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1. Introduction

Accurate theoretical description of optical phenomena in semiconductor quantum dots
(QDs) depends on the description accuracy of the energy structure of the QD. For the
energy structure description the existent methods, such as, the tight-binding method, the
effective bond-orbital model, the first-principles calculations or the multi-band approach
within k-p theory, have some limitations either in the accuracy of the predicted
electronic structures or the computation efficiency. In this context, the phonon influence
on the optical properties makes the theoretical description of the optical phenomena in
QDs more complex. In this chapter, we introduce several methods and techniques to
describe the phonon influence on the emission and absorption spectra of semiconductor
QDs. They are implemented on simplified models of QDs that can capture the main
physics of the studied phenomena.

2. Phonons in optical transitions in nanocrystals. Theoretical background

The problem of the exciton-phonon interaction in zero-dimensional systems has a rich
history. In principle, strong quantum confinement of the carriers or strong electron-phonon
interaction induces increasing of the kinetic energy of the charge carriers involved in the
optical transitions. In such cases, the optical transitions in nanocrystals are properly
described by an adiabatic approach. On the other hand, if either the dynamic Jahn-Teller
effect (in case the electronic levels are degenerate) or the pseudo-Jahn-Teller effect (in case
the electronic inter-level energy is close to the optical phonon energy) is present, the
electron-phonon system of the nanocrystal is properly described by a non-adiabatic approach.
In this section, basic information regarding the optical transitions involving LO phonons,
adapted to nano-crystals, is briefly introduced.

2.1 Adiabatic and non-adiabatic treatments of the optical transitions

Chemical compounds or solids, small or large molecules may be represented by an
ensemble of interacting electrons and nuclei. Such complex systems are usually described by
the Born-Oppenheimer approximation (Born & Oppenheimer, 1927), which separates the
electronic and nuclear motions. This separation is made within the adiabatic approach,
which means the electrons are much lighter and faster moving than the nuclei so they can
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30 Fingerprints in the Optical and Transport Properties of Quantum Dots

follow the nuclei around and can adjust practically instantaneously their positions. The
Hamiltonian of the global system is

H(r,Q) =Ty +T, +U(r,Q)+V(Q) =Ty +H (r,Q) (1)

where 1, Q are the set of the generalised coordinates of electrons and nuclei, respectively,
and H (r,Q) is the electronic Hamiltonian. U(r,Q) represents the electron-electron plus the
electron-nucleus interactions and V(Q) represents nucleus-nucleus interactions. The kinetic

energy operators are 7, ——Z h? 2m 2/0”r , Ty =—Z h 2M z/a”Qa , where n
and a are indices of individual electronic and nuclear coordmates, respectively; m and
M, are the electronic mass and mass of the « -th nucleus, respectively.

Next, following (Newton & Sutin, 1984), we introduce the diabatic and adiabatic description
of the electronic system by expanding the vibronic wave functions y (r,Q) in the basis set
of the orthonormal electronic wave functions, {®,(r,Q)}, by v (r,0)= an)n(r,Q)fn(Q)

where ¢&,(Q) are Q-dependent parameters. The orthonormal electronic wavefunctions are

found by solving the electronic Schrodinger equation in the Born-Openheimer
approximation taking Q as a parameter

H (r,Q) ®(r,Q) = E(Q)®(r, Q) - (2)

The solution E, (Q) of Eq. (2) corresponding to certain electronic wave function @, (r,Q)
are the so-called potential energy surfaces (PES). The expansion coefficients £ can be found
by solving the vibronic Schrédinger equation H(r,Q)w(r,Q)=Ew(r,Q), which leads to

[Ty +(1"),,, +H (@~ E60 (@ ==Y |H (@ +(1p), +("), J5(@. @

In Eq. (3)¢ acquires a new index a which quantifies the nuclear states. The matrix
elements are defined as (TQ”)mn =(m|Ty|n), and (TQ')mn = W (M, ) (m|o/oQy |n)o/oQ,

(Dirac notation is used). In Eq. (3) we can write

, ” B n | 0’0, oo, ) 0 |
(TQ ) TQ J‘dq mz 2Mk l:an 2( an jan jl - Lmn

where the operator

2 [ 42
__y |2, +2[aq>nJ 0 @
 2M | 0Oy 0Qx ) 0Qx
is the so-called Born-Oppenheimer breakdown (nuclear coupling) or non-adiabaticity
operator. H,, (Q) from Eq. (3) is usually called electronic coupling term. In what follows

for the clarity, we restrain discussion to only two electronic states. In studying the electron
transition starting with Eq. (3) one frequently uses two basis sets:
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Influence of Optical Phonons on Optical Transitions in Semiconductor Quantum Dots 31

i.  The diabatic (non-stationary or localised) basis containing {CDi,d) f} (see Fig. 1). They are

chosen as set of eigenfunctions of the suitable zeroth-order electronic Hamiltonian, H ,
where the interaction between the two electronic states ®; and @, is removed. The

corresponding PESs are H ;(Q)=(i|H|i) and H #(Q) =<f|H |f>
ii. The adiabatic (stationary or delocalised) basis containing {®,, ®,} (see Fig. 1). The

corresponding PES are the non-crossing electronic terms, H;(Q)=(1|H|1) and
1
H 22(Q):<2|H |2>/ and H o \= (H q+H ﬁ)i[(H - H ﬁ()2 +4‘H 1f|2j|2 2 with m=1,2

is relation between the eigenvalues of the two basis sets. The smallest energy difference
between the two non-intersecting adiabatic PESs is 2H if - Transitions are classified as

being adiabatic or non-adiabatic as function of the magnitude of the coupling matrix
elements. The process is adiabatic if the matrix elements of T 'Q , T"Q can be safely

neglected, irrespective of basis used, either diabatic or adiabatic; if the adiabatic basis is
chosen transition does not involve a tunneling between the two adiabatic states
(surfaces). On the other hand, a reaction is non-adiabatic if there is no basis that permits
the neglect of (T 'Q )12 , (T "Q )12 ; when the adiabatic basis is chosen transition involves a

tunneling between the two adiabatic states (surfaces).

A310Ug

\
N

»

Configurational (nuclear) coordinate

Fig. 1. Radiative adiabatic process in the diabatic/adiabatic picture.

Optical transitions can be produced by tunnelling or by overcoming the potential barrier. The
PESs as function of a representative nuclear coordinate and the vibrational levels are
sketched in Fig. 1 for the absorption/emission process by an adiabatic process. The
vibrational levels represent the energy of longitudinal optical (LO) phonons, that have a fast
relaxation. In this case, the possible tunneling induced by the nuclear coupling terms T' and
T" between the two adiabatic PESs has low probability, and the transition is radiative. The
adiabatic PESs are drawn as non-intersecting PESs by the dotted line near the crossing point
of the diabatic PESs (solid line). After photon absorption the nuclei in the material adjust
position to their new equilibrium positions. The time of adjustment of order 10"s is much
faster than the spontaneous emission time of order 10°s and the system relaxes to the lowest
vibrational level of the excited state. Then radiative transitions to the vibrational states of the
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32 Fingerprints in the Optical and Transport Properties of Quantum Dots

ground state are followed by subsequent relaxations to the lowest vibrational ground state.
The mechanism explains the presence of LO phonon satellites in the photoluminescence
(PL) spectra. In this scenario, one considers the transition from adiabatic upper PES to the
lower adiabatic PES that is triggered by the nuclear coupling is of low probability. This low
influence of the nuclear coupling on the process gives the adiabatic character of the
transition. Otherwise, tunneling to the lowest adiabatic PES, which means a non-adiabatic
process, followed by a non-radiative relaxation by muti-phonon emission is possible.

2.2 The Huang-Rhys factor

The Huang- Rhys factor is frequently used as roughly being a measure of the strength of the
exciton-phonon coupling (Banyai & Koch, 1993; Woggon, 1997).

A

A310ug

Fig. 2. PESs with the same force constant.

