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1. Introduction  

Accurate theoretical description of optical phenomena in semiconductor quantum dots 
(QDs) depends on the description accuracy of the energy structure of the QD. For the 
energy structure description the existent methods, such as, the tight-binding method, the 
effective bond-orbital model, the first-principles calculations or the multi-band approach 
within pk   theory, have some limitations either in the accuracy of the predicted 
electronic structures or the computation efficiency. In this context, the phonon influence 
on the optical properties makes the theoretical description of the optical phenomena in 
QDs more complex. In this chapter, we introduce several methods and techniques to 
describe the phonon influence on the emission and absorption spectra of semiconductor 
QDs. They are implemented on simplified models of QDs that can capture the main 
physics of the studied phenomena. 

2. Phonons in optical transitions in nanocrystals. Theoretical background  

The problem of the exciton-phonon interaction in zero-dimensional systems has a rich 
history. In principle, strong quantum confinement of the carriers or strong electron–phonon 
interaction induces increasing of the kinetic energy of the charge carriers involved in the 
optical transitions. In such cases, the optical transitions in nanocrystals are properly 
described by an adiabatic approach. On the other hand, if either the dynamic Jahn-Teller 
effect (in case the electronic levels are degenerate) or the pseudo-Jahn-Teller effect (in case 
the electronic inter-level energy is close to the optical phonon energy) is present, the 
electron-phonon system of the nanocrystal is properly described by a non-adiabatic approach. 
In this section, basic information regarding the optical transitions involving LO phonons, 
adapted to nano-crystals, is briefly introduced. 

2.1 Adiabatic and non-adiabatic treatments of the optical transitions 

Chemical compounds or solids, small or large molecules may be represented by an 
ensemble of interacting electrons and nuclei. Such complex systems are usually described by 
the Born-Oppenheimer approximation (Born & Oppenheimer, 1927), which separates the 
electronic and nuclear motions. This separation is made within the adiabatic approach, 
which means the electrons are much lighter and faster moving than the nuclei so they can 
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follow the nuclei around and can adjust practically instantaneously their positions. The 
Hamiltonian of the global system is 

 ),()(),(),( QrTQVQrUTTQrH QrQ H  (1)  

where  r, Q   are the set of the generalised coordinates of electrons and nuclei, respectively, 
and ),( QrH  is the electronic Hamiltonian. ),( QrU  represents the electron-electron plus the 
electron-nucleus interactions and )(QV  represents nucleus-nucleus interactions. The kinetic 

energy operators are   
n nr rmT 2212 2  ,   

   2212 2 QMTQ  , where  n  

and   are indices of individual electronic and nuclear coordinates, respectively; m  and 

M  are the electronic mass and mass of the  -th nucleus, respectively. 

Next, following (Newton & Sutin, 1984), we introduce the diabatic and adiabatic description 
of the electronic system by expanding the vibronic wave functions ),( Qr  in the basis set 

of the orthonormal electronic wave functions,  ),( Qrn , by  
n nn QQrQr )(),(),(  , 

where )(Qn  are Q-dependent parameters. The orthonormal electronic wavefunctions are 
found by solving the electronic Schrödinger equation in the Born-Openheimer 
approximation taking Q as a parameter 

 ),()(),( ),( QrQQrQr  EH . (2) 

The solution )(QnE  of Eq. (2) corresponding to certain electronic wave function ),( Qrn  
are the so-called potential energy surfaces (PES). The expansion coefficients   can be found 
by solving the vibronic Schrödinger equation ),(),( ),( QrEQrQrH   , which leads to 

         )( ''')()( )('' QTTQQEQTT n
mn

mnQmnQmnmmmmmQQ   


 HH . (3) 

In Eq. (3)  acquires a new index   which quantifies the nuclear states. The matrix 

elements are defined as   nTmT QmnQ '' , and     kkk kmnQ QnQmMT   12'   

(Dirac notation is used). In Eq. (3) we can write 
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  (4) 

is the so-called Born-Oppenheimer breakdown (nuclear coupling) or non-adiabaticity 

operator. )(QmnH  from Eq. (3) is usually called electronic coupling term. In what follows 
for the clarity, we restrain discussion to only two electronic states. In studying the electron 
transition starting with Eq. (3) one frequently uses two basis sets: 
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i. The diabatic (non-stationary or localised) basis containing  fi  ,  (see Fig. 1). They are 

chosen as set of eigenfunctions of the suitable zeroth-order electronic Hamiltonian, H , 
where the interaction between the two electronic states i  and f  is removed. The 

corresponding PESs are iiQii HH )(  and ffQff HH )( .  

ii. The adiabatic (stationary or delocalised) basis containing  21 ,   (see Fig. 1).  The 

corresponding PES are the non-crossing electronic terms, 11)(11 HH Q  and 

22)(22 HH Q , and     24 2
1

22



















  ifffiiffiimm HH-HHHH  with 2 ,1m  

is relation between the eigenvalues of the two basis sets. The smallest energy difference 
between the two non-intersecting adiabatic PESs is ifH2 . Transitions are classified as 

being adiabatic or non-adiabatic as function of the magnitude of the coupling matrix 
elements. The process is adiabatic if the matrix elements of QT ' , QT ''  can be safely 

neglected, irrespective of basis used, either diabatic or adiabatic; if the adiabatic basis is 
chosen transition does not involve a tunneling between the two adiabatic states 
(surfaces). On the other hand, a reaction is non-adiabatic if there is no basis that permits 
the neglect of  

12
'QT ,  

12
'' QT ; when the adiabatic basis is chosen transition involves a 

tunneling between the two adiabatic states (surfaces).  
 

Configurational (nuclear) coordinate 

E
n
erg

y
 

Fig. 1. Radiative adiabatic process in the diabatic/adiabatic picture.  

Optical transitions can be produced by tunnelling or by overcoming the potential barrier. The 
PESs as function of a representative nuclear coordinate and the vibrational levels are 
sketched in Fig. 1 for the absorption/emission process by an adiabatic process. The 
vibrational levels represent the energy of longitudinal optical (LO) phonons, that have a fast 
relaxation. In this case, the possible tunneling induced by the nuclear coupling terms 'T  and 

"T between the two adiabatic PESs has low probability, and the transition is radiative. The 
adiabatic PESs are drawn as non-intersecting PESs by the dotted line near the crossing point 
of the diabatic PESs (solid line). After photon absorption the nuclei in the material adjust 
position to their new equilibrium positions. The time of adjustment of order s1013  is much 
faster than the spontaneous emission time of order s108  and the system relaxes to the lowest 
vibrational level of the excited state. Then radiative transitions to the vibrational states of the 
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ground state are followed by subsequent relaxations to the lowest vibrational ground state. 
The mechanism explains the presence of LO phonon satellites in the photoluminescence 
(PL) spectra. In this scenario, one considers the transition from adiabatic upper PES to the 
lower adiabatic PES that is triggered by the nuclear coupling is of low probability. This low 
influence of the nuclear coupling on the process gives the adiabatic character of the 
transition. Otherwise, tunneling to the lowest adiabatic PES, which means a non-adiabatic 
process, followed by a non-radiative relaxation by muti-phonon emission is possible.  

2.2 The Huang-Rhys factor 

The Huang- Rhys factor is frequently used as roughly being a measure of the strength of the 
exciton-phonon coupling (Banyai & Koch, 1993; Woggon, 1997). 

