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1. Introduction 

As the most superficial body organ, skin plays an important role in protecting the body 
from environmental damage. The skin is composed of three layers: the epidermis, dermis 
and subcutaneous tissue. The epidermis, the outermost layer, has as main functions to 
protect the body against harmful environmental stimuli and to reduce fluid loss. It is a 
stratified squamous epithelium with several layers and its major cell type is the keratinocyte. 
This tissue is constantly being renewed by keratinization, a process of detachment of 
cornified cells (Blumenberg & Tomic-Canic, 1997). Located under the epidermis are the 
dermis and the dermal connective tissue, with extracellular matrix proteins such as collagen, 
elastic fibers, fibronectin, glycosaminoglycans and proteoglycans, which are produced and 
secreted into the extracellular space by fibroblasts, the major cell type found in this tissue 
(Makrantonaki & Zouboulis, 2007). The extracellular matrix proteins in the dermal 
connective tissue contribute for maintaining skin preservation and integrity (Hwang et al., 
2011). Stromal fibroblasts play an important role in tissue homeostasis regulation and 
wound repair via protein synthesis and secretion of growth factors or cytokines of paracrine 
action with direct effect on proliferation and differentiation of adjacent epithelial tissues 
(Andriani et al., 2011). Solar ultraviolet (UV) radiation is a predictable epidemiologic risk 
factor for melanoma and non-melanoma skin cancers. (Katiyar et al., 2011). UV irradiation 
can impair cellular functions by directly damaging DNA to induce apoptosis (Wäster & 
Ollinger, 2009). Among other things, longer UV wavelengths (UVB, UVA) induce oxidative 
stress and protein denaturation whereas short wavelength UV radiation (UVC) causes 
predominantly DNA damage to cells in the form of pyrimidine dimers, 6-4 photoproducts 
and apoptosis (Armstrong & Kricker, 2001; Gruijl et al., 2001). UVB irradiation damages skin 
cells by the formation of ROS (Reactive Oxygen Species) resulting in oxidative stress, an 
important mediator of damage to cell structures, including lipids and membranes, proteins, 
and DNA (Wäster & Ollinger, 2009). However, it has less penetrating power than UVA and 
acts mainly on the epidermal basal layer of the skin. UVC, on the other hand, is extremely 
damaging to the skin because its wavelengths have enormous energy and induce genotoxic  
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stress. Fortunately, UVC is prevented from reaching the earth, as it is largely absorbed by 
atmospheric ozone layer (Afag, 2011). It has already been proposed that programmed cell 
death (apoptosis) can be induced by UV light in various cell types (reviewed in Schwarz, 
1998). The cellular responses to injuries or stresses are important in determining cell fate 
(Aylon & Oren, 2007). Many signaling pathways participate in this process, with the 
mitogen-activated protein kinase (MAPK) cascades and p53 pathway being two of the major 
pathways implicated (Aylon & Oren, 2007; Li et al., 2009). The cellular response to DNA 
damage is focused on p53, which can induce the cell to apoptosis by the protein PUMA (p53 
up-regulated modulator of apoptosis), a member of the Bcl-2 homology (BH)3-only Bcl-2 
family proteins. Recent studies suggest that Bcl-2 family members play an essential role in 
regulating apoptosis initiation through the mitochondria (Zhang et al., 2009). UV irradiation 
induces permeabilization of the lysosomal membrane with release of cathepsin B and D to 
the cytosol, translocation of the proapoptotic Bcl-2 proteins Bax and Bid to mitochondrial-
like structures. Subsequently, there is cytochrome c release and activation of caspase-3 
(Bivik et al., 2006). p38 MAPK, one of the four MAPK subfamilies in mammalian cells, is 
activated by proinflammatory cytokines and environmental stress (Brown & Benchimol, 
2006; Johnson & Lapadat, 2002). p38 is not only reported to be phosphorylated and activated 
to mediate cell apoptosis and the differentiation process (Thornton & Rincon, 2009), but also 
to have cell protective effects under certain circumstances (Chouinard et al., 2002). MAPK 
pathways mediate cellular responses to many different extracellular signaling molecules 
such as the ones involved in differentiation, gene expression, regulation of proliferation, 
apoptosis, development, motility or metabolism. The typical MAPK pathways, 
characterized by the ERK1/2, ERK5, JNK, and p38MAPK components, comprise a cascade of 
three successive phosphorylation events exerted by a MAPK kinase kinase (MAPKKK), a 
MAPK kinase (MAPKK), and a MAPK (Kostenko et al., 2011).  