In a simple way, Huang-Rhys factor is introduced by using the configuration coordinate
diagram, as sketched in Fig. 2. The PESs, E , E, for the ground and excited states can be

written for the model of a single frequency, @, of the oscillators as E, = E; + haolg—q, ) /2

and E,=E, +holqg—q,) /2 , where ¢;, ¢, are the equilibrium dimensionless coordinates.
According to Fig. 2, we have

hao
AE:Ee(%)_Ez=Eg(412)_E1:7(6]1—q2)2=gha), )
and
hwem _hwabs :Ee(ql)_Eg(ql)_Ee(q2)+Eg(q2) =2gha), (6)

where ¢ is the Huang-Rhys factor. In experiment, the energy difference between the
maximum absorption peak and the emission peak is usually referred to as the Stokes shift.
Eq. (6) is an approximate definition of the Stokes shift as well as of relation between the
Stokes shift and the Huang-Rhys factor g (Ridley, 1988). Large values of ¢ means a larger
value between the minima of two PESs, ¢, — ¢, .
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Next, to make connection with the Hamiltonian of QD, we consider a system with the
ground state|g>, and two excited states i), f> in the diabatic representation. In this
picture, the total Hamiltonian reads

H = g)H (8] +[)Hiil+ | £)H (F+ Hir (1|1 £)4il) @

where H g is the ground state, H; and H  are the excited states, and H,-f is the interaction

between the excited states Hamiltonians. We consider for simplicity a single nuclear
coordinate, the nuclear displacement relative to the equilibrium position, Q, with origin at
the minimum of the ground state, and a single frequency of vibration of the phonon, w.
Assuming H;, H;, and H, are linear dependent of Q, and a parabolic shape of the

potential energy surfaces (PESs), we write H, =g +P>(2m)" +mao? (Q+Q, )2 /2 (with
I=i, ), Hg = P*(2m)*! +ma)2Q2/2 , Hy = \/E(ma)/h)_l/zCifQ, where ¢, is the zeroth-order
energy separation between the I-th excited PES and the ground state PES, and Cj is a
constant. Note that H; is written in non-Condon approximation, that is, the nuclear

coupling between the two excited states is Q dependent. Next, we introduce the

dimensionless momentum p = (hmw)'/?P, and dimensionless coordinate g=(mw/h)"/*Q,

. hao hao
and ObtamHgZT(P2+q2)' i = &i +—[P +(g+9;) ] Hf:5f+7[P2+(l7+qf)2]f
Hy = \/ECifq . Further progress is achieved by making the replacement q= (a +a+)/ V2, and

p= —i(a—of )/ V2, where a (a") are the usual annihilation (creation) boson operators. Thus,
one obtains H, :ha)(a+a+1/2), Hj =Cy (a+ +a)/
H, =¢ +ha)l(a+a+1/2)+(a+ "“1)11‘ /\/§+qu, H;=¢; +ha)[(a+a+1/2)+(u+ +ahf /\/E+qj2£J.

With the closure relation | g>< g| + | i><i| + | f>< f | —1 one obtains

H =hoa*a+|i)e (i +| f)e; ' (f|+(M;]i)i) +Mf|f><f|)(a+ + a)+Cif(|i><f| +|f)(i|)(a+ + a) (8)

where ¢ '= ¢ + ha)(qlz " 1) /2, and M. = hey, /\/E - hco\/g in which ¢. is the Huang-Rhys
factor of the state |i) (similarly for the | f> state). In this single frequency model there is a

simple dependence between the nuclear coupling and the Huang-Rhys factor, namely
M, = ha)\/; . With introduction of the creation annihilation operators of electronic states by
li)(i|=C;C; and |[i) <f| =C/C; (similarly for the |f) state), justified by C/C/|i)= Cf|g> =i),
/1) =Cila) =1 =[)(FIf). and CC 1) =0=[i} £} Ea. 9 reads

H=hoa'a+ Y CiC, [gj + M (a + aﬂ +Cy(CrC, +CC)(a* +a) )
=y

Eq. (9) describes interaction between an electronic system and phonons. It is of the form of
the localized defect with several electronic states model, in the case the electronic states are
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34 Fingerprints in the Optical and Transport Properties of Quantum Dots

mixed by phonons. The discrete structure of levels in this model is appropriate for
description of the “atomic” energy structure of QDs, and this Hamiltonian is often adopted in
QDs problems. Regarding the type of approach, an adiabatic treatment of QD implies
absence in the Hamiltonian of the nuclear coupling between PESs, that is Ci=0 or
equivalently a non-mixing of the electronic states by phonons.

2.3 Absorption and emission spectra in nanocrystals

Often in experiment the Huang-Rhys factor for the LO phonons is calculated from the
optical spectra as the ratio of 1LO and OLO intensity lines, I(1)/I(0). Justification is found

within the adiabatic model of a localized impurity interacting with a set of mono-energetic
phonons of frequency a, (Einstein model, (Mahan, 2000)). Optical absorption spectrum is

derived by evaluating the imaginary part of the one particle Green’s function. One obtains
that in limit of low temperatures the intensity ratio for the 1LO and OLO spectral lines gives

the Huang-Rhys factor, g = zq Mfl / (hza)g), with M, the electron phonon coupling matrix

element of the q mode phonon. At T =0 the phonon replicas follow a Poisson distribution,
I(n)ocg'e™® /n!, in which n is the number of phonons generated in the transition and
¢=1(1)/I1(0) . Thus, calculation of the Huang Rhys factor from the optical spectra as the
ratio I(1)/I(0) should be cautiously considered as far as it is valid in the limit of an

adiabatic approach that assumes absence of mixing of the electronic levels by phonons.

3. Longitudinal optical phonons in optical spectra of defect-free
semiconductor quantum dots

The presence of the strong phonon replicas in PL spectra of QDs of weakly polar III-V
compounds is a striking result since no such strong phonon replicas are usually observed in
the luminescence of III-V compounds, and not always in the PL spectra of QDs of other
semiconductor types. The exciton-phonon coupling is already accepted as being strongly
enhanced in semiconductor QDs, see, e.g., (Fomin et. al., 1998; Verzelen et. al., 2002; Cheche
& Chang, 2005), but there are few theoretical reports (Peter et. al., 2004; Axt et. al., 2005) on
the optical spectra of multiexciton complexes which take into account the phonon coupling.
For spherical QDs the one-band models by which conduction and valence states are
computed from single-particle Schrodinger equations in the effective mass approximation
are a good approximation for type I heterostructures (Sercel & Vahala, 1990). In what
follows, in Section 3.1 two models built starting with such one-band single-particle states are
introduced for spherical and cylindrical shapes of QDs. A short discussion about LO
phonon confinement completes this section. In Sections 3.2 and 3.3 non-adiabatic, and
adiabatic treatments are introduced to simulate the optical spectra of exciton and biexcton in
interaction with LO phonons.

3.1 Quantum dots models
3.1.1 Spherical quantum dot

Within the effective mass approximation, following (Cheche, et. al., 2005) a spherical model
is considered for the case of size-quantized energies of QD (or equivalently, QD with
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dimension smaller than its corresponding exciton Bohr radius, (Hanamura, 1988)). The
confinement potential energy is V,(r,)=0 for r,€[0,R,], and V,(r,)=V,, for r,>R,
(similar equation is written for holes by replacing r, by n, ); R, is the QD radius. The
single-particle wave function is the product ¢,,,(r)=R,(1)Y;,(8,¢), where R, (r) is the
radial function and Y),(6,¢) is the spherical harmonics function. By using the second
quantization language, and disregarding the spin dependence, the electron-hole pair (EHP)

state may be written as (Takagahara, 1993) | f > > | %b) = I dr, dr, @, (r,) @, (1, )as " a;|0), where

a,"(a;) are the creation (annihilation) fermionic operator of an electron in the conduction
band at r, (valence band at r,) and a (b) holds for the set of quantum numbers n,,l,,m,
(n,,,1,,m,) of electrons (holes). The single particle states composing the EHPs are obtained

by optical excitation and we need to find the optical selection rules that dictate the allowed
transitions. In the linear response theory and long wave approximation the particle-
radiation Hamiltonian for a carrier of charge Q and mass M is given by

Hor= —Q(Mc) ' A-P, where c is the speed of light, A is the vector potential, and P is the
carrier momentum. For monochromatic field of frequency @, amplitude E;, and direction

of oscillation along the unit polarization vector €, the semi-classical EHP-radiation
interaction form of H,  reads

Hepip_x = —Eq(moo) e~ (0[] £)B; +(£[P|0)B} Jsin ot = W sin ot (10.2)

f=0

where P = Zipi the total electronic momentum (with p; the electron momentum) and B}

(By) the creation (annihilation) exciton operators. The EHPs are considered as being bosons
(EHP spin is an integer), a valid approximation in the dilute limit of excitons. Using an

c+ 0

appropriate definition of the momentum (Takagahara, 1993), P = p?deR ag ag +h.c., where

p. is the momentum matrix element between the valence-band and the conduction-band at

the I' point and where R suggests integration over unit cell vectors, one obtains the optical
matrix element

<¢ab |P| O> = pgvé‘lt,lh é‘mgmh J.: dr 7"2 Rnele (r)Rnhlh (7") = ngamem,, Anenhl ’ (10b)

with [, =1, =1. Thus, one obtains that the optical selection rule requires [, =1, . The model
takes into account the difference in the effective masses between the nano-sphere and its
surroundings. Following (Chamberlain et. al., 1995), the expression of orthonormalized
R,;(r) and the secular equation of energy are as follows

Ry(1)- JRZ [k ka0 - k?(y)jl_l(x>j,+l<x>i{’]fl ey 1)
0 1 1 0/r 0

Ho20k ()i (%) = s ()i (y) (11.b)
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36 Fingerprints in the Optical and Transport Properties of Quantum Dots

where x=R, /(2;,115”’1)/712 , }/:RO\/(zﬂz(VoC —En,z))/hz , k; is the modified spherical
Bessel functions, g4 (1,) is the effective mass in the dot (surrounding medium), V; the
band offset of the carriers, and », ! stand for n,, I, (electrons) or n,, I, (holes).

For GaAs microcrystallites embedded in AlAs matrix, the compound discussed as an

application, we use the parameters of material from (Menéndez et. al., 1997) : the GaAs
energy gap E,=15177 eV, the GaAs (AlAs) electron effective mass y,/m, =0.0665

(. /my=0.124), the hole effective mass y, /m; =0.45 (u,/my =0.5), the conduction band

offset V¢ =0.968 eV, and the valence band offset V' =0.6543 eV ; m, is the electron mass.