 

 
Fig. 2. PESs with the same force constant. 

In a simple way, Huang-Rhys factor is introduced by using the configuration coordinate 
diagram, as sketched in Fig. 2. The PESs, eg EE ,  for the ground and excited states can be 

written for the model of a single frequency,  , of the oscillators as   22
11 qqEEg    

and   22
22 qqEEe   , where 1q , 2q  are the equilibrium dimensionless coordinates. 

According to Fig. 2, we have 

   
 

gqqEqEEqEE ge  2
211221 2

)()( , (5) 

and 

   gqEqEqEqE gegeabsem 2)()()()( 2211  , (6) 

where g  is the Huang-Rhys factor. In experiment, the energy difference between the 
maximum absorption peak and the emission peak is usually referred to as the Stokes shift. 
Eq. (6) is an approximate definition of the Stokes shift as well as of relation between the 
Stokes shift and the Huang-Rhys factor g (Ridley, 1988). Large values of g  means a larger 
value between the minima of two PESs, 21 qq  . 

E0 

ƦE 

ƦE 

Energy

q1 q2
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Next, to make connection with the Hamiltonian of QD, we consider a system with the 
ground state g , and two excited states fi ,  in the diabatic representation. In this 
picture, the total Hamiltonian reads 

  g i f ifH g H g i H i f H f H i f f i       (7) 

where gH  is the ground state, iH  and fH  are the excited states, and ifH  is the interaction 

between the excited states Hamiltonians. We consider for simplicity a single nuclear 
coordinate, the nuclear displacement relative to the equilibrium position, Q,  with origin at 
the minimum of the ground state, and a single frequency of vibration of the phonon,  . 
Assuming iH , fH , and ifH  are linear dependent of Q, and a parabolic shape of the 

potential energy surfaces (PESs), we write     22
2212

lll QQmmPH     (with 

fil , ),   22 2212 QmmPHg   ,   QCmH ifif
2/1/2   , where l  is the zeroth-order 

energy separation between the l-th excited PES and the ground state PES, and ifC  is a 

constant. Note that ifH  is written in non-Condon approximation, that is, the nuclear 

coupling between the two excited states is Q dependent. Next, we introduce the 
dimensionless momentum   Pmp 2/1  , and dimensionless coordinate   Qmq 2/1/ , 

and obtain  22

2
qpHg 


,   22

2 iii qqpH 
 

,   22

2 fff qqpH 
 

, 

qCH ifif 2 . Further progress is achieved by making the replacement   2 aaq , and 

  2 aaip , where a ( a ) are the usual annihilation (creation) boson operators. Thus, 
one obtains  21 aaHg  ,  aaCH ifif   , 

    22/2/1 iiii qqaaaaH    ,     22/2/1 ffff qqaaaaH    . 

With the closure relation g g i i f f   1  one obtains 

      ' 'i f i f ifH a a i i f f M i i M f f a a C i f f i a a             (8) 

where  2' 1 / 2i i iq     , and 2i i iM q g     in which 
ig  is the Huang-Rhys 

factor of the state i  (similarly for the f  state). In this single frequency model there is a 

simple dependence between the nuclear coupling and the Huang-Rhys factor, namely 

ii gM  . With introduction of the creation annihilation operators of electronic states by 

ii CCii   and fi CCfi   (similarly for the f  state), justified by igCiCC iii   , 

ffiigCfCC ifi   , and ifiiCC fi  0 , Eq. (8) reads 

     
,

'j j j j if i f f i
j i f

H a a C C M a a C C C C C a a      



          (9) 

Eq. (9) describes interaction between an electronic system and phonons. It is of the form of 
the localized defect with several electronic states model, in the case the electronic states are 
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mixed by phonons. The discrete structure of levels in this model is appropriate for 
description of the ‘atomic’ energy structure of QDs, and this Hamiltonian is often adopted in 
QDs problems. Regarding the type of approach, an adiabatic treatment of QD implies 
absence in the Hamiltonian of the nuclear coupling between PESs, that is Cif=0 or 
equivalently a non-mixing of the electronic states by phonons. 

2.3 Absorption and emission spectra in nanocrystals 

Often in experiment the Huang-Rhys factor for the LO phonons is calculated from the 
optical spectra as the ratio of 1LO and 0LO intensity lines, )0(/)1( II . Justification is found 
within the adiabatic model of a localized impurity interacting with a set of mono-energetic 
phonons of frequency 0 (Einstein model, (Mahan, 2000)). Optical absorption spectrum is 
derived by evaluating the imaginary part of the one particle Green’s function. One obtains 
that in limit of low temperatures the intensity ratio for the 1LO and 0LO spectral lines gives 
the Huang-Rhys factor,   q q

2
0

22 Mg , with qM  the electron phonon coupling matrix 

element of the q mode phonon. At 0T  the phonon replicas follow a Poisson distribution, 
!)( negnI gn  , in which n is the number of phonons generated in the transition and 

)0(/)1( IIg  . Thus, calculation of the Huang Rhys factor from the optical spectra as the 
ratio )0(/)1( II  should be cautiously considered as far as it is valid in the limit of an 
adiabatic approach that assumes absence of mixing of the electronic levels by phonons. 

3. Longitudinal optical phonons in optical spectra of defect-free 
semiconductor quantum dots 

The presence of the strong phonon replicas in PL spectra of QDs of weakly polar III-V 
compounds is a striking result since no such strong phonon replicas are usually observed in 
the luminescence of III-V compounds, and not always in the PL spectra of QDs of other 
semiconductor types. The exciton-phonon coupling is already accepted as being strongly 
enhanced in semiconductor QDs, see, e.g., (Fomin et. al., 1998; Verzelen et. al., 2002;  Cheche 
& Chang, 2005), but there are few theoretical reports (Peter et. al., 2004; Axt et. al., 2005) on 
the optical spectra of multiexciton complexes which take into account the phonon coupling. 
For spherical QDs the one-band models by which conduction and valence states are 
computed from single-particle Schrödinger equations in the effective mass approximation 
are a good approximation for type I heterostructures (Sercel & Vahala, 1990). In what 
follows, in Section 3.1 two models built starting with such one-band single-particle states are 
introduced for spherical and cylindrical shapes of QDs. A short discussion about LO 
phonon confinement completes this section. In Sections 3.2 and 3.3 non-adiabatic, and 
adiabatic treatments are introduced to simulate the optical spectra of exciton and biexcton in 
interaction with LO phonons. 

