization S(x, t) by the relations

〈c+i cj〉 = ρji(x, t) =
1

2
S(x, t)e−iωt, (73)

S(x, t) = S+(x, t)eikx + S−(x, t)e−ikx, (74)

where S+(x, t),S−(x, t) are slowly-varying in space and time amplitudes of the polarization
induced by the two counter-propagating waves of the field. Having in view Heisenberg’s
uncertainty principle

∆k∆x ≥ 1

2
, ∆ω∆t ≥ 1

2
, (75)
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we notice that, in equations (70), this relation selects only the close terms, with x′ ≈ x, while
the farer terms in x − x′ are washed up by the uncertainty ∆k in the oscillating functions under
the x′-dependent integrals. By definition, these x-dependent integrals describe the attenuation
of an electromagnetic wave squeezed in the x-domain, ∆x = 0. We take into account a finite
uncertainty ∆x, in the vicinity of x, by extending these x′-integrals with the half-width ∆x/2.
We obtain the field equations

d

dt
A+(x, t) = − 1

2
ω0

�K�r01S+(x, t)− ΩD

1L

∫ x−∆x/2

0
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ (76a)

−ΩD

1L

∫ x+∆x/2

x−∆x/2
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]dx′

d

dt
A−(x, t) = − 1

2
ω0

�K�r01S−(x, t) +
ΩD

1L

∫ LD

x+∆x/2
A−(x′, t′)e−i[k(x′−x)−ω(t−t′)]dx′ (76b)

+
ΩD

1L

∫ x+∆x/2

x−∆x/2
A−(x′, t′)e−i[k(x′−x)−ω(t−t′)]dx′.

We notice that these are non-local in space equations including retarded contributions of the
dissipation processes along the distance |x− x′|, and absorption processes in the vicinity ∆x of
the coordinate x. We consider the quantities under these integrals as spectral lines integrated
over half-widths, k∆x− ω∆t = (k+ ∆k)∆x− (ω+ ∆ω)∆t = ∆k∆x− ∆ω∆t = π

6 + π
6 > 1

2 +
1
2 .

By integrating the first integral of the first equation two times by parts, for a large distance
x − x′ we obtain

∫ x−∆x/2

0
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ =
1

ik
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]
∣

∣

∣

x−∆x/2

0

− 1

ik

∫ x−∆x/2

0

d

dx′
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]dx′

=

[

− i

k
A+(x, t) +

1

k2

d

dx
A+(x, t)

] [

cos

(

k∆x − ω∆t

2

)

− i sin

(

k∆x − ω∆t

2

)]

= − 1 + i
√

3

2k
A+(x, t) +

√
3 − i

2k2

d

dx
A+(x, t),

(77)

while, taking into account that on a vary short distance ∆x the field amplitude is practically
constant, the second integral of this equation takes a simple form

∫ x+∆x/2

x−∆x/2
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ =
1

ik
A+(x

′, t′)e−i[k(x−x′)−ω(t−t′)]
∣

∣

∣

∣

x+∆x/2

x−∆x/2

=
2

k
A+(x, t) sin

(

k∆x − ω∆t

2

)

=
1

k
A+(x, t).

(78)

These terms describe a slight variation of the wave-vector k, k′ = k + κ, which means that the
amplitude of the mean-value of the field operator takes a form

A+(x, t) = Ã+(x, t)eiκx . (79)

Taking into account that ΩD

ck21L
≪ 1, while κ = k

1+
2ck21L√

3ΩD

≪ k, we get a field equation

∂

∂t
A+(x, t) + c

[

∂

∂x
A+(x, t) + α′A+(x, t)

]

= − 1

2
ω0�K�r01S+(x, t), (80)
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with an absorption coefficient

α′ =
2αc

1L

√

2M

h̄ω

LD

1L
. (81)

In the following calculations, we are interested in a form of this equation in a cavity with the
length LD,

d

dt
A+(x, t) = −γFA+(x, t)− 1

2
ω0

�K�r01S+(x, t), (82)

with a field decay rate

γF = cα′ =
2αc2

12
L

√

2M

h̄ω
LD, or 1LγF =

2αc2

1L

√

2M

h̄ω
LD , (83)

which we call field decay velocity. In section 6, it will be shown that the field decay velocity
1LγF describes the field loss by dissipation, as the quantity T c describes the electromagnetic
energy loss by radiation through the output mirror with the transparency T . We notice that
the decay rate of an electromagnetic field in a cavity is proportional to the length of this cavity.
For a semiconductor chip with the thickness LD = 2 mm, we considered in our calculations
in (3), from (83) we get a field decay rate γF = 2.05 × 107 s−1, which is in agreement with
the empirical values γF = 107, 108 s−1, we considered in these calculations. It is interesting
that, in this model, the decay rate does not depend on the concentration of the dissipative
clusters, since an increase of this concentration means a decrease of the density of states in
every cluster, which, in this way, becomes smaller. These two variations cancel exactly one
another in the final result. By taking into account the spreading of a dissipative electron
wave-function beyond the the boundaries of its cluster due to the thermal motion, one obtains
a lower value of the decay rate, but with an increase with the concentration of these clusters.