The energy spectrum is obtained from Eqgs. (1l.a, b), and the EHP energy
=E,+E, , +E is computed as a function of the QD radius and shown in Fig.

3. Some particular levels are labeled by the set of quantum numbers, (n,,l,,m,;n,,1,,m, ) as
follows: Ay, —(1,0,0;1,0,0), B—(1,0,0,1,1,m,,) - dark level, C— (1,0,0;1,2,m,,) - dark level,
D, —(1,0,0;2,0,0), E— (1,1,m,1,0,0)-dark level, F—(1,0,0;2,1,m,) -dark  level,

Gy = (1,1,m,;1,1,m;,) . Based on the distribution of energy levels and taking into account the

1e e iyl Iy

exciton Bohr radius (larger than 100A), we consider R, =50 A as a reasonable upper-limit

for neglecting the Coulombic interaction. On the other hand, possible phonon mixing effect
could manifest starting with R, 23 A (see the ellipse mark at Fig. 3), between the optically

active level G, and the dark level F . But, the phonon-assisted transition between G, and
D, is improbable (at least in the low temperature limit) because for the intermediate
transfer, E—>D,, (EE - Ep, )/ha)O =3.37 (the LO phonon energy #m, =36.2meV ). For the
first two optically active levels, the adiabatic treatment is safe for R, <22 A and may be

accepted as satisfactory for R, <32 A, beyond which the dark level C appears.
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] o .. . ¢
301¢ D{GO R AL
]° EX o o et e ety gt
28] o CER L L e
2ol o N T
—~ <07 .o °Sese q
=00 I | SN LT L
L 54 ° *te0 s “og.838 éé
g B 1) \ OO Q.OOQ 550..
30 IR
past i o e o e_0O @ 8
o 2.2 o e 80 4% e@ e
c o e o 9%, " 'Q
5 ; % e 2g, '-Eoo'u%%
2.0 00 %e 2 90g, *oegcth
05000, %900, 00y 882!
' R H
1.84 o Optical levels 0000555558628%
1 - Darklevels 888
1.6 1 T 1T T T T T 1
10 15 20 25 30 35 40 45 50
Radius (A°)

Fig. 3. The energy spectrum of small spherical GaAs/AlAs QDs.
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3.1.2 Configurational interaction approach for cylindrical QDs

The energy levels of the exciton complexes can be obtained by the configurational
interaction method (Hawrylak, 1999). Following (Cheche, 2009) we will describe a
configurational interaction-based model for cylindrical semiconductor QDs. In the effective
mass approximation the electron single particle wave function of QD can be approximated

as the spin-orbital product (Haug & Koch, 1993) ¢, (r)=u,(r)p,(r), where r is the carrier
position vector. ¢, (r) is the envelope function, and u_(r) is the periodical Bloch function at

I' point with spin dependence included. The same is valid for holes by replacing, notation
wise, e by h, @ by f,and o by r. o and 7 are the z-projections of the Bloch angular

momentum, with ¢=41/2 and r=%3/2, +1/2. By disregarding the band-mixing, we
safely assume that the topmost states are formed from degenerate heavy-hole states, that is,
r=13/2.With p,z, ¢, cylindrical coordinates, we consider for the conduction electrons the

confining potential made up of the in-plane parabolic potential Vf(p) =y, / (2@§p2) and
vertical potential, V{(z)=0 for |7|<L/2 and V{(z)=V; otherwise. The single-particle

Hamiltonian, H, =H,, + H,, , has the components

ez’

wl1o( o W 0?
H, =———| =—| p— | [+ V{¥(p) ' H,, = ———+V(z (12.a)
0 { (p 8pﬂ i (p) o, Py 1(2)

The corresponding Schrodinger equations read, H,w(p,9)=¢,,v(o,9), and
H,,é(z)=¢:£(z). The electronic envelope wave functions ¢(r) is given by the product
w(p, 9)E(z) , and has the concrete expression, ¢, (r)=(27z)" Qeim‘?"’Rne,me (p)&f (z) , where «
holds for the set of quantum numbers (n,,m,,i). For QD sufficiently narrow we may
consider i=1 level only, and take the approximate wave function of the first state in z
direction as, &f(z)=(2/L,)"/?*cos(rz/L,), where L,= L[ 1+2n /(L 2u,Vy ﬂ is the
effective QD height including the band-offset, L is the QD height (Barker et. al., 1991). Thus,
for the electron, the envelope wave function reads

e

0, (1) =" 2 22) 2 [2n 1)/ (n, + |y ] 2 o /1) e 2 (02 /26 (z) (12.b)
= (27) V2™ OR ()& (2)

with L‘,’Z‘f‘ denoting Laguerre polynomials, n,=0,1,2,..., m,=0,£1,+2,.., I, = \/h/i,ue @, i,
and « re-denoting the set (n,,m,) for i=1. The corresponding energy states are obtained
as &, =&, ,, *+&,,, where ¢, and ¢, are the quantized values of ¢, and ¢,
respectively. The quantized energy for the in-plane motion is ¢, ,, = (2718 +|me| + 1}10)3 . The

same considerations are valid for holes, by considering the effective mass in z direction, z;,,

and the in-plane effective mass 7 An immediate analysis shows the spin-orbitals set
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38 Fingerprints in the Optical and Transport Properties of Quantum Dots

{¢aa (1), 5, (r)} is orthonormal. The integrals involving spin-orbitals are solved by the usual

decomposition in a product of two integrals, one over the space of the unit cells position
vectors for slowly varying functions, and the other one over the unit cell space for rapidly

¢ﬂ7> - <¢“ ¢ﬁ>uuspace<u" u,>QO =0

from the orthonormality of the periodical Bloch functions (the indices show the volume of
integration, with Q, the unit cell volume). For such orthonormal basis set two equivalent

varying functions. Thus, for example, one obtains, <¢aa

ways, the language of the second quantization, and the technique of the determinantal states
can be used to describe the energy structure of the system.

Next, we adopt the creation (annihilation) fermion operators, ¢, (c,,) for electron in

conduction band, and Ty, (hy,) for hole in valence band; they create (annihilate) the carrier

with spin projection o for electrons and 7 for holes. Considering negligible the
piezoelectricity and the band-mixing effects, and disregarding the electron-hole exchange
interaction, the QD Hamiltonian reads

1
_ + + S ee + +
HD - Zgactwcao’ + Zgﬂhﬁfhﬂf . 2 Z Va101/a202 €a101Cayo; Cayoy ca351
a,o Bt

aq,0p 03,04 #301,0402
01,02

1 ,(13)
hh + + eh + +
S Z Vﬂﬂyﬂzfz hﬁlflhﬂzfzhﬂ4fzhﬁ3f1 + Z Valo'l'ﬁlfl calﬂlhﬁlflhﬂzfzcazaz
B1,52.B3,8s P3t1.Pata ai,p1,ay,pr 9202.5272
71,7 01,71,02,72

where the first, second, third, fourth, and fifth terms of right side stand for electrons, holes,
electron-electron, hole-hole, and electron-hole Coulomb interactions, respectively.

Regarding the significance of terms in Eq. (13), we have (Takagahara, 1999)

2

* * e
1% =5 .0 dR 4R, ¢, (R,)¢, (R,)——, (R,)p, (R,),  (14)
o1, P17 o109 Y117 e h eV p h a e hl)7s
Zéoé,ﬂlzrlz 1w 2g “ ! 47Z-g|pe _ph| ? &
where V is the volume of QD. Similar expressions hold for V. and V/?frl, e, 5 the
a301,0402 B3t1.,P472

capital bold characters suggest integration over the ‘coarse-grained’ space of the unit cell
position vectors. In Eq. (14), we considered an in-plane Coulombic interaction, with p the

in-plane position vector. After integration over z, which gives unity, one obtains an integral
over p only. Integral from Eq. (14) is solved as follows. The potential is written as a two-

dimensional Fourier transform, v(|pe - Ph|) =1 / |Pe - Ph| = I dq v(q)eiq‘(pf"") , and the inverse

Fourier transform reads

1 4 1 © 27 1 )
e s i - —igp cos ¢
v(q) = = J dpv(p)e P = = !dpp ! dco—pe

4
o0

_L T S o _ime _OO _L
—Mzgdp{d(p 21" 1 (ap)= [ dplo(ap) = 5

m=—oo 0
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where ¢ is the angle between q and p. Using these expressions we write in Eq. (14)

. . 1
” dR 4R, (R,)ps (R, )m%z (R,)pp, (Ry)
\% e h

2r
= [dq[dg [dp, 27" 1PR, (p,)e 4P R, (p,) [ dp;, (27) e "2 R, (p,)e PR, (p,)
0 0 So So

where S, is the cylinder base surface. Next, we introduce

o 27
e 1 i(myy—m iq- 1 i(mypy —m, 7
Loo, (@) =7— Idpe( €2 "“‘”ROC1 (p)e' PR, (p) Z—IdppRal (P)R,, (P)IdW( 2 =M1 4P cos
27 5 2 0 )

and by using exp(izcos @) = Z::_w i'],(z)exp(ipp), one obtains
Ly @ = 25 [ 40 PR, (PR, (£)3y 1y T, (@P) = 727" [ “dp pR, (PR gy (P)] s s (3P
p=—o

Similarly, for holes, Izl 5,(Q) = j~mz ’m’ﬂ)_[o dp pRs (P)R 5, (P)] myy-my (qP) - Conservation of
the angular momentum in z direction requires m,, =-m,,, and m,, =-m,,. For Eq. (14),

. : eh _ 2 —1
after an integration over ¢, we ‘have V. . . = =-0,,0,,¢€ (47¢)

n',m',op;n',—m'ty
xjo dqlfz,mm.,m,(q)IZﬁm;n,,,m.(q) ; such integrals have analytic solutions. General solutions of

Coulombic integral for in-plane interaction can be found in (Jacak et. al., 1998).