Ultraviolet UVA light absorption after solar exposure is responsible for photoactivation of 
DNA and other biomolecules. Additionally, UVA radiation (320-400 nm) induces 
photoaddition, oxidative stress and DNA damage, which may be continuous. The cell is also 
unable to replicate in case of severe DNA damage. This way, DNA repair must be 
considered essential for genetic information preservation and transmission in any life form. 
UVA light generates mutagenic DNA lesions in the skin. Exposure to solar UVB radiation is 
responsible for skin inflammation and tumorigenesis. 

Besides that, oxidative stress induced by solar radiation could be responsible, as well, for the 
increased frequency of DNA mutations in photoaged human skin. Genomic DNA damage 
triggers the activation of a network of pathways that rapidly modulate several cellular 
activities. ROS and hydrogen peroxide can damage DNA. Furthermore, it has been recently 
shown that increased oxidative stress is correlated to DNA alterations. ROS are deleterious 
to DNA, membranes and proteins although their exact role in mutagenesis and lethality is 
still unclear in the many skin cell types. In addition, repair ability and defense mechanisms 
may differ a lot from one cellular type to another. 

Epidermal and dermal cells are targets for UVA oxidative stress and their antioxidant 
defenses can be defeated. Keratinocytes and fibroblasts may respond differently to UV 
radiation depending on their localization in the body or their functional and metabolic 
characteristics. Cell culture models have helped to describe the cytotoxic action of UVA and 
the role of ROS in UVA-induced cellular damage (Tyrrell, 1990). p53 stabilization and 
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activation, an essential outcome of the DNA damage response pathway, leads to cell cycle 
arrest and DNA repair, apoptosis, or cellular senescence. More specifically, initial genomic 
insults lead to p53 stabilization and nuclear localization where transient cell cycle arrest can 
be quickly activated, allowing damaged DNA repair prior to replication. A signaling 
cascade can be activated by p53 in case of extreme and irreversible DNA damage to induce 
programmed cell death through transcription of different proapoptotic factors.  

UV radiation induces phospholipids peroxidation in cellular membrane. Lipid peroxidation 
is a consequence of free primary radicals (ROS). This, in turn, leads to the generation of 
polar products and increase the membrane dielectric constant and capacitance. An 
important consequence of this phenomenon is the alteration of transport particles across the 
membrane (Strässle et al., 1991) 

During the Fenton reaction, singlet oxygen directly initiates lipid peroxides and hydrogen 
peroxides indirectly initiate hydroxyl radicals (Halliwell & Gutteridge, 1999). 

Cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence are 
induced by the p53 tumor suppressor pathway upon activation by genotoxic stress. This 
pathway works mostly through transactivation of different downstream targets, for 
example, p21 cell cycle inhibitor, required for short-term cell cycle arrest or long-term 
cellular senescence, or other proapoptotic genes such as p53 upregulated modulator of 
apoptosis (PUMA) (Tavana et al., 2010). Yet, the mechanism that regulates the switching 
from cell cycle arrest to apoptosis is still unknown. In case of extreme or irreversible 
damage, p53 can additionally activate a signaling cascade to induce apoptosis through 
transcription of pro-apoptotic genes, most particularly p53-upregulated modulator of 
apoptosis (PUMA) and trans-repression of anti-apoptotic genes including Bcl-2. 
Programmed cell death directly protects cells against the accumulation of genomic 
instability that could lead to tumorigenesis.  