3.1 Quantum dots models 

3.1.1 Spherical quantum dot 

Within the effective mass approximation, following (Cheche, et. al., 2005) a spherical model 
is considered for the case of size-quantized energies of QD (or equivalently, QD with 
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dimension smaller than its corresponding exciton Bohr radius, (Hanamura, 1988)). The 
confinement potential energy is  0)( ee rV  for  0,0 Rre  , and eee VrV 0)(   for 0Rre   
(similar equation is written for holes by replacing er  by hr  ); 0R  is the QD radius. The 
single-particle wave function is the product ),()()(  lmnlnlm YrRr , where )(rRnl  is the 
radial function and ),( lmY  is the spherical harmonics function. By using the second 
quantization language, and disregarding the spin dependence, the electron-hole pair (EHP) 

state may be written as (Takagahara, 1993) 0)( )(  vc
hbeaheab aaddf

he

 rrrr  , where 

)( vc aa
he

  are the creation (annihilation) fermionic operator of an electron in the conduction 
band at er  (valence band at hr ) and a (b) holds for the set of quantum numbers eee mln ,,  
 hhh mln ,,  of electrons (holes). The single particle states composing the EHPs are obtained 
by optical excitation and we need to find the optical selection rules that dictate the allowed 
transitions. In the linear response theory and long wave approximation the particle-
radiation Hamiltonian for a carrier of charge Q and mass M is given by 

  PA  


1McQH RQ , where c is the speed of light, A  is the vector potential, and P  is the 

carrier momentum. For monochromatic field of frequency  , amplitude 0E , and direction 
of oscillation along the unit polarization vector ε , the semi-classical EHP-radiation 
interaction form of RQH   reads 

     tWtBfBfmEH
f

ffREHP  sinsin00
0

1
00  




 PPεe  (10.a) 

where  i ipP  the total electronic momentum (with ip  the electron momentum) and 
fB  

( fB ) the creation (annihilation) exciton operators. The EHPs are considered as being bosons 

(EHP spin is an integer), a valid approximation in the dilute limit of excitons. Using an 

appropriate definition of the momentum (Takagahara, 1993), .. 0 chaad vc
cv   RRRpP , where 

0
cvp  is the momentum matrix element between the valence-band and the conduction-band at 

the   point and where R  suggests integration over unit cell vectors, one obtains  the optical 
matrix element 

  


0

20 )()(  0 rRrRrdr
hheehehe lnlnmmllcvab  pP  lnnmmcv hehe

A0p , (10.b) 

 with lll he  . Thus, one obtains that the optical selection rule requires he ll  . The model 
takes into account the difference in the effective masses between the nano-sphere and its 
surroundings. Following (Chamberlain et. al., 1995), the expression of orthonormalized 

)(rRnl  and the secular equation of energy are as follows 

  









 
00

00
11

2
11

2
3
0       ,)()(

      ,)()(
)()()()()()(

2
)(

RrRrykxj

RrRrxjyk
xjxjykykykxj

R
rR

ll

ll
llllllnl  (11.a) 

 )()()()( '
1

'
2 ykxyjxjyxk llll    (11.b) 
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where 2
,10 )2( lnERx  , 2

,020 ))(2( ln
c EVRy   ,  lk  is the modified spherical 

Bessel functions, )( 21   is the effective mass in the dot (surrounding medium), cV0  the 

band offset of the carriers, and ln   ,  stand for ee ln   ,  (electrons) or hh ln   , (holes). 

For GaAs microcrystallites embedded in AlAs matrix, the compound discussed as an 
application, we use the parameters of material from (Menéndez et. al., 1997) : the GaAs 
energy gap 5177.1gE eV , the GaAs (AlAs) electron effective mass 0665.00 me  

( 124.00 me ), the hole effective mass 45.00 mh  ( 5.00 mh ), the conduction band 

offset 968.00 eV eV , and the valence band offset 6543.00 hV eV ; 0m   is the electron mass. 
The energy spectrum is obtained from Eqs. (11.a, b), and the EHP energy 

hheehhee lnlnglnln EEEE ,,,;,   is computed as a function of the QD radius and shown in Fig. 

3. Some particular levels are labeled by the set of quantum numbers, ( hhheee mlnmln ,,;,, ) as 
follows: )0,0,1;0,0,1(0Α , ),1,1;0,0,1( hmB - dark level, ),2,1;0,0,1( hmC - dark level, 

)0,0,2;0,0,1(0 D , )0,0,1;,1,1( emE -dark level, ),1,2;0,0,1( hmF -dark level,  
),1,1;,1,1( he mm0G . Based on the distribution of energy levels and taking into account the 

exciton Bohr radius (larger than 100Å), we consider 500 R Å as a reasonable upper-limit 
for neglecting the Coulombic interaction. On the other hand, possible phonon mixing effect 
could manifest starting with 230 R  Å (see the ellipse mark at Fig. 3), between the optically 
active level 0G  and the dark level F . But, the phonon-assisted transition between 0G  and 

0D  is improbable (at least in the low temperature limit) because for the intermediate 
transfer, 0DE ,   37.30  

0DE EE  (the LO phonon energy meV2.360  ). For the 

first two optically active levels, the adiabatic treatment is safe for 220 R  Å and may be 
accepted as satisfactory for 320 R Å, beyond which the dark level C  appears. 
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Fig. 3. The energy spectrum of small spherical GaAs/AlAs QDs. 
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3.1.2 Configurational interaction approach for cylindrical QDs 

The energy levels of the exciton complexes can be obtained by the configurational 
interaction method (Hawrylak, 1999). Following (Cheche, 2009) we will describe a 
configurational interaction-based model for cylindrical semiconductor QDs. In the effective 
mass approximation the electron single particle wave function of QD can be approximated 
as the spin-orbital product (Haug & Koch, 1993) )()()( rrr   u , where r  is the carrier 

position vector. )(r  is the envelope function, and )(ru  is the periodical Bloch function at 
  point with spin dependence included. The same is valid for holes by replacing, notation 
wise, e by h,   by  , and   by  .   and   are the z-projections of the Bloch angular 
momentum, with 2/1  and 2/1  ,2/3  . By disregarding the band-mixing, we 
safely assume that the topmost states are formed from degenerate heavy-hole states, that is, 

2/3 . With  ,, z , cylindrical coordinates, we consider for the conduction electrons the 
confining potential made up of the in-plane parabolic potential  2 2( ) 2e

e eV ρ    II  and 

vertical potential, 0)(  zV e  for 2/Lz   and e
b

e VzV  )(  otherwise. The single-particle 
Hamiltonian, ezee HHH   , has the components 
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The corresponding Schrödinger equations read, ),(),(  
e

eH  , and 

)()( zzH e
zez   . The electronic envelope wave functions )(r  is given by the product 

)(),( z , and has the concrete expression,   )()(2)( ,
21 zRe e

imn
im

ee

e  


r , where   

holds for the set of quantum numbers ),,( imn ee . For QD sufficiently narrow we may 
consider 1i  level only, and take the approximate wave function of the first state in z 

direction as, )/ cos()/2()( 2/1
1 ee
e LzLz   , where 



 





 e

bee VLLL 2/21   is the 

effective QD height including the band-offset, L  is the QD height (Barker et. al., 1991). Thus, 
for the electron, the envelope wave function reads 
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with e

e

m
nL  denoting Laguerre polynomials, ,...2,1,0en , ,...2 ,1 ,0 em ,  eeel  , 

and   re-denoting the set ),( ee mn  for 1i . The corresponding energy states are obtained 

as ezmn ee 1  , where 
eemn  and ez1 are the quantized  values of e

  and e
z , 

respectively. The quantized energy for the in-plane motion is   eeemn mn
ee

 12  . The 

same considerations are valid for holes, by considering the effective mass in z direction, hz , 
and the in-plane effective mass 

h
. An immediate analysis shows the spin-orbitals set 
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 )(),( rr    is orthonormal. The integrals involving spin-orbitals are solved by the usual 

decomposition in a product of two integrals, one over the space of the unit cells position 
vectors for slowly varying functions, and the other one over the unit cell space for rapidly 

varying functions. Thus, for example, one obtains,   0
0


  uu
spaceall

 

from the orthonormality of the periodical Bloch functions (the indices show the volume of 
integration, with 0  the unit cell volume). For such orthonormal basis set two equivalent 
ways, the language of the second quantization, and the technique of the determinantal states 
can be used to describe the energy structure of the system. 