5. Optical equations for a system of quantum injection dots

From the quantum master equation (34), we derive optical equations for a two-level system.
In the approximation of the slowly varying amplitudes, we consider the non-diagonal matrix
elements

ρ10(t) = ρ∗01(t) =
1

2

[

S+(t)e
ikx + S−(t)e−ikx

]

e−iωt, (84)

and the population difference

w(t) = ρ11(t)− ρ00(t), with the normalization condition (85a)

1 = ρ11(t) + ρ00(t). (85b)

Calculating the matrix elements of the two-level system, and averaging over the field states,
from the master equation (34) we get:

d

dt
ρ10(t) = −[λ01 + λ10 + i(ω0 + ζ11 − ζ00)]ρ10(t) (86a)

+�K
[

(〈a+〉+ 〈a+−〉)eikx + (〈a++〉+ 〈a−〉)e−ikx
]

ω0�r10[ρ00(t)− ρ11(t)]

+(ζ11 − ζ00)
2
∫ t

t−τ
ρ10(t

′)e−i[φ10(t′)+ω(t−t′)]dt′

d

dt
ρ11(t) = − d

dt
ρ00(t) = 2[λ10ρ00 − λ01ρ11] (86b)

+�K
[

(〈a+〉+ 〈a+−〉)eikx + (〈a++〉+ 〈a−〉)e−ikx
]

ω0�r10[ρ10(t) + ρ01(t)].
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From the expression (8) of the quantized electric field �E in the plane-wave approximation, and
mean-values of the annihilation operators of the form

〈a+〉 = ā+(t)e
−iωt (87a)

〈a−〉 = ā−(t)e−iωt, (87b)

we get the mean-value of this field,

〈�E〉 = 1

2

[

�E(t)e−iωt + �E∗(t)eiωt
]

, (88)

with the time slowly-varying amplitude

�E(t) = �E+(t)eikx + �E−(t)e−ikx, (89)

while the amplitudes of the two counter-propagating waves are

�E+(t) = 2i
h̄ω

e
�Kā+(t) (90a)

�E−(t) = 2i
h̄ω

e
�Kā−(t). (90b)

In this description we neglect the variation of the amplitudes inside the cavity, by taking into
account these two amplitudes only as mean-values over the space coordinate, related by the
boundary condition for the output mirror of transmission coefficient T :

�E−(t) = −
√

1 − T �E+(t). (91)

With the notations
�g =

e

h̄
�r10 (92)

for the coupling coefficient,
γ⊥ = λ01 + λ10 (93)

for the dephasing rate,
γ‖ = 2(λ01 + λ10) (94)

for the decay rate,
γn = |ζ11 − ζ00| (95)

for the fluctuation rate of the self-consistent field, and

wT = −λ01 − λ10

λ01 + λ10
, (96)

from (84)-(91) we obtain equations for the slowly-varying amplitudes

d

dt
S+(t) = −[γ⊥ + i(ω0 + γn − ω)]S+(t) + i�g�E+(t)w(t) (97a)

+γ2
n

∫ t

t−τ
S+(t

′)e−i[φ10(t′)+ω(t−t′)]dt′

d

dt
w(t) = −γ‖[w(t)− wT ] + (2 − T )i�g

1

2

[

�E∗
+(t)S+(t)− �E+(t)S∗

+(t)
]

. (97b)
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In equation (97b) we have taken into account that the term

Φ+(t) = i�g
1

2

[

�E∗
+(t)S+(t)− �E+(t)S∗

+(t)
]

(98)

is a particle flow due to the forward electromagnetic wave propagating in the cavity, while

Φ−(t) = i�g
1

2

[

�E∗
−(t)S−(t)− �E−(t)S∗

−(t)
]

(99)

is a particle flow due to the backward electromagnetic wave, which means that the two flows
satisfy the boundary condition for the energy flow of the electromagnetic field

Φ−(t) = (1 − T )Φ+(t). (100)

At the same time, calculating the mean-value of the field operator a, averaging over the states
of the two-level system, and taking into account the relation

〈c+i cj〉 = ρji(t), (101)

from equation (34) we get the field equation

d

dt
〈a+〉 = −iω〈a+〉+ �Kω0�r10[ρ10(t)− ρ01(t)]e

−ikx. (102)