 

Fig. 1. Schematic representation. Photobiological effects of ultraviolet radiation on human 
skin cells 
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Senescence, an irreversible cell cycle arrest, can also be induced by DNA damage. p21, the 
cyclin-dependent kinase inhibitor, plays an important role in cell cycle checkpoint 
regulation and induction of cellular senescence, thus being one key p53 target. After DNA 
damage, p21 is commonly transactivated and induces G1arrest by inhibiting the 
cyclinE/CDK2 complex. (Campisi, 2009). Many different stimuli can induce cellular 
senescence including telomere shortening (replicative senescence), oncogenic signaling 
(oncogene-induced senescence), or stress/DNA damage irrespectively of the two previous 
signaling pathways (premature senescence) (Campisi, 2009). Despite the stimuli, cellular 
senescence and apoptosis are somewhat equivalent in preventing genomic instability and 
consequently inhibiting tumor formation (Van Nguyen, 2007). Upon UV exposure, p48 
mRNA levels strongly depended on basal p53 expression and increased even more after 
DNA damage in a p53-dependent manner thus pointing as the link between p53 and the 
nucleotide excision repair apparatus (Hwang et al., 1999).  

2. Objective 

The objective of this study was to investigate modifications in cytoskeleton through the 
formation of blebs and apoptosis in cultured human fibroblasts by confocal microscopy and 
flow cytometry.  

3. Methods 

This study was performed in accordance with the ethical standards laid down in the updated 
version of the 1964 Declaration of Helsinki and was approved by the Research Ethics 
Committee of the Federal University of São Paulo. All patients signed a free and informed 
consent form. Samples of normal adult human skin (6 women, 18-50 years, skin phototype 
Fitzpatrick class. III-IV) were obtained as discarded tissue from trunk cosmetic surgery. 

3.1 Fibroblast culture 

Primary human skin fibroblast culture was done by explant. Fragments were placed in 15 
ml conic tubes and exhaustively rinsed (six times) with 10 ml PBS (Phosphate-Buffered 
Saline, Cultilab, Campinas, SP, Brazil) containing penicillin (100 Ul/ml, Gibco, Carlsbad, 
CA, USA) and streptomycin (100μg/ml, Gibco) under vigorous agitation, changing tubes 
and PBS at each repetition. Then, fragments were transferred to 60 mm² diameter Petri 
dishes, in grid areas scratched with a scalpel. Dishes were left semi-opened in the laminar 
flow for 20 min, for the fragments to adhere to its surface. Then, 6 ml of DMEM (Dulbecco’s 
Modified Eagle’s Medium, Cultilab) supplemented with 10% FBS (Fetal Bovine Serum, 
Cultilab), 1% glutamine, penicillin (100 UI/ml, Gibco) and streptomycin (100 μg/ml, Gibco) 
were carefully added to each plate. Plates were kept in humidified incubator (37ºC, 95% O2, 
5%CO2).  

Culture medium was changed every two days and a few days after establishing the primary 
culture, spindle-like cells were seen proliferating from the edges of the explanted tissue, 
regarded as culturing fibroblasts. Fibroblast satisfactory proliferation was observed in 
approximately 7-14 days and subculturing (passage) was performed when cellular 
confluence reached approximately 80% at the Petri dish. For all experiments, cells from 
passages one to five (Figure 2) were used after harvesting by trypsinization [0.025% trypsin, 
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0.02% ethylene diamine tetra acetic acid (EDTA; Sigma Chemical Co., Saint Louis, MO, 
USA) in PBS]. 

 

Fig. 2. Optical microscopy. Primary human skin fibroblast culture. Hematoxilin and eosin 
staining 

3.2 Ultraviolet irradiation 

Cells were rinsed in PBS. The PBS was then removed and a thin layer of buffer was left on 
top of the coverslip. Fibroblasts were irradiated in culture dishes in a 10cm2 field using a UV 
chamber (with 6 UV F40 Philips lamps) in exposure times of 30 and 60 minutes. 