The exciton state ‘X}> is written as a linear combination of determinantal states,

|X5) =2l peCis e [0) = X5 10), (15.a)

with |0) standing for the exciton vacuum state (no excitons), the ground state (VS) of the

sysytem. Similarly, the biexciton ‘ijf> state is written as linear combinations of

determinantal states that differ of the VS by two of the spin-orbitals

2\ _ f + + + + _ 2t
X7)= Z?T 292, Cyor 030, Conon Canor e Waes | 0) = X {0) (15.b)
TP252 Brry, fato

The eigen-problem for exciton and biexcitons is solved through the equations
HD‘X}>=51(})‘X}> , and HD‘XJZI>=5}2)‘X}>. Their corresponding secular equations allow

obtaining the eienvalues and eigenfunctions corresponding to the exciton and biexciton
states. It is worth noting that the electron-electron and hole-hole Hamiltonians from Eq. (13)
have no contribution to the secular equation associated to the exciton eigen-problem; the
product of fermionic operators resulting from these Hamiltonians and from the exciton state
forms sequence of operators which when acting on the VS gives zero.
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Referring to the determinantal state technique, the VS is written as the ground-state Slater
determinant ®(x,,7y,...L,,7,..0y,Ty) = [¢ﬁ1r1 (¥)er B ()05, 0, (rN)], where N is the total

number of electrons in the system, and A is the antisymmetrizing operator. A single-
substitution Slater determinant is written by promoting an electron from the occupied

valence state ¢, (r,) to the unoccupied conduction state ¢,,(r,)

D e o (1) Ty £y, Oy, Ty ) = [¢ﬂm (11)es P (T,),-- ¢/3NTN rN)]

The following equivalence between the single-substitution Slater determinant and
configurations written in the language of the second quantization holds:

D e (T Ty B, Ol Ty ) € cro h/} |O> )

Taking the advantage of the determinantal states, we search for the optical selection rules
that dictate the optically active pair states to be used in the linear combination from Egs.
(15.a, b). The radiation field is modeled as a single mode of polarized plane wave. In the
limit of linear response theory and long-wave approximation, the semiclassical particle-field

interaction Hamiltonian, for transitions ‘X m> “ ‘X ’”_1> (with ‘ X 0> =|0)) is written as

H,, .=ekE, (myw)'e- P where the momentum operator is

P :Zfl‘X?XX}” ‘pi‘X ><Xf ‘+h.c. , with p;, the momentum of the i electron and

summation is done over all the electrons of the system and (multi)exciton states. Then, by
using the algebra of determinantal states (Grosso & Parravicini, 2000), we have:

<X]1( ‘lel| O> = Cz]z(:r , B <0 |h/3r aazp1| 0 ana pr ¢ac7 |P‘ ¢,Br> (16&)
ao-,,Br ao,fr
(XX plxf)= X Cam e Ol Coron S p1 SCL i |0)
a101,0009  P171.P2T2 ao, fr
Prt1.fats . (16.b)
Z Cacr a1101 ao- ,Br< a101 P‘ ¢ﬁlr1>

ao,a101 Bimy
B,

If we make use of the fact that the envelope functions vary relatively slowly over regions of
the size of a unit cell, with p=-i%#V , we can write the integral

(o D] #5c ) = J drul (1) pul (v) [ dre (r)p,(x)
all space ) (16C)
+ j dru; (x) u (r ) [dro,(0pes()=pl, [ dro, (1o, ()

all space all space

The second integral over unit cell of orthogonal Bloch periodical functions vanishes and Eq.
(16.c) is in accordance with Eq. (10.b). Passing from the momentum matrix element to the
dipole matrix element in Eqs. (16.a, b) we obtain the following (multi)exciton-field
interaction Hamiltonians:
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Hy p=ieE0 ™ 3 3 Clope@up(bucle -1 bse )X} —he=0™ Y, [cf X} +h.c.) (17.2)

and

: 25,1
HX2_R = IEO mOw Z Z CLZO' 0!‘10'] ao‘ ﬂ12'] oqﬂ] <¢0{]0‘] ‘S ' r‘ ¢ﬂ]2’] >X1 Xf - hC
i,f ao,oq07, Br.prm . (1’7b)
Br,piry

=0 Y/ XX} +he)
if
We used the notations: ,, :(gg —gz )/h , and w, E;, for frequency, amplitude of the

0, Xj =[x})o

X12+X} =‘X12><XH The optical selection rules for interband transitions are obtained from

radiation field, respectively. We also introduced X}+ =‘X}><

the €£-r matrix element. Thus

(o 1] 850 =Qie- [drug (ry rul(x) [dRe,(R)p,(R), (18)
0

Qp all space

By writing: i) the periodical Bloch functions at the I' point, u ;(r)=¢ ;(r)x ;(0,¢), where
j=eh, and a°=+%1/2, a = t3/2, as the following spinors (Merzbacher, 1988):
116/2,1/2(‘9/(/’):Y00(9/¢)‘T>r Zf/z,—uz(er(”):Y00(9z¢)‘¢>1 Z§/2,3/2(9r¢) :Y11(9/¢7)‘T>/
P /2,3,2(0,90)= Y, (6’,(0)‘ i«> , and ii) the position vector for light propagating in z direction,

rzr(— Y/le. +Y1’1§+) with &_,€, the light helicity unit polarization vectors, we obtain the

spin selection rules for the configurations. Thus, one finds that for linearly polarized light
propagating in z direction, the only non-vanishing matrix elements involving the heavy-hole
states correspond to the transitions oc=1/2<>7=3/2 and oc=-1/2<7=-3/2. This

result is guiding us in choosing the optically active configurations when using the
configurational interaction method to obtain the energy structure of QD.

To obtain spin-polarized excitons, the linearly polarized light is used for photoexcitation.
The nonequilibrium spin decays due to both carrier recombination and spin relaxation.
Accordingly to (Paillard et al., 2001), and (Sénes et al., 2005), who studied polarization
dynamics with linearly polarized light in InAs/GaAs self-assemled QD under
(quasi)resonant excitation, following excitation the electron and hole spin states remain
stable during the exciton lifetime for low temperatures. This is the case we assumed for the
present discussion. Linearly polarized light is a linear combination of circularly polarized
light with positive and negative helicity (Zuti¢, et. al, 2004), consequently, the configurations
are obtained by respecting the optical selection rules for interband transitions for circularly
polarized light with both positive and negative helicity.

Accordingly to our assumption that the electron and hole spins remain stable during the
exciton lifetime the appearance of dark states (states with opposite spins of the electron and
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hole of a pair) is less probable, and we disregard them. Within the configurational
interaction method we consider a limited number of states generated by the two lowest
shells s and p configurations optically active, that is the pair states having n, =n;, =0, and

m,=-m, =0,£1, as shown in Fig. 4. In Fig. 4, the filled (empty) triangles represent
electrons (holes) of Bloch angular spin projection +1/2(+3/2). The quantum numbers
(n,,m,), (n,,m, ) are shown for the single states.

0|, |~ | =+ = = F
~ - - —_ - —_ —_
o o == - - T -
_— e e e — e —— | —
0) 1) 12) 3) [4) 5) 6)
— o — e e —— | —
*¥ - - - - - -
Lsy) = =/ - - = =
—_— |t = = = == | —
7) 8) 19) 10) 11) 12) [13)
p— e —
] ]
- -
—_— o |— =
[14) |15)

Fig. 4. Vacuum state, exciton and biexciton bright states with linearly polarized light.

Next, we apply the model to cylindrical InAs/AlAs QD. We use the following material
parameters taking into account the presence of lattice mismatch strain: a) For InAs

M, =0.04my, w,, =041my, w,,=0.04m,, & /¢&,=11.74, ¢,/&,=1554 (¢, is the vacuum
dielectric permittivity), #fwy, =29.5meV, and the energy gap,E g = 0.824eV; b) For the

InAs/ AlAs the band-offsets are considered as V =1.5eV, V' =0.75eV (Vurgaftman et. al.,

2001); c) For the value of QD height L=2.3nm which is considered, we find 1 electron and 3
hole levels in the quantum-well in the z direction. By setting %, =0.065eV and w,/w, =3,

(according to the literature (Hawrylak, 1999; Shumway et. al.,, 2001) the exciton and
biexciton eigenvalues obtained for this material parameters are as follows, &) =1.5792eV,

eV =1.6696eV, gél) =1.6736eV (all three two-fold degenerate), e? =3.1617eV,
552) =3.2429eV -three-fold degenerate, géz) =3.24345eV, and 8512) =3.24719eV -four-fold

degenerate. Consequently, the inter-level bi/exciton energy is not close of the LO phonon
energy and the mixing of the bi/exciton states by phonons is absent.