Next, we adopt the creation (annihilation) fermion operators, )(  cc  for electron in 

conduction band, and )(  hh  for hole in valence band; they create (annihilate) the carrier 

with spin projection   for electrons and   for holes. Considering negligible the 
piezoelectricity and the band-mixing effects, and disregarding the electron-hole exchange 
interaction, the QD Hamiltonian reads 
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ehhh
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D

, (13) 

where the first, second, third, fourth, and fifth terms of right side stand for electrons,  holes, 
electron-electron, hole-hole, and electron-hole Coulomb interactions, respectively.  

Regarding the significance of terms in Eq. (13), we have (Takagahara, 1999) 
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where V is the volume of QD. Similar expressions hold for  eeV
2413
2211

,
,


  and hhV

2413
2211

,
,


 ; the 

capital bold characters suggest integration over the ‘coarse-grained’ space of the unit cell 
position vectors. In Eq. (14), we considered an in-plane Coulombic interaction, with ρ  the 
in-plane position vector. After integration over z, which gives unity, one obtains an integral 
over ρ  only. Integral from Eq. (14) is solved as follows. The potential is written as a two-

dimensional Fourier transform,    hei
hehe ed ρρqqqρρρρ )(1 v)v( , and the inverse 

Fourier transform reads 
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where   is the angle between q and ρ. Using these expressions we write in Eq. (14) 
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where 0S  is the cylinder base surface. Next, we introduce 
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Similarly, for holes,  
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hh mmh q . Conservation of 

the angular momentum in z direction requires 11 he mm  , and 22 he mm  . For Eq. (14), 

after an integration over  , we have   12

',';,','
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2121
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mnmn IdqI ; such integrals have analytic solutions. General solutions of 

Coulombic integral for in-plane interaction can be found in (Jacak et. al., 1998). 

The exciton state 1
fX  is written as a linear combination of determinantal states,  

 00 1
,   ,

1   f
f

f XhcCX
  , (15.a) 

with 0  standing for the exciton vacuum state (no excitons), the ground state (VS) of the 

sysytem. Similarly, the biexciton 2
fX  state is written as linear combinations of 

determinantal states that differ of the VS by two of the spin-orbitals 

 00 2

,
,

,
,

2

2211
,2211 22112211

2211
,2211

  f
f

f XhhccCX

 


 . (15.b) 

The eigen-problem for exciton and biexcitons is solved through the equations 
  111

fffD XXH  , and   222
fffD XXH  . Their corresponding secular equations allow 

obtaining the eienvalues and eigenfunctions corresponding to the exciton and biexciton 
states. It is worth noting that the electron-electron and hole-hole Hamiltonians from Eq. (13) 
have no contribution to the secular equation associated to the exciton eigen-problem; the 
product of fermionic operators resulting from these Hamiltonians and from the exciton state 
forms sequence of operators which when acting on the VS gives zero.  
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Referring to the determinantal state technique, the VS is written as the ground-state Slater 
determinant  )(),...(),...,(),,...,,...,,( 1110 11 NvNNv NN

rrrrrr   A , where N is the total 

number of electrons in the system, and A  is the antisymmetrizing operator. A single-
substitution Slater determinant is written by promoting an electron from the occupied 
valence state )( vr  to the unoccupied conduction state )( vr  

 )(),...(),...,(),,...,,...,,( 111, 11 NvNNv NN
rrrrrr   A . 

The following equivalence between the single-substitution Slater determinant and 
configurations written in the language of the second quantization holds:  

0),,...,,...,,(   11,
   hcNNv rrr . 

Taking the advantage of the determinantal states, we search for the optical selection rules 
that dictate the optically active pair states to be used in the linear combination from Eqs. 
(15.a, b). The radiation field is modeled as a single mode of polarized plane wave. In the 
limit of linear response theory and long-wave approximation, the semiclassical particle-field 

interaction Hamiltonian, for transitions 1 mm XX  (with 00 X ) is written as 

  mm XRX
mEH Pε  


1

00 e , where the momentum operator is 

  
if

m
f

m
fi

m
f

m
fX

chXXXXm ,
11 ..pP  , with ip  the momentum of the i electron and 

summation is done over all the electrons of the system and (multi)exciton states. Then, by 
using the algebra of determinantal states (Grosso & Parravicini, 2000), we have: 
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If we make use of the fact that the envelope functions vary relatively slowly over regions of 
the size of a unit cell,  with  ip , we can write the integral 
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The second integral over unit cell of orthogonal Bloch periodical functions vanishes and Eq. 
(16.c) is in accordance with Eq. (10.b). Passing from the momentum matrix element to the 
dipole matrix element in Eqs. (16.a, b) we obtain the following (multi)exciton-field 
interaction Hamiltonians: 
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We used the notations:   he
   , and 0  , E  for frequency, amplitude of the 

radiation field, respectively. We also introduced 011
ff XX 


, 022

ff XX 


, 

1212
fifi XXXX 


. The optical selection rules for interband transitions are obtained from 

the rε   matrix element. Thus 
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By writing: i) the periodical Bloch functions at the   point, ),()()(  jjj aaa
ru r , where  

hej , , and 2/1ea , 2/3ha , as the following spinors (Merzbacher, 1988): 

 ),(),( 0
02/1,2/1  Ye ,  ),(),( 0

02/1,2/1  Ye ,  ),(),( 1
12/3,2/3  Yh , 

 
 ),(),( 1

12/3,2/3  Yh ,  and ii) the position vector for light propagating in z direction, 

 
  εεr ˆˆ 1

1
1
1 YYr  with  εε ˆ,ˆ  the light helicity unit polarization vectors, we obtain the 

spin selection rules for the configurations. Thus, one finds that for linearly polarized light 
propagating in z direction, the only non-vanishing matrix elements involving the heavy-hole 
states correspond to the transitions 2/32/1    and 2/32/1   . This 
result is guiding us in choosing the optically active configurations when using the 
configurational interaction method to obtain the energy structure of QD. 

To obtain spin-polarized excitons, the linearly polarized light is used for photoexcitation. 
The nonequilibrium spin decays due to both carrier recombination and spin relaxation. 
Accordingly to (Paillard et al., 2001), and (Sénès et al., 2005), who studied polarization 
dynamics with linearly polarized light in InAs/GaAs self-assemled QD under 
(quasi)resonant excitation, following excitation the electron and hole spin states remain 
stable during the exciton lifetime for low temperatures. This is the case we assumed for the 
present discussion. Linearly polarized light is a linear combination of circularly polarized 
light with positive and negative helicity (Zutić, et. al, 2004), consequently, the configurations 
are obtained by respecting the optical selection rules for interband transitions for circularly 
polarized light with both positive and negative helicity. 