3.3 Immunofluorescence labeling 

Primary human skin fibroblast culture were used after harvesting by trypsinization [0.025% 
trypsin, 0.02% ethylene diamine tetra acetic acid (EDTA; Sigma Chemical Co., Saint Louis, 
MO, USA) in PBS]. The cells were washed 3 times with phosphate-buffered saline (PBS). 
Human fibroblasts were plated on glass coverslips, fixed in 2% paraformaldehyde for 10 
minutes at 4°C, washed 3 times in PBS, and washed twice in PBS with 50 mmol/L NH4Cl. 
Cells were permeabilized with 0.1% saponin in PBS containing 10% normal bovine serum 
for 30 minutes at 22°C and stained with a combination of fluorescent dyes. Filaments of 
cytoskeleton immunostained with phalloidin conjugated fluorescent with Alexa Fluor 594 
(red) - Molecular Probe, were used to identify actin filaments F inside the cells. Phalloidin 
(1:500) incubation was performed in PBS containing 10% normal bovine serum and 0.1% 
saponin. Nuclei were counter stained with blue - fluorescent DNA stain DAPI (4_6-
diamidino-2-phenylindole) 1:10000 (catalog #D1036; Molecular Probes, Invitrogen, 
Carlsbad, CA ), and excited using a 750nm multiphoton source (two simultaneous photon 
excitations at 375nm). The images are a composite of three images acquired using filter sets 
appropriate for blue and red fluorescence, on a Zeiss confocal microscope (LSM 510, 
Germany). 

www.intechopen.com



 
Flow Cytometry – Recent Perspectives 

 

444 

3.4 Determination of MDA-TBA levels  

Taking the 1h time-point, which proved to be optimal for the determination of MDA 

increase, we then studied dose kinetics. Fibroblasts were exposed to a series of single doses 

UV irradiation in exposure times of 30 and 60 minutes. Markedly elevated MDA 

concentrations in the UV and TBARs–MDA complex concentrations were determined by 

high-performance liquid chromatography (HPLC) as described by Gueguen et al., 2002. The 

MDA-TBA test, which is the colorimetric reaction of malondialdehyde and thiobarbituric 

acid in acid solution, was used to determine the MDA levels. HPLC was used after the 

formation of the MDA-TBA complex (Figure 3) to assess the concentration of the complex 

based on a known standard curve. After heating at 95 ºC for 60 min, the MDA-TBA 

chromogen was fluorometrically analyzed using a reversed-phase C18 column HPLC and a 

wavelength of 532 nm. The MDA-TBA method was previously described by Chirico et al. 

(1993). MDA levels were expressed in relation to the total cellular lysate protein amount, 

which was assessed using Bradford’s method (Bradford, 1976).  

 

Fig. 3. Absorbance spectra for MDA – TBA chromogen complex standards in Thiobarbituric 

Acid Reactions (TBARs). Malondialdehyde (MDA) is a very effective method for determining 

lipid peroxidation levels in fibroblasts exposed to ultraviolet radiation. The standards 

absorption peaks of the inserted curve were highly linear in the range of 0 to 10nmoles/mL 

with maximum absorption at 532nm 

3.5 Apoptosis assay 

Flow cytometry technique, using propidium iodide, was used to detect apoptosis in 

fibroblast culture of human skin exposed to UV radiation (Nicoletti et al., 1991).  

Human fibroblasts were labeled with annexin V-FITC (Roche), which bind to 

phosphatidylserine at the cell surface of apoptotic cells, and propidium iodide (PI; Sigma 

Aldrich), was used as a marker of cell membrane permeability according to manufacturer’s  
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directions. Samples were examined by fluorescence-activated cell sorter (FACS) analysis, 
and the results were analyzed using Cell-Quest software (Becton Dickinson, San Jose, CA) 
(Vermes et al., 1995). 

3.6 Flow cytometric analysis of caspase 3 and p53 

Briefly, normal human fibroblast cells from cultures with increasing passage number were 
collected and re-suspended in a buffer saline (PBS) containing 0.1% sodium azide (Sigma) 
containing 20 mM HEPES (pH 7.5), the cells were homogenized and centrifuged at 10,000 x 
g for 5 min. For analysis of caspase 3 and p53 expression, cells were fixed in 2% 
paraformaldehyde for 10 minutes at 4°C, washed 3 times in PBS, then washed twice in PBS 
with 50 mmol/L NH4Cl. Cells were permeabilized with 0.1% saponin in PBS containing 10% 
normal bovine serum for 30 minutes at 22°C. The first primary antibody incubation (anti-
p53 (SER 15) or anti–cleaved caspase 3) was performed in PBS containing 10% normal 
bovine serum and 0.1% saponin. Aliquots were then incubated for 60 minutes with anti- 
caspase 3 and p53 antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), final dilution 
1:800, or rabbit IgG as a control, followed by washing in PBS containing 0.1% saponin 3 
times for 5 minutes each at 22°C. Cells were then incubated with the first fluorochrome-
conjugated secondary antibodies Alexa 488 and 594 diluted 1:1600, and incubation was 
performed for 40 minutes at 37°C in the dark (Danova et al., 1990). 