3.2 Confined optical phonons in semiconductor quantum dots

There are several theoretical models which investigates the optical phonon modes in
semiconductors with low dimensionality. Generally, the LO phonons are considered as the
main contributors to the electron-phonon coupling in polar semiconductors in the relaxation
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processes. Based on the continuum approach for long-wavelength optical phonons of (Born
& Huang, 1998), macroscopic approaches, such as the dielectric continuum (DC) model
(Fuchs & Kliewer, 1965; Klein et. al. 1990)), the multimode DC model (Klimin et. al., 1995),
the mixed mechanical-electrostatic model (Roca et. al., 1994), and the hydrodynamic model
(Ridley, 1989) have been developed. Microscopic approaches have also been proposed
(Huang & Zhu, 1988; Riicker et. al., 1991).

The shape of QD plays a major role in setting the type of confined phonon modes and the
strength of the exciton-phonon interaction. For spherical QD, the problem of the polaron
was the most intensive studied case. One of the conclusions of the studies is that the inside
QD, the electron-surface optical phonon interaction is absent (Melnikov & Fowler, 2001).
Physically, this can be explained within the adiabatic picture: the electron is fast oscillating
and in the ground state, which has a spherical symmetry of the charge distribution, the
average surface ionic polarization charge is zero. For other shapes, the geometry itself brings
additional complications in the study of the exciton-phonon interaction. Next, we
extrapolate the above observation regarding the absence of electron-surface LO phonon
interaction in spherical QD to the cylindrical shape case. The approximation is supported by
the results obtained by (Cheche et. al., 2011), where calculus shows the exciton-bulk LO
phonon interaction in such cylindrical QDs is dominant. Consequently, in the analysis of
the optical spectra from the next sections, we consider the bulk LO phonons as the main
contributors to the (multi)exciton-LO phonon interaction.

3.3 Optical spectra of spherical semiconductor quantum dots. A non-adiabatic
treatment

Non-adiabatic treatments, necessary when the electron-hole pair (EHP) level spacing is
comparable to the LO phonon energy, have been proposed (Cheche et. al., 2005; Fomin et.
al., 1998; Takagahara, 1999; Vasilevskiy et. al.,, 2004; Verzelen et. al., 2002). Following
(Cheche et. al. 2005; Cheche & Chang, 2005) in this section a non-adiabatic treatment of
optical absorption in QDs is presented. The theoretical tool we develop: i) confirms existence
of resonances accompanying the LO satellites in the optical spectra; ii) explains the
temperature effect on the optical spectra. The Hamiltonian of the EHP-LO phonon reservoir
we use is described by an extension of the Huang-Rhys model of F centers of the type
described in Section 2.2,

H=Hgyp+Hy, + Hepp_py s (19)

where Hpyp =Y EgBBr, Hy =2, hoogbgby . Hewp oy =2 . MY BiBp(bg +b'g), Bj
(B ) are the exciton operators already introduced in section 3.1.1, by (b, ) are the bosonic
creation (annihilation) operators of the phonons of modeq, M{;f ‘= < f |Mq| f ‘> is the
coupling matrix element, @, is the frequency of the phonon mode with wave vector q, and

E; (| f > ) are the EHP eigenvalues (eigenstates) of the exciton system. The absorption
coefficient for a single QD is given by (Mittin et al., 1999)

2
w(0)=—22 R, (20.2)
ncEyV,
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where o is the frequency, E, is the amplitude of the monochromatic radiation field, n is

the refractive index of the environment, V,, is the absorptive volume, and R, is the
radiation absorption rate. R, is calculated with the Fermi Golden Rule as follows.
2z
R == AVZ|WGF| S(hw+Eg —E¢ ) (20.b)

The average Av involved by Eq. (20.b) means a quantum average over the finite number of
the exciton states in the QD and a statistical average over the phonon modes at thermal
equilibrium. In Eq. (20.b), E; is the energy of the system in the ground state (no exciton)

|G)=|0)|») (|r) is the phonon state), E; is the energy of the system in one of the

;00 (|f),

and Wgr =(G|W|F ) is the transition probability between the initial state |G) and the final

exciton+phonons states |F )=

go) is the exciton, phonon state, respectively),

state |F ), with W from Eq. (10.a). Greek letters are used for phonon states, Latin letters for

exciton states, and capital handwriting letters for all system. Eq. (20.b) can explicitly be
written as follows

Rips 2, PO Wer |25(ha’+EG ~E¢ )

:hlz ]9 dteithr{pZ<G|eithh/hWe—itH/h[Z|F ><|: |+|G><G|]W|G>} (ZO.C)
—o G F

1 io i —ii 1 iot =
=37 | j dte frr{pz<e|e’*’ph/hwe fH/hw|e>}:h_z [Jare (o7 (eyw]0))

—00

where = Z| ,{v| is the density matrix of the phonons, with p =¢ /v / Tr( ﬂHP’l) the

probability of the phonon state | ) in the equilibrium statistical ensemble of the phonons,

and Tr{A}= Z v|A|v) ZV A, , =Tr{pA}= Z 2, (v|Alv) ZVpVAW. The closure
relation ZF |F XF |+|G)}{G|=1 was used in the second equality of Eq. (20.c), where the

operator > ;[G)(G| =2, |0) #)(u|(0

inserted. If using an adiabatic picture the state ‘F > is written as a product of states,

F)-

, which has no effect on the matrix element was

; > = | f >| @), and the meaning of the closure relation is more transparent:

SIF ) 1o il I+ Sloksol | Slrkstelonol} e -
In Eq. (20.c), W(t) = ¢"™"/"We /" . Egs. (20a-c) give

27[ e iot
(@) = Pl j dte < ([ (HW] o>> (21.a)
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By using the bosonic commutation rules for creation and annihilation of EHP and phonons,

-[A,B]/2

the operator relation e”*" =e%e’e , we write Eq. (21.a) as follows:

2
2re

a(w)sz%o By Pro I a’texp[ (0-o;) t]<0|li’f<Texp|:—J-alt1 (1 DOBHO) (21.b)

where T is the time-ordered operator, 17(1?) = exp(itH, / h)Hgyp_,;, exp(-itH, / ),

"fexp I tdt1\7(t1) =(U(t)),, Hy=Hgyp+H,,, Py =(0|(e-P)| f),and P= ;i is the
790 0 p L=
0

total electronic momentum (with p; the electron momentum). Further progress is achieved

by using the cumulant expansion method in Eq. (21.b). For dispersionless LO phonons
(Einstein model) of frequency a,, Eq. (21.b) can be approximated by the expression (Cheche

and Chang, 2005)

2
a(a))—Z”—e z {POPPsO I dtexp[ (0-w, t]exp ZGpm , (22)

nemihaoV, p,520 i20
where G, = gpiisa)gl(t,p,i, 1,9), Sk = Zq [Mflk'Mffl'/(ha)o )2], (&pppp =8, 1s the Huang-Rhys
= []Vexp(ia)o (t, —1,))+(N +1) exp( za)o( tz))], N = 1/(6'8th —1), and w; = (Ei —Ej) .

If the off-diagonal coupling terms in Eq. (19) are disregarded then Eq. (22) is exact and it
recovers the adiabatic limit (the Franck-Condon progression):

ad 471'2 62 {
a"(0)=——F—— Pys| ex 2N +1
) nemzhaV, ~ ‘ Of‘ P 8 ( )]

X ZI (2gf,/ (N+1)jexp(n,6’ha)0/2)(5(a) o+, —na)o)

n=—w

(23)

2
where I, are the modified Bessel functions, and A% =, Zq OM(JF ‘ h 2wy 2) = wygy is the

self-energy. The relative intensity of absorption lines is given by the coefficients of the Dirac
delta functions.

Next, we adopt the spherical model from section 3.1.1 for spherical GaAs microcrystallites
2
37A, A, 48, . 5, . in Eq.
e''h

ne'ny'I'Y memy, Ym,'my,
(21.b) is obtained by averaging over all space polarization directions. The Frohlich coupling
is written for dispersionless bulk LO phonons (for a spherical QD the interface modes do not
couple with the exciton states (Melnikov & Fowler, 2002)). Within the pure-EHP
approximation the EHP-phonon interaction reads (Voigt et. al., 1979; Nomura & Kobayashi
,1992)

embedded in AlAs matrix. The quantity PP, =‘ p
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ME - M =y fog™ [ d, di, (505 (5,00 (5)0y (5, )lexpliar,) - expliqr,)], where
is the Frohlich coupling constant. Explicit expression of M {f ' for spherical QDs can be found
in (Cheche and Chang, 2005).