Accordingly to our assumption that the electron and hole spins remain stable during the 
exciton lifetime the appearance of dark states (states with opposite spins of the electron and 
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hole of a pair) is less probable, and we disregard them. Within the configurational 
interaction method we consider a limited number of states generated by the two lowest 
shells s and p configurations optically active, that is the pair states having ,0 he nn  and 

1,0  he mm , as shown in Fig. 4. In Fig. 4, the filled (empty) triangles represent 
electrons (holes) of Bloch angular spin projection 2/1 ( 2/3 ). The quantum numbers 
( ee mn , ), ( hh mn , ) are shown for the single states. 

 01 0-1 

00 

00 

0-1 01 

       0      1              2          3         4      5              6  

       7      8              9          10         11      12              13  

     14    15          

 
Fig. 4. Vacuum state, exciton and biexciton bright states with linearly polarized light. 

Next, we apply the model to cylindrical InAs/AlAs QD. We use the following material 
parameters taking into account the presence of lattice mismatch strain: a) For InAs 

004.0 me  , 041.0 mhz  , 004.0 mh  , 74.11/0 v , 54.15/  v  ( v  is the vacuum 

dielectric permittivity), meV5.290  , and the energy gap, 0.824eVgE ; b) For the 

InAs/AlAs the band-offsets  are considered as eV5.1e
bV ,  eV75.0h

bV (Vurgaftman et. al., 
2001); c) For the value of QD height L=2.3nm which is considered, we find 1 electron and 3 
hole levels in the quantum-well in the z direction. By setting eV065.0e  and 3he  , 
(according to the literature (Hawrylak, 1999; Shumway et. al., 2001) the exciton and 
biexciton eigenvalues obtained for this material parameters are as follows, 1.5792eV)1(

1  , 

1.6696eV)1(
2  , 1.6736eV)1(

3  (all three two-fold degenerate), 3.1617eV)2(
1  , 

3.2429eV)2(
2  -three-fold degenerate, 3.24345eV)2(

3  , and 3.24719eV)2(
4  -four-fold 

degenerate. Consequently, the inter-level  bi/exciton energy is not close of the LO phonon 
energy and the mixing of the bi/exciton states by phonons is absent. 

3.2 Confined optical phonons in semiconductor quantum dots 

There are several theoretical models which investigates the optical phonon modes in 
semiconductors with low dimensionality. Generally, the LO phonons are considered as the 
main contributors to the electron-phonon coupling in polar semiconductors in the relaxation 
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processes.  Based on the continuum approach for long-wavelength optical phonons of (Born 
& Huang, 1998), macroscopic approaches, such as the dielectric continuum (DC) model 
(Fuchs & Kliewer, 1965; Klein et. al. 1990)), the multimode DC model (Klimin et. al., 1995), 
the mixed mechanical-electrostatic model (Roca et. al., 1994), and the hydrodynamic model 
(Ridley, 1989) have been developed. Microscopic approaches have also been proposed 
(Huang & Zhu, 1988; Rücker et. al., 1991).  

The shape of QD plays a major role in setting the type of confined phonon modes and the 
strength of the exciton-phonon interaction. For spherical QD, the problem of the polaron 
was the most intensive studied case. One of the conclusions of the studies is that the inside 
QD, the electron-surface optical phonon interaction is absent (Melnikov & Fowler, 2001). 
Physically, this can be explained within the adiabatic picture: the electron is fast oscillating 
and in the ground state, which has a spherical symmetry of the charge distribution, the 
average surface ionic polarization charge is zero. For other shapes, the geometry itself brings 
additional complications in the study of the exciton-phonon interaction. Next, we 
extrapolate the above observation regarding the absence of electron-surface LO phonon 
interaction in spherical QD to the cylindrical shape case. The approximation is supported by 
the results obtained by (Cheche et. al., 2011), where calculus shows the exciton-bulk LO 
phonon interaction in such cylindrical QDs is dominant.  Consequently, in the analysis of 
the optical spectra from the next sections, we consider the bulk LO phonons as the main 
contributors to the (multi)exciton-LO phonon interaction.  

3.3 Optical spectra of spherical semiconductor quantum dots. A non-adiabatic 
treatment 

Non-adiabatic treatments, necessary when the electron-hole pair (EHP) level spacing is 
comparable to the LO phonon energy, have been proposed (Cheche et. al., 2005; Fomin et. 
al., 1998; Takagahara, 1999; Vasilevskiy et. al., 2004; Verzelen et. al., 2002). Following 
(Cheche et. al. 2005; Cheche & Chang, 2005) in this section a non-adiabatic treatment of 
optical absorption in QDs is presented. The theoretical tool we develop: i) confirms existence 
of resonances accompanying the LO satellites in the optical spectra; ii) explains the 
temperature effect on the optical spectra. The Hamiltonian of the EHP-LO phonon reservoir 
we use is described by an extension of the Huang-Rhys model of F centers of the type 
described in Section 2.2, 

 phEHPphEHP HHHH  , (19) 

where  
f fffEHP BBEH ,  

q qqq bbHph  ,  



 

',, '
' )(

ff ff
ff

phEHP bbBBMH
q qqq , 

fB  

( fB ) are the exciton operators already introduced in section 3.1.1, 
qb  ( qb ) are the bosonic 

creation (annihilation) operators of the phonons of mode q , '' fMfM ff
qq   is the 

coupling matrix element, q  is the frequency of the phonon mode with wave vector q , and 

fE  ( f ) are the EHP eigenvalues (eigenstates) of the exciton system. The absorption 

coefficient for a single QD is given by (Mittin et al., 1999) 

 
absR

VncE 0
2
0

2
)(

 
  (20.a) 
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where   is the frequency, 0E  is the amplitude of the monochromatic radiation field, n is 
the refractive index of the environment, 0V  is the absorptive volume, and absR  is the 
radiation absorption rate. absR  is calculated with the Fermi Golden Rule as follows. 

   
FG,

FGGF EEWRabs  


2Av
2

 (20.b) 

The average Av involved by Eq. (20.b) means a quantum average over the finite number of 
the exciton states in the QD and a statistical average over the phonon modes at thermal 
equilibrium. In Eq. (20.b), GE  is the energy of the system in the ground state (no exciton) 

0G  (   is the phonon state), FE  is the energy of the system in one of  the 

exciton+phonons states  ;fF  ( f ,   is the exciton, phonon state, respectively), 

and FGGF WW   is the transition probability between the initial state G  and the final 

state F , with W  from Eq. (10.a). Greek letters are used for phonon states, Latin letters for 
exciton states, and capital handwriting letters for all system. Eq. (20.b) can explicitly be 
written as follows 
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where 


   is the density matrix of the phonons, with  phHE eTre



   the 

probability of the phonon state   in the equilibrium statistical ensemble of the phonons, 

and    
 

 AAATr ,       AAATrA  0 . The closure 

relation   
F

GGFF 1  was used in the second equality of Eq. (20.c), where the 

operator  


 00
G

GG , which has no effect on the matrix element was 

inserted.  If using an adiabatic picture the state F  is written as a product of states, 

 ff  ;F , and the meaning of the closure relation is more transparent: 

1









 
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 0000

, ff

ffffGGFF
F

. 