3.7 Statistical analysis 

The results obtained were analyzed using a one-way analysis of variance (ANOVA) 
followed by the Student–Newman–Keuls Multiple Range Test. Data were analyzed by 
GraphPad Prism v.3.0 software. 

4. Results and discussion 

Skin cells exposure to solar radiation may result in biological consequences, one of the most 
important being skin DNA photodamage due to sunlight ultraviolet (UV) radiation. 
Wavelengths in the UVB range are absorbed by DNA and can induce mutagenesis. It has 
been suggested that p53-independent mechanisms of killing tumor cells may not involve 
programmed cell death and could be a result of induced mechanical damage, rather than 
apoptosis (Funkel, 1999). 

Ultraviolet A radiation (UVA, 320–400 nm), an oxidizing component of sunlight, exerts its 
biological effect mainly by producing reactive oxygen species (ROS) which cause biological 
damage in exposed tissues, including the lipid bilayer, via iron-catalyzed oxidative reactions 
(Halliwell & Gutteridge, 1999; Tyrrell, 1990). Membrane alterations induced by UV 
irradiation were determined, such as MDA concentration increase, which indicates lipid 
peroxidation levels (methods previously described -Figure 3). The UV radiation effects in 
the cellular production of ROS were indirectly determined by the ratio: (MDA concentration 
/ total amount of fibroblasts) at the sample. Analyses of the lipid peroxidation by measuring 
the products that react with Tiobarbituric Acids (TBARs) normalizing the obtained MDA 
(malondialdehyde) results by the number of cells in the sample (Figure 4). A significant 
MDA increase was observed, of about 45.0 % after 30 min of UV exposure and 130% after 60 
min of UV exposure.  
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Fig. 4. Effect of UV radiation in the cellular production of oxygen reactive species measured 

by ratio: MDA concentration by total number of fibroblast in the sample. Histograms values 

differ significantly from each other. *Data analyzed with one-way ANOVA followed by 

Newman Keuls (significance level p < 0.05). Values represent the mean ± SEM of at least 

four different experiments 

Similar results are also described by several studies demonstrating that low UVA radiation 

doses can induce lipid peroxidation in membranes of both human fibroblasts and 

keratinocytes via pathways involving singlet oxygen and iron (Morliere et al, 1991). 

Looking from a different angle, cells also have repair mechanisms to respond to DNA 

damage, and at least two different mechanisms are responsible for UVA-induced DNA 

damage repair. The primary process that removes bulky damage is the nucleotide excision 

repair pathway. Small lesions induced by ROS are mostly processed by base excision repair 

pathway. On the other hand, highly damaged cells may undergo cell cycle arrest, apoptosis 

and senescence (Hazane et al., 2006). Our results are consistent with those of Shindo et al. 

(1994) who investigated antioxidant molecules in crude extracts of human epidermis and 

dermis. In addition, Moysan et al. (1995), using cells from the same biopsy, found no link 

between UVA cytotoxicity and antioxidant capacity since SOD, catalase and GSH were 

identical in both cells and GSH-Px was higher in fibroblasts (Degterev et al., 2008). Other 

authors, however, have found more antioxidant molecules in fibroblasts than in 

keratinocytes. Yohn et al. (1991), using cells from different donors, found increased GSH-Px, 

SOD and catalase in fibroblasts compared to keratinocytes, and in keratinocytes compared 

to melanocytes (Huang et al., 2008). 