For the only two optical levels which appear at R, =20 (see Fig. 3), with an inter-level
energy of approximately 117w, , the plot of absorption spectrum centred on the line A,

obtained from Eq. (22) and that given by the adiabatic expression, Eq. (23) are, as expected,
practically identical. Situation is different for R, =32 A, where the dark level D, is located

between two optical levels A, and D, (see Fig. 3). Contribution of the optical and dark

levels to the absorption centered on line A is included in the following expression:

Awexp-h) 3 3 311,26V @)

p=—wk,r=0s,t=0

J— k, — vy — — S, — _ t

y N81221,32 (N + 1)8122172 N81331,52 (N + 1)8133172 exp — phay (24)
k! r! s! t! 2ky

xSlw— oy + Ay +poy —k(wy —@y) —1(0y +@y) —s(wy —ay) —t(wxy +500)]]

2
2 ez‘ p?v

o (0) = ————
(@) 3ncmghoV,

with 8 = @, / (0w —@y) and ¥ =, / (@4 + @) . The non-adiabaticity effect expressed by Eq.
(24) is shown in Fig. 5, where the absorption spectra at different temperatures are plotted
(we dressed the lines by Lorentzians with a finite width of 15meV to simulate the EHP-
acoustic phonons interaction). The adiabatic spectrum obtained with Eq. (23) has no
temperature-induced shift and its maxima are not significantly changed with temperature.
The following quantities obtained within the adopted QD model have been used:
E, =1.8822eV, E, =20738eV, E;=194%eV, g;=0.039, g =0.234, and
Z1331 = 0.904 . The stronger accompanying resonances are marked by arrows. The energy of
some resonances are indicated by factors which multiply the LO phonon energy; they are
placed to the left of the lines or arrows. The temperature dependence of the spectra, weak in
the case of adiabatic treatment, becomes important now. Thus, decrease of intensity (by
37%) and red shift (from 1.87eV to 1.85eV) of the OPL lines are obtained when temperature
increases from 10K to 300K. This agrees with the behavior observed experimentally for
CdTe QDs (Besombes et. al., 2001). On the other hand, the simulated Huang-Rhys factors
reach values larger by two orders of magnitude than those of the bulk phase (0.0079
obtained from (Nomura & Kobayashi, 1992)). A similar behavior is reported for small self-
assembled InAs/GaAs QDs by (Garcia-Cristobal et. al. 1999). Thus, by the non-adiabatic
activated channel at +0.86LO, the simulated Huang-Rhys factor obtained as the ratio of the
line intensities for this accompanying resonance increases from 0.084 at T =10K to 0.23 at
T =200K . On the other hand, the non-adiabaticity effect manifests by strong resonances at
2.9LO (see Fig. 5), close to the third LO phonon replica as reported by some experiments,
see, e.g., (Heitz et. al., 1997). The usual Franck-Condon progression is obtained by the
adiabatic treatment (see the dotted line in Fig. 5).

Concluding this section, the non-adiabatic treatment presented, in accordance with the
experimental observation, predicts: (i) accompanying resonances to the LO phonon satellites
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in the optical spectra of QDs; (ii) red shift of the OLO phonon lines and increased intensities
of the accompanying resonances with temperature in the absorption spectra of QDs.

3001 GaAs/AlAs QD

A e Nonadiabatic: T = 200K

250 -

0 = = = Nonadiabatic: T = 10K
1 O eesocee Adiabatic: T = 200K
200 R,=32A

150 4
100 4

50 -

Absorption (arb. units)

180 18  1.90 1.95
Energy (eV)

Fig. 5. Simulated absorption spectra of GaAs/AlAs nanocrystal QDs.

3.4 Phonon effect on the exciton and biexciton binding energy in cylindrical
semiconductor quantum dots

In this section we discuss the exciton and biexciton emission spectra of polar semiconductor
QDs within an adiabatic approach by using the configurational interaction method
introduced in section 3.1.2. By taking into account the Frohlich coupling between bi/exciton
complexes and LO phonons, we simulate the resonantly excited PL spectrum (laser energy =
detection energy + n-LO energy, with n non-negative integer, (Sénes et. al. 2005)) with
linearly polarized (LP) light of InAs/AlAs cylindrical QDs. The exciton and biexciton
binding energy for such QDs is also evaluated. In accordance with Eq. (9), we consider the
following (multi)exciton-phonon Hamiltonian:

m m)ymTym m)~xrmt~m m m
H( ):;(95‘ )Xf Xf +Zha’0bc+1bq +Z}M‘(1f)xf Xf (bq +biq):H(QD) +th +H((2D)—r’h (25)
q q,

where m =1 for exciton, m =2 for biexciton, by (b, ) are the bosonic creation (annihilation)

operators of the phonons of mode q, Mf{") is the Frohlich coupling, M ((];" ) = <X 7 ‘M (m)q‘ X ;”>

and Mfl']’f) = ME”;} (from Hermiticity of H™), @, is the frequency of the dispersionless LO

phonons, and Z ¢ g(fm)X?+X? is the (multi)exciton H, from Eq. (13) written in the language

of (multi)exciton complexes. According to discussion from section 3.1.3, the Frohlich
electron-bulk LO phonon coupling is an acceptable approach for QD with high geometrical
symmetry, where the interface modes are usually weak. Thus, for the exciton-LO phonon
coupling (Voigt et. al., 1979; Nomura & Kobayashi, 1992)
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Kowl® o) (05 % [0s)]. (26)

f
Cao-,ﬁr

M) _ fo 1| iqR, _ iqRy|v1\ _ fo
M O<Xf‘e e h‘xf>

vy

and for biexciton-LO phonon coupling (Peter et. al., 2004)

2
M‘(;) ) qf_;0<XJ2( ‘Eiq.Rel rete e~ | XJ%> ) qf—(‘)/oalm,az@, éi?gg;‘; (27)
P71, P27
x [<¢0!1 eiq.R‘ Py > > <¢052 ‘eiq.R‘ Pa, > - <¢ﬂ1 eiq‘R‘ Pp, > 1 <¢ﬂ2 ‘eiq-R Pp, >]

where f, = \/ 2 thaw,e’ (g;l -& 1) is the Frohlich coupling constant, and Vj, is the QD volume.

The emission spectrum of single QD corresponding to exciton and biexciton-exciton
recombinations is obtained with the Fermi Golden Rule, that should be adapted to the

. . . —pH(m) —pa(m U .
composed system, multi(exciton)+phonons. The statistical operator e / Tr{e A } is

used for the statistical average in the Kubo formula of the optical conductivity. When
applying the Fermi Golden Rule for the system multi(exciton)+phonons, we need to
consider a statistical average for phonons and a quantum average for the finite number of
multi(exciton) states in the QD. On the other hand, within the adiabatic approximation, the
electronic potential energy surface is the potential for phonons in the QD. We imaginarily
decompose temporally the absorption process and consider that before switching on the
electron-phonon interaction, the electron-hole potential energy surface is raised vertically
from the lowest potential energy surface of the exciton vacuum state to the excited potential
energy surface (see dotted line parabola in Fig. 6). Then, we consider the electron-phonon
interaction is switched on and as a result the potential energy surface is further modified to
the new potential energy surface of the interacting multi(exciton)+phonon system, see upper
solid line parabola in Fig. 6 and comments in (Odnoblyudov et. al., 1999).

AS1ouyg

>

Configurational (nuclear) coordinate

Fig. 6. Schematic exciton of the potential energy surface involved in transition.
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Thus, according to its PES, each (multi)exciton state is characterized by its density matrix. To
take into account the above considerations, we project the statistical operator of the phonon

system interacting with the (multi)exciton state on the state ‘X’”> and write
p" = expl- BlH,, + 1™ )/, with Z?’“>=Tr{<xf" expl- BlH,, +HYY | x7)),  and

hi(’”):quZ(m)(bq+bfq). The partition function Z" =11, ((lm) is the product of the

partition functions for each mode having the wave vector q. By dropping all q subscripts,
the partition function for a single mode reads, Z.(m) =Trexp|- ﬂ(ha)ob+b ¥ Mfm) b+ b+))]} It

can be evaluated by using a canonical transformation

20~ 1rfspls ol st b b ol @) )

where the anti-Hermitian operator is defined as S, = (M b -M" b)/(ha)o) With
exp[Si(’”)]b+ exp[— Si('”)]z b =M™ [he, , exp[Si('") ]b exp[— Si(”’)]z b—M™ [hw, one obtains

Z.(m) = Tr{exp{— ,B[ha)olfb + (e, )_1‘M§m) ‘1}} = (1-exp(-pha, ))71 exp[— Blna, )" ‘Ml(m) ‘2} !
and

2 = expl- phangg ™ [T (1-¢ 0 )" (28.)

q
in which g z ‘M ‘ / hz 2 1s the Huang-Rhys factor.