Thus, with (84), (87) and (90), we get a field equation for slowly-varying amplitudes

d

dt
�E+(t) = −iω0

h̄ω

e
�K(�K�r10)S+(t). (103)

We consider this equation for the components u(t) and v(t) of the polarization amplitude

S+(t) = u(t)− iv(t), (104)

and F (t) and G(t) of the electromagnetic field

E+(t) = F (t) + iG(t), (105)

and take into account the field dissipation described by the dissipation rate γF. We get

d

dt
F (t) = −γFF (t)− g

h̄ω0

2εV v(t) (106a)

d

dt
G(t) = −γFG(t)− g

h̄ω0

2εV u(t). (106b)

We consider these equations for the electromagnetic energy in the quantization volume V , and
introduce the energy flow through the surface A of this volume:

d

dt

[

V 1

2
εF 2(t)

]

= −T c
1

2
εF 2(t)A− γFVεF 2(t)− g

h̄ω0

2
Fv(t) (107a)

d

dt

[

V 1

2
εG2(t)

]

= −T c
1

2
εG2(t)A− γFVεG2(t)− g

h̄ω0

2
Gu(t). (107b)
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At the same time, from (97b) with (104) and (105), we derive the equation for the population
difference (85a), and introduce the particle flow I in a two-level system, due to the electric
current I = eAD NeI injected in the device:

d

dt
w(t) = −γF[w(t)− wT ] + 2I + (2 − T )g[F (t)v(t) + G(t)u(t)] (108)

From (107) and (108) with (85), we get an equation of energy conservation:

h̄ω0I =
d

dt

{

h̄ω0ρ11(t) + (2 − T )V 1

2
ε[F 2(t) + G2(t)]

}

+ γ‖

[

ρ11(t)−
1 + wT

2

]

h̄ω0

+(2 − T )(T c
A
V + 2γF)V

1

2
ε[F 2(t) + G2(t)].

(109)

This equation describes the transition power h̄ω0I of the active system providing the energy
transfer processes involved in the dissipative super radiant decay: (1) the energy variation of
the electron-field system, (2) the dissipative decay of the electron energy, proportional to γ‖,
(3) the radiation of the field energy, proportional to the light velocity c and the transmission
coefficient T of the output mirror, and (4) the dissipation of the field energy, proportional to
γF . In this equation, both waves leaving the quantum system and propagating in the cavity,
the forward wave with an amplitude coefficient 1 and the backward wave with an amplitude
coefficient R = 1 − T , are taken into account with the coefficient 1 +R = 2 − T .

From the polarization equation (97a) with (104) and (105), the population equation (108), and
the field equations (107), we obtain the equations of the slowly varying amplitudes of the
system:

d

dt
u(t) = −γ⊥[u(t)− δωv(t)]− gG(t)w(t) (110a)

+γ2
n

∫ t

t−τ

{

u(t′) cos[φn(t
′) + (ω − ω0)(t − t′)] + v(t′) sin[φn(t

′) + (ω − ω0)(t − t′)]
}

dt′

d

dt
v(t) = −γ⊥[v(t) + δωu(t)]− gF (t)w(t) (110b)

+γ2
n

∫ t

t−τ

{

v(t′) cos[φn(t
′) + (ω − ω0)(t − t′)]− u(t′) sin[φn(t

′) + (ω − ω0)(t − t′)]
}

dt′

d

dt
w(t) = −γ‖[w(t)− wT] + 2I + (2 − T )g[G(t)u(t) +F (t)v(t)] (110c)

d

dt
F (t) = − 1

2
T c

A
V F (t)− γFF (t)− g

h̄ω0

2εV v(t) (110d)

d

dt
G(t) = − 1

2
T c

A
V G(t)− γFG(t)− g

h̄ω0

2εV u(t), (110e)

where φn(t
′) ≡ φ01(t

′) ≡ −φ10(t
′) is the phase fluctuation with a fluctuation time τn = 1/γn,

and

δω =
ω − ω0 − γn

γ⊥
(111)

is the relative atomic detuning. In these equations, the coupling of the electron system to the

electromagnetic field is described by a coupling coefficient for the dipole interaction g = �g�1E.
These equations also describe a dissipative decay of the electron system by the coefficients γ‖
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and γ⊥, non-Markovian effects by time-integrals proportional to the fluctuation coefficient γ2
n

in the polarization equations (110a) and (110b), a decrease of the electron-field coupling due to
the field radiation by the term proportional to the coefficient (2 − T ) in (110c), and a decrease
of field by the radiation terms proportional to the product cT in (110d) and (110e), and by the
terms proportional to the decay rate γF.

