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1. Introduction 

1.1 Mammalian connexins 

Connexins are protein subunits expressed by cordates that form gap junction channels 

(GJCs) and hemichannels (HCs) (Goodenough, 1974; Makowski et al., 1977). A GJC is 

formed by the head-to-head docking of two HCs, each contributed by one of the two 

contacting cells (Meşe et al., 2007). Each HC is an oligomeric assembly of six identical 

(homomeric) or six different (heteromeric) Cx subunits (Sáez et al., 2005). GJCs and HCs 

subserve different functions; while GJCs communicate the cytoplasm of contacting cells, 

HCs provide a pathway for communication between the intracellular and extracellular 

compartments (Bruzzone and Dermietzel, 2006). Although both types of channels are 

permeable to ions and small molecules, GJCs and HCs composed of the same Cx subtype 

are likely to present differences in permeability and regulatory properties (Sáez et al., 2003; 

Meşe et al., 2007; Sáez et al., 2010). 

The family of connexin genes has 20 members in the mouse genome and 21 members in the 

human genome (Eiberger et al., 2001; Willecke et al., 2002; Söhl and Willecke, 2003; 2004). 

Most Cx genes have a similar structure and contain the protein coding region as a single 

exon (Willecke et al., 2002; Söhl and Willecke, 2003; 2004; Pfenniger et al., 2011). Cxs were 

initially denoted according to the tissue of origin or the apparent size of a polypeptide as 

determined by SDS-PAGE. Shortly thereafter, it became clear that such designations were 

inappropriate, because many of these proteins are expressed in more than one tissue (Beyer 

et al., 1987) and their apparent molecular mass may vary with electrophoresis conditions 

(Green et al., 1988). Therefore, a standard nomenclature was developed to distinguish 

members of this family. The current nomenclature uses the abbreviated symbol “Cx” (for 

connexin) followed by a suffix that indicates the molecular mass of the Cx amino acid 

sequence (in kDa) predicted from its cDNA. In some cases, a prefix is added to indicate the 

species of origin. Hydropathicity plots of the Cx amino acid sequences have been used to 
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predict their membrane topology. These analyses predicted the presence of four 

hydrophobic domains, three hydrophilic cytoplasmic domains (the amino and carboxyl 

termini and an intracellular loop) and two extracellular loops (Heynkes et al., 1986; Paul, 

1986; Beyer et al., 1987). This topology was supported by experiments that studied the 

binding of site-specific antibodies and protease sensitive sites (Zimmer et al., 1987; 

Hertzberg et al., 1988; Milks et al., 1988; Yancey et al., 1989; Zhang and Nicholson, 1994; 

Quist et al., 2000). The cytoplasmic loop and the carboxyl terminus vary extensively in 

length and amino acid composition and probably contain most of the regulatory sites of 

GJCs and HCs. 

1.2 Mammalian protein kinases and phosphoprotein phosphatases 

Most Cxs contain putative phosphorylation sites (Lampe and Lau, 2004). As with all 

phosphoproteins, their phosphorylation state will depend on the activities of protein kinases 

and phosphoprotein phosphatases. Mammalian cells express several different types of 

protein kinases and phosphoprotein phosphatases with more than 500 putative kinase genes 

in the human and mouse genome (Manning et al., 2002; Caenepeel et al., 2004). Protein 

kinases and phosphoprotein phosphatases have been subdivided according to their 

substrate specificities, activators, cofactors and/or amino acid sequence homology. It would 

be beyond the scope of this chapter to attempt to review them here and thus, we will briefly 

summarize the characteristics of the kinases and phosphatases that have most frequently 

been studied as possible effectors of the phosphorylation state of connexins. 

1.3 Serine/threonine protein kinases 

cAMP- and cGMP-dependent protein kinases (PKA and PKG, respectively) can be activated 

by increasing the concentration of the corresponding cyclic nucleotide (e.g., treatment with 

membrane permeable analogs of cAMP or cGMP such as 8-Bromo-cAMP and 8-Bromo-

cGMP or forskolin, which activates adenylyl cyclase). The CAMKII isoenzymes are activated 

by binding of Ca2+/calmodulin but other protein binding partners can also regulate their 

activity (Griffith, 2004). Casein kinase I (CK1) is a family of monomeric serine/threonine 

kinases that are constitutively active. This family shows a strong preference for pre-

phosphorylated substrates. Several inhibitors for members of this family have been 

described including CKI-7 and IC261 (Perez et al., 2011). Protein kinase C (PKC) has several 

isoforms that have been subdivided in three subtypes: conventional, novel and atypical. 

They differ in their activation by Ca2+, binding of diacylglycerol (DAG) and in their response 

to phorbol esters. Conventional PKCs bind Ca2+ and DAG. Novel PKCs lack amino acids 

involved in Ca2+ binding, but bind DAG. The catalytic activity of atypical PKCs is 

independent of Ca2+ and DAG; these PKC isoforms do not bind phorbol esters (Newton, 

1995). The phorbol ester tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) and 

1-oleoyl-2-acetyl-sn-glycerol (OAG), an analog of diacylglycerol have been commonly used 

as activators of PKC. MAPKs are subdivided in three subfamilies: the extracellular signal-

regulated kinases (ERKs), the c-Jun amino-terminal kinases (JNKs) and the p38 MAPKs. 

They are activated by protein kinase cascades [MKKK-MKK(or MEK for ERKs)-MAPK], 

although MKK-independent activation of p38ǂ has been reported (Johnson and Lapadat, 

2002). Finally, cyclin-dependent kinases (Cdks) constitute a family of serine/threonine 

www.intechopen.com



 
Connexins as Substrates for Protein Kinases and Phosphoprotein Phosphatases 

 

201 

kinases that regulate proliferation, differentiation, senescence and apoptosis. In post-mitotic 

neurons, all Cdks, with the exception of Cdk5, are silenced.  