With the Fermi Golden Rule, the exciton emission spectrum is given by

Ix(w)=27”ZAVf”Z|WG| |25(ha’+EG — £ )Zhiz Idteiwt
| G o

3 Avi(X,!
|

L jdtewf R L B P R 1)

v,i

SR R S
Jit

(29)

_ h_z_J‘ dteiwtzi:Tr{<Xi1 ‘eﬂ(th+h,-(1))/hzla)—le_nml>/hHX1_Reiszh/hHXl_R‘ Xil>}

where ‘Xi > ‘X1> is the initial state with energy E, and |G)is the ground state with

energy Es. H_, does not couple the exciton-phonon states, that is relation

X" -R

X,

X _R‘Xj}z> =0 holds, and in Eq. (29) we inserted ZQX;IXX]}I ‘) to make use of the
ik
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closure relation Z].,#(‘X}ﬂ><X}#‘) +|G)(G|=1. Since [H(Qll)),th + H(Qll))_ph} =0, by using the

operator relation eMB = pAeBelABl/2 - e have
<le ‘e—itH(l)/h _ <le ‘e—itHSg)/hefit(th HHO) ) [ _ e_itgi(l)/he—it(hfl)+th )/ <X3 ’ (30.a)
and
Hxl—RHxl—R‘Xi1>:a)iZ‘Ci‘z‘X’w' (30.)
With Egs. (30.a, b), Eq. (29) reads
he()= g [aee T R @y
where the correlation function is
R )= TP g 0 ) o2

Eq. (32.a) is transformed by using the canonical transformation,

; ™ _gmn™ -1 _gM M _jpp™ M M (1)
s! hY +Hy) I SR V(S Y S SR SO oS S
Ff;)}l(t)——lr{el e M +p’)/Z§1) e et et +”')/e S M/ }

(32.b)

1

_ Tr{eﬂ(ﬁf(l) +Hy, )/hZ(l)—le—it(Ei(l) +Hy, )/heitﬁph /n }
where, generally (m=1, 2),

m _ _1 ()

5" = %ZMRT (qu _bq)’ (32.c)
q

and Eph +E(1) =H,, —hgl(l)a)o , th =H,, A +hg§1)wo . With these two last equalities

substituted in Eq. (32.b) we write

. . . : 1 . . . 1
F,E;,)(t) — e21g§”wotTr{e—ﬂth/hZI—)}lle—quh/heu(th—h} >) h} _ eZlgl(l)a)OtTr{pe—lthh/helt(th—hl( )

)h
} , (32.d)

- el i a1 - )

0 0

where Z, is the partition function of the phonon system. By using the interaction

representation, the correlation function reads

<U§j,3(z)>o =T exp{— ij e,V (1, )} (33.a)
0 0

www.intechopen.com



Influence of Optical Phonons on Optical Transitions in Semiconductor Quantum Dots 51

where T is the time-ordering operator and

N , , a .
hl-(l)(t) _ e—1thh /h (hl(l)/h)elthh /h _ Z %(bqeltwo + que_ltwo ) (33b)

q

Next, to evaluate <U 5,’,2 (1,‘)>0 we use the linked cluster expansion (Mahan, 2000)

t t t

(UOO), =2 (uo), (o), = l' Jann [ dty...[ ar, (ThO (1) 5O 0,)) - (33.)
o 0 0 0

and since }Nti(l) describes creation or annihilation of a phonon, they are grouped in pairs.
Thus,

(00 o g i ]
0 (33.d)
zgl(l) AT iwgt AT -iwpt . ‘;ll) (l)

=X i ae M- ) M- )+ i) = 3, 2

By using Wick’s theorem to pair the boson operators for the terms of higher order one
obtains (Mahan, 2000)

W 1"
(uhh), = %{quT(t)] (33.)

and, consequently

N (1)
0, - St o] -5, 89

m=0

= expi— glw[zzm 1-2N(N +1) cos[ay (¢ +1 /2] +ia)0t}} (33.f)
- e-gfl)(ZNH) ill [28(1)\[ N(ﬁ +1) }elﬁh“’o/zeilwote_igfl)wof

=

With Egs. (32.d) and (33.f), Eq. (29) that gives the exciton emission spectrum reads

1.(0) 27 Z‘Ci‘ze_gg(zml) il,[ngl)\/mJelﬁh%/z5[w"9i(1)/h+(gi(1)+l)”0] (34)
i Iz~

e
where C' is defined in Eq. (17.a). I, is the modified Bessel function obtained from

expansion in Eq. (33.f), exp[zcosf]= Zim I,(z)exp(il0) . Eq. (34) shows the usual phonon

www.intechopen.com



52 Fingerprints in the Optical and Transport Properties of Quantum Dots

progression and comparatively to Eq. (23) in the argument of the Dirac delta function the
sign of factor for the phonon progression is changed.

With the Fermi Golden Rule, the biexciton-exciton emission spectrum is given by

—itH®) /n H
X2

Iy (@)= 2;2 Z|W|F ?5(ho+Er - =—jdtelwaAvl (X:2]e
|

{ S i el e \}ftﬂ“)/hHXz_R\xia>

—Idtelwtz |,012)| <X2‘ —itH( /hH o O th /hH ‘X2>

h2 (2 J-dte“"tZTr{<X2‘ ( p;,+h§2))/he—itH(2)/hHX2ReitH(l)/hHXZR‘Xi2>}

where ‘va> E‘X12>|v> is the biexciton initial state with energy E, , and ‘X}V> E‘X}>|v> is
the exciton final state with energy Er . H , . does not couple the biexciton-phonon states

and the ground state to the biexciton-phonon states, that is the relations
<va HX%R‘x]z» =0 and <fo HXZ—R|O>|'U> =0 hold, and in Eq. (35) we inserted

GG+ X, [ XF) (X5,
Zf/ﬂ(xffﬂx fu Xfﬂ><x}ﬂ

<X12 ‘e—ith/;, _ e—ugi(2)/h€—1t(h§2)+th )/h<le‘ . Next, Eq. (17.b) is inserted for H. in Eq. (35).

From the four terms containing four (multi)exciton operators involved by this substitution,
only one has non-zero contribution and

(gl

o) make use of the closure relation,

S~—

+|G><G|=1- Similarly to Eq. (30.a) we have

(2)
2 ’ﬁ(HPh +h; J h_itH® itH™ /n 2
(x?e P, FH, e /HXLR\XI}
2)
-2 abgmed* 2 | A Hpn 0 i @) 0401 itHD fho 142 | 12
=02 Y (X2e ( ), fixzexie ™I X X2
a,b,c,d

With additional algebra and making use of Xfx; N\ | Xg ><X; , one obtains

(2)
-\ Hyy, +h; no_rr(2) —r7(1)
<X12 ‘e ( ph T j/ e itH /hHXZ _ReltH /hHX2 _R‘X12>

36
_ afzz‘cifr e‘“(é‘fz) —Sﬁl))/he—ﬁ(th ) /he_it(H”h ) /heit(le, ) (36)
f
With Egs. (36), Eq. (35) reads
R ; Zit £@) _( .
IXX(a)) = # J.dteiwtz‘clf‘ze t( ! fl J/hli‘z(;{h)(t) (37)
e i f
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where the correlation function is

F2(Z;7) (t) = Tr{eﬁHOz‘/thz)_leitHOi heit(HO" Vit )/h} (38.a)

with Hy =H,, +h®, H, +h{) =Hy,+hY -h? =Hy, +V;, and Z{ is defined by Eq.

1

(28.b). Fz(g,f(t) is evaluated by the same procedure of the canonical transformation used for

1—“1(31 (t) - Thus, in Eq. (38.a) one inserts the unitary operator 6*552)3552) , with 5 defined by

Eq. (32.c) and one obtains

E) (1) = Tr{e‘ﬁﬁo"/hZ§2)_1e_itﬁ°i/heit(ﬁ°i+Vif )/h} (38.b)
— - -~ 1 1
with Hy, = Hy, —ng®wy, Hy +Vy = Hy, +hy +hay g - 88", hy =Y M) -m )

x (b +b7 )J, and ¢ = (hay ) zq‘ M é}) - M‘(ﬁ) . With these quantities, we rewrite Eq. (38.b)

as follows

‘2

Fz(ifz (1) = ei;{gl(ZLg_(f.lhgif on Tr{e-ﬂﬂph/hzﬁe—izﬁph/heit(Hp,,+h,.f)/h}
p

(2)

_ eit[g( _g.(fl)+gi/. ]‘00 Tr{p e,it[—[ph/hei[([‘[ph-#hif )/h } ) (38.C)

=e

iz[gl(Z)_g‘(/lth.]wo <e_ithh/heit(th+h(f)/h> Eeil[gl(z)_g(/'l)+gi/']“’0 <U§;£)(t)>0

0

Given the similarity between expressions of the correlation functions (see Egs. (32.d) and
(38.c)), we evaluate <U%)(t)> by the same procedure used for evaluation of <U SZ(;)> and
0 0

obtain

(0800, ~expb Bl - - ]

2 » | /[ . _ . (38.d)
|=—0
With Egs. (38.c, d), Eq. (37) that gives the biexciton-exciton emission spectrum reads
27 if 2 —
L (@) == > A[[C7[ expl-g; (2N +1)181ex,]
ho” 7 (39)

X i[,[Zgif,/]V(]v + 1)]exp(lﬁha)0 /2)5[@ - (51(2) - g}l))/h + (g,.(z) - g(fl) + l)coo ]}

[|=—0

with C7 defined by Eq. (17.b). g is function of the difference between the coupling of

phonons to the initial biexciton ‘X12> and the final exciton state, X}> ; it influences the
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intensity of the emission line. Note that g, cancels out from the argument of the Dirac delta

function from Eq. (39), instead and a difference of the Huang Rhys factors, g'*) — g}l), is

present. Eq. (39) has similarity with Eq. (34), and all characteristics of an emission spectrum
are present. The spectra have w dependence. In Egs. (34) and (39) the argument of the
modified Bessel functions, I;, plays major role in establishing the emission line intensity; a

larger Huang-Rhys factor will result in more intense lines.