Several in vitro and in vivo studies on skin cells have demonstrated that UV radiation can 

damage many molecules and structures (Matsumura & Ananthaswamy, 2004). Corroborating 

these results, morphological analysis by confocal fluorescence microscopy of fibroblasts 

group control showed characteristics of nuclear and cytoskeleton integrity. High cellularity 

was also observed (Figure 5). In contrast, exposed to UV for 30 and 60 minutes showed 

changes in the actin filaments arrangement of the cellular cytoskeleton. Groups irradiated 

for 30 and 60 min presented disruption of the actin filaments, with the formation of blebbing 

and nuclear fragmentation as a consequence of the ultraviolet radiation (Figure 6). 
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Fig. 5. Confocal microscopy. Cultured human skin fibroblasts. Control group. Cellular 
localization of actin filaments and nuclei. A) Actin filaments immunostained with phalloidin 
conjugated with Alexa Fluor 594 (red). B) Cell nuclei stained with DAPI (blue), showing 
characteristics of nuclear and cytoskeleton integrity. High cellularity was also observed.  
C) Overlapped images A and B 

 

Fig. 6. Confocal microscopy. Cultured human skin fibroblasts. Cellular localization of actin 
filaments and nuclei. Cells exposed to UV radiation for 30 min (1A, 1B, 1C) or 60 min (2A, 
2B, 2C). 1A) Actin filaments immunostained with phalloidin conjugated with Alexa Fluor 
594 (red). The occurrence of blebbing can be observed. 1B) Cell nuclei stained with DAPI 
(blue), showing characteristics of nuclear and cytoskeleton integrity. 1C) Overlapped images 
A and B. 2A) Actin filaments immunostained with phalloidin conjugated with Alexa Fluor 
594 (red). 2B) Pyknotic nuclei (*) and nuclear fragmentation (arrow) were observed. 2C) 
Overlapped images A and B 
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In addition, skin fibroblasts viability, stained by propidium iodide (PI), was analyzed by flow 
cytometry. Viable cells were characterized by a structurally intact cell membrane and no PI 
uptake. In contrast, dead cells (necrosis or late apoptotic cells) were characterized by loss of 
the integrity of their membranes and were stained by PI. At all UV radiation tested doses, 
the amount of viable cells was reduced, as verified by PI staining. The amount of viable 
fibroblasts was dramatically reduced by UV radiation at all tested doses/exposure times, 
about 80% after 30 min of exposure and 30% after 60 min of exposure (Figures 7A and 8A). 

There are strong evidences that skin cancer can be developed as a result of ultraviolet 
radiation, which is directly associated to the TP53-gene tumor mutation.  

To further investigate whether p53 is involved in the apoptosis induced by UV, cells were 
first stained for membrane-exposed phosphatidylserine using annexin-V conjugated to 
fluorescein (FITC). There was a significant increase of the number of apoptotic cells: about 
21.0 % (30 min) and 50% (60 min) after irradiation (Figures 7B and 8B) and (Figures 7C and 
8C), respectively.  

 

Fig. 7. Contour diagram of PI flow cytometry of cultured fibroblasts for groups: A) Control; 
B) UV irradiated for 30 min and C) UV irradiated for 60 min. The lower left quadrant of the 
cytograms shows the viable cells, which excluded PI. The upper right quadrants represent 
the apoptotic cells showing PI uptake. Panel (B) shows cells number (%) for apoptosis and 
necrosis 30 minutes after exposure to ultraviolet radiation. Panel (C) shows cells number (%) 
for apoptosis and necrosis 60 minutes after exposure to ultraviolet radiation. Data are 
representative of 04 independent experiments 

Ultraviolet radiation is a carcinogenic agent for the skin. Even though being a tumor 
suppressor gene, details are still needed in order to understand the signaling mechanisms of 
skin cell death induced by UV radiations, which can lead to cancer and/or cell aging.  

DNA alteration can ultimately lead to the development of skin cancer, so DNA itself is a 
critical target (Matsumura et al., 2004). Skin DNA photodamage activates the signaling 
pathway of cell death by apoptosis. Apoptosis is a crucial mechanism in eliminating cells 
with unrepaired DNA damage and preventing carcinogenesis.  
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Fig. 8. Mean percentage ± of apoptotic cells in groups control and 30min and 60min after 
exposure to UV radiation. Data are the means of triplicate assays of one experiment 
representative of three that gave similar results. A) Total number of viable cells and B) 
Percentage of apoptotic cells. *Data analyzed with one-way ANOVA followed by Newman 
Keuls (significance level p < 0.05). Values represent the mean ± SEM of at least four different 
experiments 

DNA is a critical target because its alteration can ultimately lead to the development of skin 
cancer (Matsumura et al., 2004). In addition, Skin DNA photodamage activates the signaling 
pathway of cell death by apoptosis. Apoptosis is a crucial mechanism in eliminating cells 
with unrepaired DNA damage and preventing carcinogenesis (or preventing the formation 
of malignant tumors).  