6. Superradiant quantum injection dots and heat conversion

The dynamic equations (110) take a simpler form in a stationary regime when the derivatives
with time become zero and the polarization variables can be taken out from the integrals.
Considering an integration over a fluctuation time τn = 1/γn, we get a time oscillating term,
generated by the fluctuations of the environment particles. In the Markovian approximation,
when these oscillations are neglected, we get the steady-state equations:

−γ⊥[u − δωv]− gGw = 0 (112a)

−γ⊥[v + δωu]− gFw = 0 (112b)

−γ‖(w − wT) + 2I + (2 − T )g(Gu +Fv) = 0 (112c)

−ΓFF − Gv = 0 (112d)

−ΓFG − Gu = 0, (112e)

where

G = g
h̄ω0

2εV (113a)

ΓF =
1

2
T c

A
V + γF . (113b)

From the system of equations (112), for the resonance case (δω = 0), we calculate the flow
density of the electromagnetic energy radiated by the device:

S = T c
1

2
ε(F 2 + G2). (114)

We get

S =

h̄ω0

(2−T )A
1 + 2γFV

T cA

⎡

⎣I −

⎛

⎝−wT

γ‖
2

+
1
2T cAV + γF

g2 h̄ω0

γ⊥γ‖εV

⎞

⎠

⎤

⎦ . (115)

This expression of the flow density S has a nice physical interpretation, being proportional to
the product of the transition energy h̄ω0, divided to the radiation area of a quantum dot A,
with the difference between the particle flow I and a threshold value depending on coupling,
radiation, and dissipation coefficients. This expression is valid when the quantization volume
V of the field corresponds to the electromagnetic energy delivered by the whole system of
Ne Nt quantum dots to a volume unit, which means

V [m3] =
1

Ne[m−2]Nt[m−1]
, (116)

where Ne[m−2] is the number of quantum dots per area unit, and Nt[m
−1] is the number of

super radiant junctions per length unit.
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In a first approximation, we neglect the temperature variation due to the heat transfer through
the semiconductor structure. To take into account this temperature variation, one has to make
corrections of the parameters, to obtain the same transition frequency on the whole chain of
super radiant junctions.

Such a device can be realized in two versions schematically represented in figure 4: (a) a
longitudinal device, with the two mirrors M1 and M2 made on the two surfaces in the plane
of the chip, of transmission coefficients T0 = 0 and T > 0, which form a Fabry-Perot cavity
coupling a super radiant mode that propagates in the x-direction of the injection current; (b) a
transversal device, with the two mirrors M1 and M2 made on two lateral surfaces of the chip,
of transmission coefficients T0 = 0 and T > 0, which form a Fabry-Perot cavity coupling a
super radiant mode that propagates in the y-direction, perpendicular to the injection current.
While in version (a) the roles of the mirrors M1 and M2, and of the injection electrodes E1 and
E2, are played by the same metalizations, made on the two surfaces in the plane of the chip, in
version (b) the mirror metalizations M1 and M2, which are made on two lateral surfaces, are
different from the electrode metalizations E1 and E2.

The two devices have the same structure, including layers of GaAs, with a narrower forbidden
band and a heavier doping, for the quantum wells, and layers of AlxGa1−x As, with a larger
forbidden band and a lighter doping, for the potential barriers. The margins of these bands are
determined by the concentrations of the donors (acceptors) embedded in the semiconductor
layers. For a longitudinal device (figure 4a), the N̄t (dimensionless) quantum dots in the

x-direction, radiate through an area
1

Ne[m−2]
, which means

AL[m
2] =

1

Ne[m−2]N̄t
, (117)

while for a transversal device (see figure 4b), the
√

Ne[m−2]AD[m2] quantum dots in the

y-direction, radiate through an area
LD[m]

N̄t

1
√

Ne[m−2]
, which means

AT [m
2] =

LD[m]

Ne[m−2]N̄t

√

AD[m2]
. (118)

With the radiation area AL (AT) of a quantum dot, from (115) we derive the flow density SL

(SD), and the total flow of the electromagnetic field radiated by the device in the two versions:

ΦL = ADSL (119a)

ΦT = LD

√

ADST. (119b)

We obtain

ΦL =
N̄t

(2 − T )
(

1 + 2 1LγF

T c

)
· h̄ω0

e
(I − I0L) (120a)

ΦT =
N̄t

(2 − T )
(

1 + 2 1LγF

T c
A1/2

D
LD

)

· h̄ω0

e
(I − I0T), (120b)
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(a) Longitudinal super radiant device with the Fabry-Perot cavity oriented in the x-direction of the injected

current I = Ie = Ih , i.e. perpendicular to the semiconductor layers.
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(b) Transversal super radiant device with the Fabry-Perot cavity oriented in the y-direction, perpendicular

to the injected current I = Ie = Ih , i.e. in the plane of the semiconductor layers.