Next, we apply the theory to the resonantly excited photoluminescence for high barrier
heterostructure of InAs/AlAs. According to the model from section 3.1.2, the mixing of
the bi/exciton states by phonons is absent, and the formula (34) and (39) are valid. On the
other hand, the bi/exciton degeneracy could make the dynamical Jahn-Teller effect (Jahn
& Teller, 1937) to be effective. Accordingly to Eq. (39), the coupling Huang-Rhys factor gir
makes the degenerate lines to have different intensities. We approximate the intensity of
emission lines by an average over the intensity of degenerate levels. The values of Huang-
Rhys factors obtained, in accordance with (Garcia-Cristobal et. al., 1999; Cheche et. al.,

2005) are large as follows: g{V=0187, ¢ =0103, g{"=0104, g\»=0747,
g8 =0364, ¢ =0365, g\ =0.364, and the g have values between 0.103 and 0.187,

and larger values of 0.704 for g,,, and 0.706 for g,;. According to the presence of the
Huang-Rhys factor in the argument of the modified Bessel functions, I;, from Eqgs. (34)
and (39), a large Huang-Rhys factors obtained may be the sign of the appearance of strong
phonon replicas in the optical spectra.

There is a variety of results regarding the biexciton binding energy, which reveal
importance of shape, compounds, and size of QDs. In Fig. 7 the biexciton binding ground
state (GS) energy, the difference of biexciton and exciton GS lines as given by Eqs. (34)

and (39), i.e., 25X =21 - (2 ggl) - g§2))ha)0 , is obtained for different values of 7w,
(with @,/@;, =3). Results from Fig. 7 show that the biexciton binding energy increases

when the in-plane parabolic potential increases (QD radius decreases or exciton GS
energy increases). This result is in agreement with the experimental data obtained for the
same cylindrical shape of QD but with other compounds, InAs/InP (Chauvin et. al.,
2006)), Iny.4GaggeAs/GaAs (Bayer et. al., 1998) or with theoretical results obtained for

GaAs.
QDs (Ikezawa et. al., 1998). An opposite behavior is reported for InAs/GaAs truncated

pyramidal QDs by (Rodt, 2005). These facts might be related with the actual shape of the
QDs. On the other hand, the binding character is obtained for smaller QDs (#®, of order
of tens of meV) and the antibinding character for larger QDs (for example, with
hw, =0.001 eV, we obtain £>** =-0.0011 eV) in agreement with (Stier, 2001). Remarkable
for the relevance of LO phonon influence on the spectra is the fact that without taking into
account the self-energy (setting up gV =g =0 in Eq. 39), X *=2s"-¢ is

negative (increasing, e.g., from -0.0034eV for 7&w,=0.065eV to -0.0008eV for

he, =0.005 eV) and £>** becomes positive only by considering the phonon coupling.
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These observations show that in addition to the shape, size, chemical composition,
electron-hole exchange interaction, and piezoelectricity, the LO phonon coupling is an
important factor which influences the anti/binding character of the biexciton. The extent
to which the LO phonon coupling can not be neglected is a problem which can be
addressed within a QD model of high enough accuracy. The confidence in the QD model
we used is supported, in addition to the results obtained for biexciton, by those obtained
for the exciton complex. As shown in Fig. 7, the magnitude of the exciton GS energy and
decreasing of the exciton GS energy with QD size agree with other reports, see, e.g.,
(Ikezawa, 2006; Grundmann et. al., 1995). As the piezoelectricity in the case of cylindrical
QD shape is expected to be less important (Miska, 2002) than for other QD shapes, the
adopted QD model is suitable for describing the main physics of the bi/exciton-LO
phonon coupling in cylindrical semiconductor QDs.

Cylindrical InAs/AlAs QD
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Fig. 7. The exciton (*) and biexciton (m) binding energies obtained for the simulated
InAs/ AlAs QD. The numbers show the energy of the exciton GS emission line.

The calculations show that value of exciton and biexciton binding energy is strongly
influenced by diameter (in-plane confinement) and less by the height (perpendicular
confinement) of cylindrical QDs. The binding character of the biexciton, with

EfX*X =0.0076 eV, and the exciton and biexciton GS emission lines of InAs/AlAs QD as

reported by (Sarkar et. al., 2006) for T =9K are simulated in Fig. 8 by choosing
hw, =0.065eV and haw, =(0.065/3)eV . Regarding the emission, the emission lines from Fig.
8 are labeled with three digits for transition from biexciton state (first digit) to exciton state
(second digit), and with two digits for transition from exciton state (first digit) to the VS
(reminding to the reader, VS means vacuum state, that is, the no excitons state); the last digit
corresponds to the phonon replica. The open squares show the experimental results from
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(Sarkar, 2006). The inset shows schematically the exciton resonant emission we simulated.
Emission spectra of InAs/AlAs QDs are reported in a range of 1.5-1.9eV (Dawson et. al.
2005; Offermans et. al., 2005; Sarkar et. al., 2006). Our approach simulates the emission from
exciton (1, 0) GS and biexciton (1, 1, 0) GS, in the range 1.56-1.68eV. In this interval the
phonon replicas are predicted in accordance with the experimental data from (Sarkar et. al.,
2005).

The literature regarding the presence of the excited states in emission spectra of QDs is
rather scarce (Kamada, 1998; Khatsevich, 2005). The strong 0LO emission lines from excited
states might explain the higher energy lines observed in the PL spectra reported by (Dawson
et. al. 2005; Offermans et. al., 2005; Sarkar et. al., 2005). For small enough InAs/AlAs QDs
the lowest energy state at I' point in InAs moves above the AlAs X band edge, the electrons
spread in the AlAs barrier, and appearance of high energy lines by this mechanism is
forbidden. Instead, the exciton line (2, 0) and the biexciton-exciton emission lines (3, 1, 0),
and (2, 1, 0) are candidates for explaining the high energy lines observed by (Offermans et.
al., 2005). Accuracy of our QD model is not high enough to explain the fine-structure
splitting reported by (Sarkar et. al., 2006) and shown in Fig. 8; the fine-structure is assigned
to the electron-hole exchange interaction, which was neglected in our model. Prediction for
higher temperatures is not reliable, as far as the possible dissociation of the biexciton with
temperature had not been taken into by the present considerations. However, at larger, but
still low temperatures, under 60K, the features of spectra predicted by our approach do not
change significantly.
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Fig. 8. The resonant emission spectrum of biexciton and exciton complexes.

Concluding this section, the theoretical approach we introduced is a useful tool for
describing the influence of LO phonons on the resonant excitation emission at low
temperatures. The high energy emission lines, that are obtained by configurational
interaction calculations for cylindrical InAs/AlAs QDs, are associated to the emission from

www.intechopen.com



Influence of Optical Phonons on Optical Transitions in Semiconductor Quantum Dots 57

the excited states. One finds, in accordance with the experiment, that the biexciton binding
energy has a binding character (positive value), which diminishes with decreasing the
radius of QD, and becomes antibinding (negative value) for flat QDs. The simulated exciton
and biexciton binding energies obtained, demonstrate that the phonon coupling is an
essential factor, which should be integrated in the analyses for an accurate description of
optical transitions in QDs. For the InAs/AlAs QDs, the presence of LO phonon replicas and
emission from the excited states is explained as the consequence of large Huang-Rhys
factors.

4. Outlook

To introduce the reader the problem of the electron-phonon interaction in QDs, three basic
aspects are presented in the Sec. 2: i) the adiabatic and non-adiabatic transitions in the
optical transitions; ii) the Huang-Rhys factor; iii) the Hamiltonian of localized defect with
several electronic states mixed by phonons.

In Sec. 3.1, within the effective mass approximation two models describing the electronic
energy structure of spherical GaAs/AlAs QDs and cylindrical InAs/AlAs QDs are
introduced. For the optical transitions, the spherical QD model predicts the adiabatic
treatment is appropriate for QD radius smaller than 32 A, and a non-adiabatic is needed for
larger radii. For the cylindrical QD both excitonic and biexcitonic complexes are considered
by a configurational interaction method and for QD height of 2.3nm and parabolic
confinement 7w, =0.065eV and «,/w, =3 the model predicts an adiabatic treatment is

appropriate for describing optical transitions.

In Sec. 3.2 the Fermi Golden Rule and cumulant expansion method are used within a non-
adiabatic treatment to spherical GaAs/AlAs QDs to obtain the absorption coefficient. In
accordance with the experiment, we obtain: i) Large Huang-Rhys factors by two orders of
magnitude than the bulk value with increasing values for smaller radii; ii) Accompanying
resonances to the LO phonon satellites; iii) Red shift of the OLO phonon lines and increased
intensities of the accompanying resonances with temperature.

In Sec. 3.3 the Fermi Golden Rule and cumulant expansion method are used to describe
the emission from the exciton and biexciton complexes of the cylindrical InAs/AlAs QDs.
The presence of LO phonon replicas and emission from the excited states is explained as
consequence of large Huang-Rhys factors. One finds, in accordance with the experiment,
that the biexciton binding energy has a binding character (positive value), which
diminishes with decreasing the radius of QD, and becomes antibinding (negative value)
for flat QDs.

In conclusion, the present study emphasizes that the LO phonon coupling in the polar
semiconductor QDs is an essential factor in understanding at a higher level of accuracy the
optical transitions. The accordance between our results and experimental results show that
the approaches we used, the Fermi Golden Rule and cumulant expansion method are useful
tools in describing optical properties of semiconductor QDs. By the prediction of the Huang-
Rhys factors and of the optical spectra shape, the present work is useful to people working
in the field of semiconductor QDs optics, both theoreticians, in comparing different models,
and experimentalists, in comparing theory and experiment.
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