Apoptosis is characterized by a p53-dependent induction of pro-apoptotic proteins, leading 
to permeabilization of the outer mitochondrial membrane, release of apoptogenic factors 
into the cytoplasm, activation of caspases (cysteine-aspartic proteases) and subsequent 
cleavage of various cellular proteins. Apoptogenic effects include chromatin condensation 
and exposure of phosphatidylserine on the cell membrane surface (Meier et al., 2007).  

p53 levels increased about 40% after 30 min of UV exposure and about 60% after 60 min of 
UV exposure (Figure 9).  

Previous studies indicated that BimL was involved in UV-induced apoptosis, but it remains 
unclear whether Bim directly activates Bax or if this activation occurs via the release of  
pro-survival factors (antiapoptotic) such as Bcl-xL. In recent studies, Wang et al. (2009) 
determined the interactions between BimL and Bax/Bcl-xL during UV-induced apoptosis.  

Caspases have a major role in apoptosis. They are synthesized as inactive proenzymes that 
become activated by cleavage. Procaspase 3 is a constitutive proenzyme activated by 
cleavage during apoptosis. (Cohen, 1997). Caspase-3 is the most important protease in the 
caspase-dependent apoptosis pathway, as it is required for chromatin condensation and 
fragmentation (Porter & Jänicke, 1999). Poly-ADP ribose polymerase (PARP-1) is a major 
target of caspase-3, since cleavage-mediated inactivation of PARP-1 preserves cellular ATP 
that is required for apoptosis (Bouchard et al., 2003).  

Regarding the caspases, the resulting enzyme is able to cleave several aspartate residues of 
many target proteins, after a DEVD sequence common to all caspases 3 and 7 substrates  
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                                           (a)                                                                                            (b) 

 
                                           (c)                                                                                            (d) 

Fig. 9. Flow cytometry (FCM) analysis of p53 protein accumulation control (upper left set of 
panel – figure 9A – green line) and / or activation by UV can be followed of cultured 
fibroblasts for groups: UV irradiated for 30 min (right set of figure 9B – Black line) and UV 
irradiated for 60 min (right set of figure 9C – red line). The fibroblasts treated in 2% 
paraformaldehyde are the same as those shown in Figure 05 (control group) and figure 06 
(UV irradiated groups). Cells were permeabilized with 0.1% saponin in PBS containing 10% 
normal bovine serum for 30 minutes at 22°C and stained with anti-p53 (SER 15) antibodies 
at figures (9A), (9B), and (9C) after the beginning of the experiment and analyzed by FCM. A 
control performed with an irrelevant antibody is shown figure 9A. The percentage of cells 
exhibiting active p53 conjugated with FITC is indicated on each histogram. The results from 
one representative experiment of four experiments performed are shown. The numbers 
indicate the percentages of positive cells and fluorescence intensity. Histogram overlays 
show the FL1 (green fluorescence) intensity corresponding to a given p53 (black line – UV 
irradiated for 30min and red line – UV irradiated for 60min) compared to the intensity for 
the control (green line). 9D Mean percentage ± of cells exhibiting active p53 in groups 
control (figure 9A – green line) and groups UV irradiate for 30 min (figure 9B – Black line) 
and UV irradiated for 60 min (figure 9C – red line). Data are the means of triplicate assays of 
one experiment representative of three that gave similar results. A) Total number cells 
fibroblasts exhibiting active p53 antibodies at figures (9A), (9B), and (9C). Histograms values 
differ significantly from each other. *Data analyzed with one-way ANOVA followed by 
Newman Keuls (significance level p < 0.05). Values represent the mean ± SEM of at least 
four different experiments 
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                                           (a)                                                                                            (b) 

 
                                           (c)                                                                                            (d) 