Fig. 4. Dissipative super radiant n-i-p device with two injection electrodes E1 and E2 and a
Fabry-Perot cavity with the mirrors M1 and M2 of transmission coefficients T0 = 0 and T ,
respectively, in two possible versions (a) and (b).

as a function of the injected current I and the threshold currents

I0L =
1

2
eNe ADγ‖

[

−wT +
εγ⊥

g2
L h̄ω0Ne N̄t

(T c + 2 · 1LγF)

]

(121a)

I0T =
1

2
eNe ADγ‖

[

−wT +
εγ⊥

g2
T h̄ω0Ne N̄t

(T c
LD

A1/2
D

+ 2 · 1LγF)

]

, (121b)
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which depends on the field decay velocity (83). The threshold current is proportional to the
threshold population, which includes three terms for the three dissipative processes that must
be balanced by current injection for creating a coherent electromagnetic field: (1) a term −wT,
for a population inversion, (2) a term proportional to the light velocity c and the transmission
coefficient T , for the field radiation, and (3) a term proportional to decay rate γF, for the field
dissipation.

From (112c) and (120), we notice that when the injection current I = eNe ADI is under the
threshold value I0L (I0T), the radiation field is F + iG = 0, while the population difference
w increases with this current. When the injection current I reaches the threshold current I0L

(I0T), the population difference w reaches the radiation value

wR =
T cAV + 2γF

g2h̄ω0

γ⊥εV
. (122)

Increasing the injection current I beyond the threshold value I0L (I0T), the population
difference keeps this value, while the super radiant field and the polarization (u =
− g

γ⊥
wRG , v = − g

γ⊥
wRF ) increases. However, the polarization (u, v) can not increase

indefinitely, being constrained by the condition of the Bloch vector length (2 − T )(u2 +
v2) + w2 ≤ w2

T. For the maximum value (uM, vM) of the polarization, while u2
M + v2

M =

(w2
T − w2

R)/(2 − T ), the super radiant field reaches its maximum flow density

SM =
T cε

2(2 − T )

⎡

⎢

⎣
w2

T

g2 h̄2ω2
0

ε2V2

(

T cAV + 2γF

)2
− γ2

⊥
g2

⎤



⎦
. (123)

From this equation with equation (115) for S = SM, we get the value IM = eNe ADIM of
the injection current producing the maximum flow of the electromagnetic energy. Increasing
the injection current beyond this value, the polarization (u, v) will not increase any more,
but the population will increase, leading to a rapid decrease of the polarization. Neglecting
the current increase from IM to the value I ′M when the polarization vanishes, from equation
(112c) with w = −wT and u = v = 0, we get a simple, approximate expression IM ≈ I ′M =
1
2 eNe ADγ‖ (−wT − wT), which can be compared with (121). From the operation condition
I0L, I0T < IM, we get conditions for the coupling, dissipation, and radiation coefficients:

wIL =
ε0γ⊥

g2
L h̄ω0Ne N̄t

(T c + 21LγF) < −wT ≈ 1 (124a)

wIT =
ε0γ⊥

g2
T h̄ω0Ne N̄t

(T c
LD

A1/2
D

+ 21LγF) < −wT ≈ 1. (124b)

From equations (46) and (53), with (47) and (43), we notice that the dephasing and decay rates
(93) and (94) strongly depend on the i-layer thickness x2 − x0. In figure 5a, we represent
the decay rates γP

‖ , γE
‖ , γEM

‖ for the three dissipative couplings, with the phonons of the

crystal vibrations, the conduction electrons and holes, and the free electromagnetic field,
γ‖ = γP

‖ + γE
‖ + γEM

‖ . We also represent the fluctuation rate (95) with the components (48)

for the two neighboring conduction regions n and p, γ2
n =

[

γ
(n)
n

]2
+

[

γ
(p)
n

]2
. In figure
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5b, we represent the coupling coefficients for a longitudinal and a transversal structure.
For all these coefficients, we get quasi-exponential variations with the i-layer thickness
x2 − x0. We notice that, in these structures, the phonon decay rate γP

‖ , which is unavoidable,

dominates the electric decay rate γE
‖ , which depends on the separation barriers, while the

electromagnetic decay rate γEM
‖ is negligible. It is remarkable that the decay rate of a quantum
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Fig. 5. (a) The dependence of the dissipative coefficients on the i-zone thickness; (b) The
dependence of the coupling coefficients on the i-zone thickness, for a longitudinal and a
transversal structure.

injection dot, with a value around 107s−1, is significantly lower than the decay rates of other
GaAs structures, which are at least somewhere around 1012s−1 (13). From figure 5b, we
notice that, although the two coupling coefficients are calculated with completely different
dipole moments, gL with (42b)-(42c), and gT with (42a), the values of these coefficients are
approximately equal for small values of x2 − x0, and keep near values for thicker i-zones.
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Fig. 6. The dependence of the threshold currents on the thicknesses of the i-zone for two
values of the transmission coefficient of the output mirror: (a) T = 0.1; (b) T = 0.5.