In Eq. (20.c),  itHitH
WeetW ph )(~ .  Eqs. (20a-c) give 
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By using the bosonic commutation rules for creation and annihilation of EHP and phonons, 
the operator relation  2/],[ BABABA eeee   , we write Eq. (21.a) as follows: 

   





















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











0',
'

00
110'0

0
2
0

2

 0)(~expˆ0)(exp
 2

)(
ff

f

t

ffff BtVdt
i

TBtidtPP
Vncm

e





  (21.b) 

where T̂  is the time-ordered operator, )/exp()/exp()(~
00  itHHitHtV phEHP   , 

0
0

0 11 )()(~expˆ tUtVdt
i

T
t





  , phEHP HHH 0 , fP f )(00 Pε  , and  i ipP  is the 

total electronic momentum (with ip  the electron momentum).  Further progress is achieved 
by using the cumulant expansion method in Eq. (21.b). For dispersionless LO phonons 
(Einstein model) of frequency 0 , Eq. (21.b) can be approximated by the expression (Cheche 
and Chang, 2005)  

    
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where ),,,,(2
0 siiptIgG piispiis  ,    

q qq
2

0
''

'' ppkk
ppkk MMg , ( ppppp gg   is the Huang-Rhys 

factor),   1 

0 21
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0 1 )()exp()exp()',',',,(
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t

ttDititdtdtpkkktI  , )( 21
0 ttD   

    )(exp)1()(exp 210210 ttiNttiN   ,  11 0  eN , and   jiij EE  . 

If the off-diagonal coupling terms in Eq. (19) are disregarded then Eq. (22) is exact and it 
recovers the adiabatic limit (the Franck-Condon progression): 
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where nI  are the modified Bessel functions,  and f
ffad

f gM 0
2

0
22

0  




  

q q   is the 

self-energy. The relative intensity of absorption lines is given by the coefficients of the Dirac 
delta functions. 

Next, we adopt the spherical model from section 3.1.1 for spherical GaAs microcrystallites 

embedded in AlAs matrix.  The quantity '''''
120

0'0 3 
hehehehe mmmmlnnlnncvff AAPP  p  in Eq. 

(21.b) is obtained by averaging over all space polarization directions. The Fröhlich coupling 
is written for dispersionless bulk LO phonons (for a spherical QD the interface modes do not 
couple with the exciton states (Melnikov & Fowler, 2002)).  Within the pure-EHP 
approximation the EHP-phonon interaction reads (Voigt et. al., 1979; Nomura & Kobayashi 
,1992) 
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 )exp()exp()()()()(  ''
1

0
21

0
'';'

hehbeahbeahe
baabff iiddqfVMM qrqrrrrrrrqq     , where 0f  

is the Fröhlich coupling constant. Explicit expression of 'ffM q for spherical QDs can be found 

in (Cheche and Chang, 2005).  

For the only two optical levels which appear at 200 R  (see Fig. 3), with an inter-level  
energy of approximately 011  , the plot of absorption spectrum centred  on the line 0A  
obtained from Eq. (22) and that given by the adiabatic expression, Eq. (23) are, as expected, 
practically identical. Situation is different for 320 R Å, where the dark level 1D  is located 
between two optical levels 0A  and 0D  (see Fig. 3). Contribution of the optical and dark 
levels to the absorption centered on line 0A  is included in the following expression: 
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with )( 0310    and )( 0310   . The non-adiabaticity effect expressed by Eq. 
(24) is shown in Fig. 5, where the absorption spectra at different temperatures are plotted 
(we dressed the lines by Lorentzians with a finite width of meV15 to simulate the EHP-
acoustic phonons interaction). The adiabatic spectrum obtained with Eq. (23) has no 
temperature-induced shift and its maxima are not significantly changed with temperature. 
The following quantities obtained within the adopted QD model have been used: 

eV8822.11 E ,  eV0738.22 E , eV9496.1E3  , 039.01 g , 234.01221 g , and 
904.01331 g . The stronger accompanying resonances are marked by arrows. The energy of 

some resonances are indicated by factors which multiply the LO phonon energy; they are 
placed to the left of the lines or arrows. The temperature dependence of the spectra, weak in 
the case of adiabatic treatment, becomes important now. Thus, decrease of intensity (by 
37%) and red shift (from 1.87eV to 1.85eV) of the 0PL lines are obtained when temperature 
increases from 10K to 300K. This agrees with the behavior observed experimentally for 
CdTe QDs (Besombes et. al., 2001). On the other hand, the simulated Huang-Rhys factors 
reach values larger by two orders of magnitude than those of the bulk phase (0.0079 
obtained from (Nomura & Kobayashi, 1992)). A similar behavior is reported for small self-
assembled InAs/GaAs QDs by (García-Cristobal et. al. 1999). Thus, by the non-adiabatic 
activated channel at +0.86LO, the simulated Huang-Rhys factor obtained as the ratio of the 
line intensities for this accompanying resonance increases from 0.084 at K10T  to 0.23 at 

K200T . On the other hand, the non-adiabaticity effect manifests by strong resonances at 
2.9LO (see Fig. 5), close to the third LO phonon replica as reported by some experiments, 
see, e.g., (Heitz et. al., 1997). The usual Franck-Condon progression is obtained by the 
adiabatic treatment (see the dotted line in Fig. 5).  

Concluding this section, the non-adiabatic treatment presented, in accordance with the 
experimental observation, predicts: (i) accompanying resonances to the LO phonon satellites 
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in the optical spectra of QDs; (ii) red shift of the 0LO phonon lines and increased intensities 
of the accompanying resonances with temperature in the absorption spectra of QDs. 
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Fig. 5. Simulated absorption spectra of GaAs/AlAs nanocrystal QDs. 

3.4 Phonon effect on the exciton and biexciton binding energy in cylindrical 
semiconductor quantum dots 

In this section we discuss the exciton and biexciton emission spectra of polar semiconductor 
QDs within an adiabatic approach by using the configurational interaction method 
introduced in section 3.1.2. By taking into account the Fröhlich coupling between bi/exciton 
complexes and LO phonons, we simulate the resonantly excited PL spectrum (laser energy = 
detection energy + LOn  energy, with n non-negative integer, (Sénès et. al. 2005)) with 
linearly polarized (LP) light of InAs/AlAs cylindrical QDs. The exciton and biexciton 
binding energy for such QDs is also evaluated. In accordance with Eq. (9), we consider the 
following (multi)exciton-phonon Hamiltonian: 
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where 1m  for exciton, 2m  for biexciton, 
qb  ( qb ) are the bosonic creation (annihilation) 

operators of the phonons of mode q, )(mMq  is the Fröhlich coupling,  
m
fm

m
f

m
f XMXM

qq )(  

and *)()( m
f

m
f MM qq   (from Hermiticity of )(mH ), 0  is the frequency of the dispersionless LO 

phonons, and   

f

m
f

m
f

m
f XX  is the (multi)exciton DH  from Eq. (13) written in the language 

of (multi)exciton complexes. According to discussion from section 3.1.3, the Fröhlich 
electron-bulk LO phonon coupling is an acceptable approach for QD with high geometrical 
symmetry, where the interface modes are usually weak. Thus, for the exciton-LO phonon 
coupling (Voigt et. al., 1979; Nomura & Kobayashi, 1992) 
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and for biexciton-LO phonon coupling (Peter et. al., 2004) 
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where  1
0

12
00 2 

   ef  is the Fröhlich coupling constant, and 0V  is the QD volume. 