Fig. 10. Activation of caspase 3 by UV can be followed by flow cytometry (FCM) of cultured 
fibroblasts for groups: A) control (upper left set of panel – figure 10A - Black line) and UV 
irradiated for 30 min (right set of figure 10B – Blue line) and UV irradiated for 60 min (right 
set of 10C – orange line). The fibroblasts treated in 2% paraformaldehyde are the same as 
those shown in figure 05 (control group) and figure 06 (UV irradiated groups). Cells were 
permeabilized with 0.1% saponin in PBS containing 10% normal bovine serum for 30 minutes 
at 22°C and stained with anti–cleaved caspase 3 antibodies at figures (10A), (10B), and (10C) 
after the beginning of the experiment and analyzed by FCM. A control performed with an 
irrelevant antibody is shown 10A. The percentage of cells exhibiting active caspase 3 
conjugated with FITC is indicated on each histogram. The results from one representative 
experiment of four experiments performed are shown. The numbers indicate the percentages 
of positive cells and fluorescence intensity. Histogram overlays show the FL1 (green 
fluorescence) intensity corresponding to a given caspase 3:(blue line – UV irradiated for 
30min and red line – UV irradiated for 60min compared to the intensity for the control 
(black line). 10D Mean percentage ± of cells exhibiting active caspase 3 in groups control 
(figure 9A – green line) and groups UV irradiated for 30 min (figure 9B – Black line) and UV 
irradiated for 60 min (figure 9C – red line). Data are the means of triplicate assays of one 
experiment representative of three that gave similar results. A) Total number cells fibroblasts 
exhibiting active caspase 3 antibodies at figures (10A), (10B), and (10C). Histograms values 
differ significantly from each other. *Data analyzed with one-way ANOVA followed by 
Newman Keuls (significance level p < 0.05). Values represent the mean ± SEM of at least 
four different experiments 
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(DEVDase). Thus, active caspase 3 is a common effector protein in several apoptotic 
pathways, and it may be a good marker to detect (pre-) apoptotic cells by flow cytometry 
(Porter & Jänicke, 1999). Taking this into consideration, apoptosis was confirmed by 
determining the increased expression of cleaved caspase 3 after fibroblasts exposure to UV 
radiation. In this work we could verify a significant increase of cleaved caspase 3 levels, 
about 25.0 % after 30 min of UV exposure and 75% after 60 min of UV exposure (Figure 10). 

Although caspases represent a significant component of the apoptotic pathway, there is 
indication that a caspase-independent apoptosis pathway also exists (Broker et al., 2005). 
This pathway involves the Apoptosis-Inducing Factor (AIF), which translocates from the 
mitochondria to the nucleus to cause chromatin condensation (Daugas et al., 2000).  

Then again, genotoxic effects of solar UVA are mediated essentially by the activation of 
endogenous photosensitizers which generate a local oxidative stress. Depending on the dose 
and duration of exposure, UV-induced effects may occur, and DNA damage can lead to 
mutations and genetic instability. This is one of the reasons why sunlight overexposure 
increases the risk of skin cancer and DNA photolesions can also be involved in other skin-
specific responses to UV radiation: erythema, immunosuppression, and melanogenesis 
(Matsumura & Ananthaswamy, 2004). 

5. Conclusion 

Damages occurring on DNA molecules not always induce mutagenesis. We should take in 
consideration many strong scientific evidences showing that specific activation molecular 
signaling pathways promote several different answers. Both the prolonged exposure time 
and the increase in the UV radiation dose were able to induce lipid peroxidation and cell 
death by apoptosis. Our results suggest that the major part of UV induced apoptosis cell 
death is caspase-dependent, although a minority of cells may die by a caspase-independent 
pathway, presumably apoptotic. In this work we also showed that p53 levels increased after 
UV exposure. In these circumstances, the action of UV radiation on skin cells still involves 
many issues depending on the cell type and on different cellular response pathways 
induced by phototoxic stress. Skin fibroblasts are surely sensitive to UV radiation, thus, 
from a better understanding of the molecular mechanisms triggered by the action of UV 
radiation on skin cells, it will be possible to work on improving skin radioprotection and 
attenuating the effects of sunlight exposure. 
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