From equations (121), we notice that the dissipative rates γ‖, γ⊥ and the coupling coefficient
gL (gT), determine the threshold current I0L (I0T). In figure 6a we represent the dependence
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of these currents in comparison with the maximum current IM, for two values of the output
transmission coefficient T . We notice that the operation condition I0L, I0T > IM is satisfied
for both values of these coefficients. This property can be understood from the analytical
expressions (121) or (124), having in view that the dephasing rate γ⊥ and the square of
the coupling coefficient gL (gT) are proportional to the square of the dipole moment, which
means that the operation condition does not depend on this moment. Since the quantum
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Fig. 7. Quantum heat converter, as a packet of super radiant transistors, thermally coupled to
a heat absorbent. While a current I is injected in the device, an electromagnetic flow is
obtained, mainly on the account of the heat absorption.

dot density Ne is determined by physical conditions, according to (25), the threshold current
(121) can be controlled only by the number of super radiant transistors N̄t in the structure.
In our calculations we considered a number of superadiant transistors N̄t = 1045. While
the heat propagates from the heat absorbent (see figure 7) throughout the semiconductor
structure, a portion of this heat is absorbed by every super radiant transistor, producing a
temperature decrease from the front electrode to the rear one. In figure 8a we represent the
electric power and the radiation power as functions of the injected current, for a longitudinal
and a transversal configuration of the device. A radiation power arises only when the
injection current exceeds a threshold value. From (121a) and (121b), we notice that, due to

the factor LD

A1/2
D

in the radiation term of the population inversion, the threshold current of a

transversal device is lower than that of a longitudinal one. However, due the same factor at
the denominator of (120b), the increase of the radiation power with the injection current is
lower for a transversal device than for a longitudinal one. In figure 8b the total temperature
variation in the semiconductor structure is represented. We notice that a rather high power
of 200 W, that means 0.500 MW from an active area of 1 m2, can be obtained at a rather low
temperature difference of about 7 0C.

The radiation power of a transversal device becomes much higher by increasing the
transmission coefficient from T = 0.1 to T = 0.5 and the transition dipole moment by
diminishing the thickness of the i-zone from x2 − x0 = 6.5 nm to x2 − x0 = 6 nm as is
represented in figure 9. In this case, the threshold current of the transversal device becomes
significantly lower than that of the longitudinal one. The threshold current of the longitudinal
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device is sgnificantly lowered by decreasing the transmission coefficient from T = 0.5 to
T = 0.2 as is represented in figure 10.
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Fig. 8. (a) The radiation powers ΦL and ΦT and the electric power PE as functions of the
injection current I, for x2 − x0 = 6.5 nm, T = 0.1, and γF = 107 s−1; (b) The temperature
variations ∆TL, ∆TT as functions of the injection current I.
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Fig. 9. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ∆TL, ∆TT as functions of the injection current, for x2 − x0 = 6 nm, T = 0.5, and
γF = 107 s−1.

It is remarkable that in the three cases represented in figures 8-10 the electric power dissipated
in the device by the injection current I is much lower than the super radiant power. This is
because, as one can notice also from (120), the super radiant power produced by the injected
current corresponds to the high transition energy h̄ω0 between the two zones n and p, while
the power electrically dissipated by this current corresponds to a very low potential difference
Uc − Uc1, necessary for carrying this current through the two rather thin highly conducting
zones n and p (figure 7b). The difference between these two powers is obtained by heat
absorption, when the electrons are excited from the lower potential of the p-zone to the higher
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Fig. 10. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ∆TL, ∆TT as functions of the injection current, for x2 − x0 = 6 nm, T = 0.2, and
γF = 107 s−1.
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Fig. 11. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ∆TL, ∆TT as functions of the injection current, for x2 − x0 = 5.5 nm, T = 0.5, and
γF = 108 s−1.

potential of the n-zone of the base-collector junction. In figure 11 we consider a much larger
decay rate of the electromagnetic field, γF = 108 s−1 instead of γF = 107 s−1, when the
operation conditions (124) are also satisfied. In this case, we also obtain a high radiation
power, but with a higher injection current, which, however, does not produce an important
electrical power PE, dissipated in the device.