The emission spectrum of single QD corresponding to exciton and biexciton-exciton 
recombinations is obtained with the Fermi Golden Rule, that should be adapted to the 

composed system, multi(exciton)+phonons. The statistical operator  )()( mm HH eTre    is 
used for the statistical average in the Kubo formula of the optical conductivity. When 
applying the Fermi Golden Rule for the system multi(exciton)+phonons, we need to 
consider a statistical average for phonons and a quantum average for the finite number of 
multi(exciton) states in the QD. On the other hand, within the adiabatic approximation, the 
electronic potential energy surface is the potential for phonons in the QD. We imaginarily 
decompose temporally the absorption process and consider that before switching on the 
electron-phonon interaction, the electron-hole potential energy surface is raised vertically 
from the lowest potential energy surface of the exciton vacuum state to the excited potential 
energy surface (see dotted line parabola in Fig. 6). Then, we consider the electron-phonon 
interaction is switched on and as a result the potential energy surface is further modified to 
the new potential energy surface of the interacting multi(exciton)+phonon system, see upper 
solid line parabola in Fig. 6 and comments in (Odnoblyudov et. al., 1999). 

 

 
 

Fig. 6. Schematic exciton of the potential energy surface involved in transition.  
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Energy 
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Thus, according to its PES, each (multi)exciton state is characterized by its density matrix. To 
take into account the above considerations, we project the statistical operator of the phonon 

system interacting with the (multi)exciton state on the state m
iX  and write 
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m
i . The partition function )()( m
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iZ qq Z  is the product of the 
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the partition function for a single mode reads,    )(exp )(
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can be evaluated by using a canonical transformation 
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in which   q q
2
0

22)()( m
i

m
i Mg  is the Huang-Rhys factor. 

With the Fermi Golden Rule, the exciton emission spectrum is given by 
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where 
11
ii XX is the initial state with energy IE  and G is the ground state with 

energy GE . 
RX

H
1  does not couple the exciton-phonon states, that is relation 

011
1 
 jnRXin H XX  holds, and in Eq. (29) we inserted  




,

11

j
jj XX  to make use of the 
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closure relation  1 1
, j jj     1X X G G . Since (1) (1), 0phQD QD phH H H 

    , by using the 

operator relation  2/],[ BABABA eeee   ,  we have 
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With Eqs. (30.a, b), Eq. (29) reads 
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where the correlation function is 
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Eq. (32.a) is transformed by using the canonical transformation,  
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where, generally ( 2,1m ), 
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where phZ  is the partition function of the phonon system. By using the interaction 

representation, the correlation function reads 
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where T is the time-ordering operator and 
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Next, to evaluate 
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i
ph  we use the linked cluster expansion (Mahan, 2000) 
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and since )1(~
ih  describes creation or annihilation of a phonon, they are grouped in pairs. 

Thus, 
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By using Wick’s theorem to pair the boson operators for the terms of higher order one 
obtains (Mahan, 2000) 
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and, consequently 
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With Eqs. (32.d) and (33.f), Eq. (29) that gives the exciton emission spectrum reads 
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where iC  is defined in Eq. (17.a). lI  is the modified Bessel function obtained from 

expansion in Eq. (33.f), 




l l ilzIz )exp()(]cosexp[  . Eq. (34) shows the usual phonon 
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progression and comparatively to Eq. (23) in the argument of the Dirac delta function the 
sign of factor for the phonon progression is changed.  

With the Fermi Golden Rule, the biexciton-exciton emission spectrum is given by 
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where 2 2
i iX X  is the biexciton initial state with energy IE , and  1 1

f fX X  is 

the exciton final state with energy FE . 
RX

H
2  does not couple the biexciton-phonon states 

and the ground state to the biexciton-phonon states, that is the relations 

2
2 2 0i jX R
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2 0 0i X R
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With additional algebra and making use of 1212
baba XXXX 

 , one obtains 
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With Eqs. (36), Eq. (35) reads 
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where the correlation function is 
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Given the similarity between expressions of the correlation functions (see Eqs. (32.d) and 
(38.c)), we evaluate 
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With Eqs. (38.c, d), Eq. (37) that gives the biexciton-exciton emission spectrum reads 
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with ifC  defined by Eq. (17.b). ifg  is function of the difference between the coupling of 

phonons to the initial biexciton 2
iX  and the final exciton state, 1

fX ; it influences the 
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intensity of the emission line. Note that ifg  cancels out from the argument of the Dirac delta 

function from Eq. (39), instead and a difference of the Huang Rhys factors, )1()2(
fi gg  , is 

present. Eq. (39) has similarity with Eq. (34), and all characteristics of an emission spectrum 
are present. The spectra have 2  dependence. In Eqs. (34) and (39) the argument of the 
modified Bessel functions, lI , plays major role in establishing the emission line intensity; a 
larger Huang-Rhys factor will result in more intense lines.  

Next, we apply the theory to the resonantly excited photoluminescence for high barrier 
heterostructure of InAs/AlAs.  According to the model from section 3.1.2, the mixing of 
the bi/exciton states by phonons is absent, and the formula (34) and (39) are valid. On the 
other hand, the bi/exciton degeneracy could make the dynamical Jahn-Teller effect (Jahn 
& Teller, 1937) to be effective. Accordingly to Eq. (39), the coupling Huang-Rhys factor gif 
makes the degenerate lines to have different intensities. We approximate the intensity of 
emission lines by an average over the intensity of degenerate levels. The values of Huang-
Rhys factors obtained, in accordance with (García-Cristóbal et. al., 1999; Cheche et. al., 
2005) are large as follows: 0.187)1(

1 g , 0.103)1(
2 g , 0.104)1(

3 g , 0.747)2(
1 g ,  

0.364)2(
2 g , 0.365)2(

3 g , 0.364 )2(
4 g , and the ifg  have values between 0.103 and 0.187, 

and larger values of 0.704 for 12g , and 0.706 for 13g . According to the presence of the 
Huang-Rhys factor in the argument of the modified Bessel functions, lI , from Eqs. (34) 
and (39), a large Huang-Rhys factors obtained may be the sign of the appearance of strong 
phonon replicas in the optical spectra. 

There is a variety of results regarding the biexciton binding energy, which reveal 
importance of shape, compounds, and size of QDs. In Fig. 7 the biexciton binding ground 
state (GS) energy, the difference of biexciton and exciton GS lines as given by Eqs. (34) 
and (39), i.e., 0

)2(
1

)1(
1

)2(
1

)1(
1

2 )2(2~  ggXX
b  , is obtained for different values of e  

(with 3he  ). Results from Fig. 7 show that the biexciton binding energy increases 
when the in-plane parabolic potential increases (QD radius decreases or exciton GS 
energy increases). This result is in agreement with the experimental data obtained for the 
same cylindrical shape of QD but with other compounds, InAs/InP (Chauvin et. al., 
2006)), As/GaAsGaIn 0.860.14  (Bayer et. al., 1998) or with theoretical results obtained for 
GaAs. 