We study the time evolution of a quantum heat converter, by solving the time dependent
system of equations (110), for a step current injected at the initial t = 0, and a fluctuation that
arises at a certain time t > 0. Non-Markovian fluctuations are time-evolutions of polarization,
population and field due to the self-consistent field of the environment particles that, in our
case, are the quasi-free electrons and holes in the conduction regions of the device. In figure
12, we represent the dynamics of a longitudinal device with a thickness of the i-zone x2 −
x0 = 5.5 nm and a transmission coefficient of the output mirror T = 0.1, while the threshold
current is I0L = 24.1149 A and the maximum current is IM = 46.0995 A. We consider a step
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current I = 45 A injected at time t = 0. In the Markovian approximation, the super radiant
power ΦL(t) of a longitudinal quantum heat converter is generated as in figure 12a, while the
population w(t) and polarization variables u(t), v(t) have the time-evolutions represented
in figure 12b. The sudden jumps of the polarization variables in figure 12b, are detailed in
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Fig. 12. Dynamics of a longitudinal super radiant device with x2 − x0 = 5.5 nm and T = 0.1
when a step current of I = 45 A is injected in the device: (a) super radiant power; (b)
polarization and population; (c) polarization fluctuation in a short timescale.

figure 12c, in a short timescale. At t = 0, the population increases from the equilibrium value
wT for the temperature T, to w(0) = wT + 2I/(eNe ADγ‖) and, after that, while the radiation
field increases, the population decreases tending to an asymptotic value. With an appropriate
choice of the phase of the initial polarization, v(0) = 0, u(0) takes a value corresponding

to the maximum value −wT of the Bloch vector, which is u(0) =
√

[w2
T − w2(0)]/(2 − T ).

In the Markovian approximation, the electromagnetic power is growing to a certain value,
and after a short oscillation tends to the asymptotic value that according to (120a) is ΦL =
1.2843 × 103 W. However, in the non-Markovian approximation, random fluctuations of the
polarization, population, and field arise. These fluctuations are described by the time integrals
in the polarization equations (110a) and (110b) depending on the time-dependent phase term
φn(t′), with a mean-value of the fluctuation time τn = 1/γn. From figure 5a, we notice that the
fluctuation rate γn is four orders higher than the decay rate γ‖, corresponding to the timescale
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of the Markovian processes. In equations (110a) and (110b), we take a positive fluctuation with
a duration tn τn = 2.6305 × 10−12s, followed by a negative one with the same duration. In
figure 12c such a fluctuation is represented in a short timescale, specific to the non-Markovian
fluctuations, while in figures 12a and 12b it is represented in a long timescale specific to the
Markovian processes. We notice that, while the polarization variables u(t) and v(t), which
depend on the transition elements of the density matrix, undertake considerable variations in
a fluctuation time, for population and super radiant field these variations only initialize long
time oscillations.
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Fig. 13. Dynamics of a transversal super radiant device with x2 − x0 = 5.5 nm and T = 0.1
when a step current of I = 45 A is injected: (a) Superradiant power; (b) Population and
polarzation.

In figure 13, we represent the dynamics of the transversal device with the same semiconductor
structure and injected current, while the threshold current takes a lower value I0T =
23.4528 A. This decrease of the threshold current for a transversal device, in comparison
with a longitudinal one with the same semiconductor structure, is obtained due to the field
amplification on the longer path of the field propagation in the plane of the quantum dot

layers, which is described by the term cT LD

A1/2
D

in equations (121). However, this small

difference is not very significant, since, according to equation (83), a longer propagation
path leads also to a higher decay rate of the field, i.e. to an increase of the dissipative term
1LγF . We notice that, while the radiation power is lower, this device is much less sensitive
to the thermal fluctuations described by the non-Markovian term. This decrease of the
radiation power for a transversal device, in comparison with a longitudinal one with the same

semiconductor structure, is obtained due to the factor
A1/2

D
LD

at the denominator of equation
(120b). An essential advantage of a transversal quantum heat converter, in comparison with
a longitudinal one, consists in injection electrodes as zero-transmission mirrors, i.e. these
electrodes are thick metalizations, providing an uniform current injection in the device. For
an uniform current injection, a longitudinal quantum heat converter needs a special output
structure, as a high transmission output Fabry-Perot cavity (4). Although for a transversal
device we obtained a lower radiation power than a longitudinal one, it could be advantageous
for some applications: for instance to obtain a powerful radiation device, as a stack of many
transversal quantum heat converters. Another application could be an electric generator with
the three semiconductor devices of the system, transversal quantum heat converter, quantum
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injection system, and total quantum injection system, in the same plane, eventually stuck on
the same pad.

In figures 12 and 13, we considered a positive fluctuation followed by a negative one, which
means an integration over a first interval of time τn = 1/γn with a phase φn = 0 followed
by an integration over a second interval of time τn with a phase φn = π in the polarization
equations (110a) and (110b).
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Fig. 14. Dynamics of a longitudinal super radiant device with a negative fluctuation
(φn = π), followed by a positive one (φn = 0).
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Fig. 15. Dynamics of a transversal super radiant device with a negative fluctuation (φn = π),
followed by a positive one (φn = 0).

Changing the phases of the fluctuations, i.e. taking a negative fluctuation followed by a
positive one (figures 14 and 15), we get similar evolutions but with opposite signs. Obviously,
the realistic evolution of a device is the result of the random phases φn, arising during the
whole evolution of the system. Thus, the system dynamics takes a noisy form, with the
polarization undertaking rapid variations during a fluctuation time, while the population and
the super radiant field are only initialized into slow oscillations.
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7. Conclusions

We presented a new kind of quantum dots, with a quantum well for electrons in the n-region
of an n-i-p heterostructure, and a quantum well for holes in the p-region of this structure.
These quantum wells are separated from the two n and p conduction regions by transparent
potential barriers, and separated from one another by the potential barrier of the i-region.
Such a quantum dot, we call "quantum injection dot", can be compared with a conventional
quantum dot, as a small semiconductor region with a narrower forbidden band in a much
larger i-region of an n-i-p semiconductor structure. Quantum injection dots have mainly been
conceived for conversion of environmental heat into usable energy, while the conventional
quantum dots are mainly used in information technology. A quantum injection dot differs
in many respects from a conventional quantum dot, where the quantum well for holes
is placed under the quantum well for electrons, as conduction and valence bands of the
same semiconductor region: (1) while a quantum injection dot is supplied with electrons
and holes from the two conduction regions by quantum tunneling through the n and p
separation barriers, without any energy increase, a conventional quantum dot is supplied
with electrons and holes only by providing a substantial energy, necessary to raise these
electrons and holes from the n and p conduction regions to the conduction and valence bands
of the i-region, from where they fall in the two potential wells of the quantum dot; (2) a
quantum injection dot provides the electron transfer from the n-region to the p-region only
by quantum transitions, while the electron transfer provided by a conventional quantum dot
includes additional transport processes from the two n and p regions to the i-region where
this quantum dot is located; (3) a quantum injection dot is a one-electron normalized two-level
quantum system, while a conventional quantum dot is a confinement semiconductor region
where many electrons and holes are simultaneously present to provide a larger probability
for the super radiant transitions. In comparison with a conventional quantum dot, a quantum
injection dot is much less dissipative, and, due to its simpler structure, enables a much higher
packing degree in a semiconductor structure.

We studied a system of quantum injection dots by using the available means of quantum
mechanics: (1) we calculated wave-functions, dipole moments, and eigenvalue equation for
energy; (2) we derived equations for the dissipative super radiant dynamics of the system; (3)
we obtained analytical coefficients depending only on physical characteristics and universal
constants, without any phenomenological parameter. In the dynamics of a quantum dot
system, we distinguish five dissipative processes: (1) correlated transitions with phonons
of the crystal lattice vibrations, which is the dominant dissipation process (2) correlated
transitions with quasi-free electrons and holes in the conduction regions, (3) correlated
transitions with the quasi-free electromagnetic field, which are negligible, (4) transitions
stimulated by the thermal fluctuations of the self-consistent field of the electrons and holes in
the conduction regions, (5) non-Markovian processes induced by these fluctuations. However,
we found that the fluctuation time is much shorter than the decay time, which means
that the system is in fact quasi-Markovian, while the non-Markovian fluctuations manifest
themselves only as a noise. For the propagation of the electromagnetic field throughout the
semiconductor structure, by taking into account the dissipative interaction with the quasi-free
electrons an holes in the conduction regions, we obtained an analytical expression of the field
decay rate as a function of effective masses, frequency, and propagation path.

We studied a device converting environmental heat into coherent electromagnetic energy
in two versions: (1) longitudinal quantum heat converter, with the electromagnetic
field propagating in the direction of injected current, i.e. emerging from the surface
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the semiconductor structure, and (2) transversal quantum heat converter, with the
electromagnetic field propagating in a perpendicular direction to the injected current, i.e.
emerging from a lateral surface of the semiconductor structure. We found operation
conditions for the physical characteristics of the semiconductor structure. We studied the
dependence of the dissipative rates, coupling coefficients, and threshold currents as functions
of the i-region thickness, which enables the control of these quantities in a large field of
values. We found that the operation conditions do not depend on the i-layer thickness. When
this thickness is decreased, the injected current and the corresponding super radiant power
increase. However, these quantities of interest can not be indefinitely increased, especially
due to the temperature variation induced by the heat propagation throughout the structure,
which tends to produce an atomic detuning of the quantum dot layers. We highlighted the
super radiant dissipative dynamics under a step current injection, and thermal fluctuations of
the conduction electrons and holes.
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