QDs (Ikezawa et. al., 1998). An opposite behavior is reported for InAs/GaAs truncated 
pyramidal QDs by (Rodt, 2005). These facts might be related with the actual shape of the 
QDs. On the other hand, the binding character is obtained for smaller QDs ( e  of order 
of tens of meV) and the antibinding character for larger QDs (for example, with 

001.0e  eV, we obtain -0.0011~2 XX
b eV) in agreement with (Stier, 2001). Remarkable 

for the relevance of LO phonon influence on the spectra is the fact that without taking into 
account the self-energy (setting up 0)2(

1
)1(

1  gg  in Eq. (39)), )2(
1

)1(
1

2 2  XX
b  is 

negative (increasing, e.g., from -0.0034 eV for 065.0e eV to -0.0008 eV for 

005.0e eV) and XX
b

2~  becomes positive only by considering the phonon coupling. 
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These observations show that in addition to the shape, size, chemical composition, 
electron-hole exchange interaction, and piezoelectricity, the LO phonon coupling is an 
important factor which influences the anti/binding character of the biexciton. The extent 
to which the LO phonon coupling can not be neglected is a problem which can be 
addressed within a QD model of high enough accuracy. The confidence in the QD model 
we used is supported, in addition to the results obtained for biexciton, by those obtained 
for the exciton complex. As shown in Fig. 7, the magnitude of the exciton GS energy and 
decreasing of the exciton GS energy with QD size agree with other reports, see, e.g., 
(Ikezawa, 2006; Grundmann et. al., 1995). As the piezoelectricity in the case of cylindrical 
QD shape is expected to be less important (Miska, 2002) than for other QD shapes, the 
adopted QD model is suitable for describing the main physics of the bi/exciton-LO 
phonon coupling in cylindrical semiconductor QDs.  
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Fig. 7. The exciton (�) and biexciton (■) binding energies obtained for the simulated 
InAs/AlAs QD. The numbers show the energy of the exciton GS emission line. 

The calculations show that value of exciton and biexciton binding energy is strongly 
influenced by diameter (in-plane confinement) and less by the height (perpendicular 
confinement) of cylindrical QDs. The binding character of the biexciton, with  

0076.0~2 XX
b eV, and the exciton and biexciton GS emission lines of InAs/AlAs QD as 

reported by (Sarkar et. al., 2006) for K9T  are simulated in Fig. 8 by choosing 
eV065.0e  and  eV3/065.0h . Regarding the emission, the emission lines from Fig. 

8 are labeled with three digits for transition from biexciton state (first digit) to exciton state 
(second digit), and with two digits for transition from exciton state (first digit) to the VS 
(reminding to the reader, VS means vacuum state, that is, the no excitons state); the last digit 
corresponds to the phonon replica. The open squares show the experimental results from 
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(Sarkar, 2006). The inset shows schematically the exciton resonant emission we simulated. 
Emission spectra of InAs/AlAs QDs are reported in a range of 1.5-1.9eV (Dawson et. al. 
2005; Offermans et. al., 2005; Sarkar et. al., 2006). Our approach simulates the emission from 
exciton (1, 0) GS and biexciton (1, 1, 0) GS, in the range 1.56-1.68eV. In this interval the 
phonon replicas are predicted in accordance with the experimental data from (Sarkar et. al., 
2005). 

The literature regarding the presence of the excited states in emission spectra of QDs is 
rather scarce (Kamada, 1998; Khatsevich, 2005).  The strong 0LO emission lines from excited 
states might explain the higher energy lines observed in the PL spectra reported by (Dawson 
et. al. 2005; Offermans et. al., 2005; Sarkar et. al., 2005). For small enough InAs/AlAs QDs 
the lowest energy state at ƥ  point in InAs moves above the AlAs X band edge, the electrons 
spread in the AlAs barrier, and appearance of high energy lines by this mechanism is 
forbidden. Instead, the exciton line (2, 0) and the biexciton-exciton emission lines (3, 1, 0), 
and (2, 1, 0) are candidates for explaining the high energy lines observed by (Offermans et. 
al., 2005). Accuracy of our QD model is not high enough to explain the fine-structure 
splitting reported by (Sarkar et. al., 2006) and shown in Fig. 8; the fine-structure is assigned 
to the electron-hole exchange interaction, which was neglected in our model. Prediction for 
higher temperatures is not reliable, as far as the possible dissociation of the biexciton with 
temperature had not been taken into by the present considerations. However, at larger, but 
still low temperatures, under 60K, the features of spectra predicted by our approach do not 
change significantly.  
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Fig. 8. The resonant emission spectrum of biexciton and exciton complexes. 

Concluding this section, the theoretical approach we introduced is a useful tool for 
describing the influence of LO phonons on the resonant excitation emission at low 
temperatures. The high energy emission lines, that are obtained by configurational 
interaction calculations for cylindrical InAs/AlAs QDs, are associated to the emission from 
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the excited states. One finds, in accordance with the experiment, that the biexciton binding 
energy has a binding character (positive value), which diminishes with decreasing the 
radius of QD, and becomes antibinding (negative value) for flat QDs. The simulated exciton 
and biexciton binding energies obtained, demonstrate that the phonon coupling is an 
essential factor, which should be integrated in the analyses for an accurate description of 
optical transitions in QDs. For the InAs/AlAs QDs, the presence of LO phonon replicas and 
emission from the excited states is explained as the consequence of large Huang-Rhys 
factors. 

4. Outlook  

To introduce the reader the problem of the electron-phonon interaction in QDs, three basic 
aspects are presented in the Sec. 2: i) the adiabatic and non-adiabatic transitions in the 
optical transitions; ii) the Huang-Rhys factor; iii) the Hamiltonian of localized defect with 
several electronic states mixed by phonons. 

In Sec. 3.1, within the effective mass approximation two models describing the electronic 
energy structure of spherical GaAs/AlAs QDs and cylindrical InAs/AlAs QDs are 
introduced. For the optical transitions, the spherical QD model predicts the adiabatic 
treatment is appropriate for QD radius smaller than 32 Å, and a non-adiabatic is needed for 
larger radii.  For the cylindrical QD both excitonic and biexcitonic complexes are considered 
by a configurational interaction method and for QD height of 2.3nm and parabolic 
confinement eV065.0e  and 3he   the model predicts an adiabatic treatment is 
appropriate for describing optical transitions. 

In Sec. 3.2 the Fermi Golden Rule and cumulant expansion method are used within a non-
adiabatic treatment to spherical GaAs/AlAs QDs to obtain the absorption coefficient. In 
accordance with the experiment, we obtain: i) Large Huang-Rhys factors by two orders of 
magnitude than the bulk value with increasing values for smaller radii; ii) Accompanying 
resonances to the LO phonon satellites; iii) Red shift of the 0LO phonon lines and increased 
intensities of the accompanying resonances with temperature. 

In Sec. 3.3 the Fermi Golden Rule and cumulant expansion method are used to describe 
the emission from the exciton and biexciton complexes of the cylindrical InAs/AlAs QDs. 
The presence of LO phonon replicas and emission from the excited states is explained as 
consequence of large Huang-Rhys factors. One finds, in accordance with the experiment, 
that the biexciton binding energy has a binding character (positive value), which 
diminishes with decreasing the radius of QD, and becomes antibinding (negative value) 
for flat QDs.  

In conclusion, the present study emphasizes that the LO phonon coupling in the polar 
semiconductor QDs is an essential factor in understanding at a higher level of accuracy the 
optical transitions. The accordance between our results and experimental results show that 
the approaches we used, the Fermi Golden Rule and cumulant expansion method are useful 
tools in describing optical properties of semiconductor QDs. By the prediction of the Huang-
Rhys factors and of the optical spectra shape, the present work is useful to people working 
in the field of semiconductor QDs optics, both theoreticians, in comparing different models, 
and experimentalists, in comparing theory and experiment. 
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