1.4 Tyrosine kinases 

The tyrosine kinases can be divided in two groups: receptor tyrosine kinases (RPTKs; e.g, 

growth factor receptors, ephrin receptors) and non-receptor (cytoplasmic) tyrosine kinases 

(NRPTKs; e.g., Src, FAK, JAK). RPTKs can be further subdivided into 20 subfamilies and 

NRPTKs into 10 subfamilies.  In the case of RPTKs, ligand-induced oligomerization and 

conformational changes result in tyrosine autophosphorylation of the receptor subunits 

which activates the catalytic activity and mediate the specific binding of cytoplasmic 

signaling proteins containing Src homology-2 (SH2) and protein tyrosine-binding domains. 

The NRPTK, c-Src, contains an SH2 domain through which it can bind to specific tyrosine 

autophosphorylation sites in ligand-stimulated RPTKs and mediate mitogenic signaling. c-

Src can also be activated by binding to proline-rich sequences in target proteins through its 

SH3 domain or by dephophorylation of Tyr527 (Blume-Jensen and Hunter, 2001). The viral 

form of Src, v-Src, is constitutively active and oncogenic. It contains a shorter sequence at 

the carboxyl terminus that lacks Tyr527, which is required for inactivation. v-Src has been 

extensively studied in relation to connexins for its effects on gap junction function. 

1.5 Serine/threonine phosphoprotein phosphatases 

The phosphoserine/phosphothreonine protein phosphatases have been classified in three 

subfamilies (PPM, FCP and PPP). Members of the PPP (PP1, PP2A and PP2B) and PPM 

(PP2C) subfamilies which use a metal ion-catalyzed reaction account for most of the 

serine/phosphothreonine phosphatase activity in vivo (Barford et al., 1998). Several 

phosphatase inhibitors with different specificities are available including calyculin A (which 

inhibits PP1 and PP2A), cyclosporine A (an inhibitor of PP2B), FK506 (an inhibitor of PP2B) 

and okadaic acid (which inhibits PP1).  

1.6 Phosphotyrosine phosphatases 

The phosphotyrosine phosphatases (PTPs) have been classified in class I-IV based on the 

amino acid sequence of their catalytic domains (class I-III are cysteine-based PTPs and class 

IV are aspartic-based PTPs). The cysteine-based family can be subdivided in classical PTPs, 

dual-specificity PTPs, cdc25 PTPs, and low-molecular weight PTPs.  Classical PTPs can be 

further subdivided into transmembrane receptor-like enzymes and intracellular non-

receptor PTPs. Eighty one of the 107 PTP genes in the human genome are active protein 

phosphatases (Alonso et al., 2004). 

2. Methods used to demonstrate that connexins are phosphoproteins 

The most frequently used experimental approaches to demonstrate that a particular Cx is a 

phosphoprotein include metabolic labeling of cultured cells with 32P followed by 

immunoprecipitation and alkaline phosphatase treatment, phosphoamino acid analysis (Sáez 

et al. 1986; Takeda et al., 1989; Musil et al., 1990; Crow et al., 1990; Sáez et al., 1990; Lau et al., 
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1992; Goldberg and Lau, 1993; Kurata and Lau, 1994; Doble et al., 1996; Warn-Cramer et al., 

1996; Mikalsen et al., 1997; Cheng and Louis, 1999) or two-dimensional phosphopeptide 

mapping (Sáez et al., 1990; Kurata and Lau, 1994; Díez et al., 1995; Loo et al., 1995; Warn-

Cramer et al., 1996; Berthoud et al., 1997; Díez et al., 1998; Kanemitsu et al., 1998) in vitro 

phosphorylation assays using fusion proteins or synthetic peptides containing the putative 

phosphorylation site(s) and purified protein kinases (Sáez et al., 1990; Loo et al., 1995; Warn-

Cramer et al., 1996; Berthoud et al., 1997; Kanemitsu et al., 1998; Shah et al., 2002; O'Brien et 

al., 2004; Ouyang et al., 2005; Yogo et al., 2006; Alev et al., 2008; Morel et al., 2010); treatment 

of cultured cells with specific protein kinase or phosphoprotein phosphatase activators or 

inhibitors to alter 32P incorporation or the immunoblot pattern of connexins (Lau et al., 1992; 

Husøy et al., 1993; Guan et al., 1996; Berthoud et al., 1997; Cruciani et al., 1999; Duthe et al., 

2000; Li and Nagy, 2000; Sirnes et al., 2009; Morley et al., 2010); overexpression or knockdown 

of a specific protein kinase or phosphoprotein phosphatase (Kanemitsu et al., 1998; Lampe et 

al., 1998; Doble et al., 2000; Lin et al., 2001; Chu et al., 2002; Petrich et al., 2002; Doble et al., 

2004; Peterson-Roth et al., 2009; Ai et al., 2011); mass spectrometry (MS) analyses of 

immunoprecipitated connexins or in vitro phosphorylated fusion proteins containing a Cx 

intracellular domain (Cooper et al., 2000; Yin et al., 2000; TenBroek et al., 2001; Cooper and 

Lampe, 2002; Cameron et al., 2003; Axelsen et al., 2006; Locke et al., 2006; Solan et al., 2007; 

Shearer et al., 2008; Locke et al., 2009; Wang and Schey, 2009; Huang et al., 2011) and more 

recently, luminescence resonance energy transfer (Bao et al., 2007). Mutagenesis of the 

identified phosphorylation sites has been used to determine the functional consequences of 

their phosphorylation/dephosphorylation in cultured cells as well as in vivo after 

transfection or knock-in of a phosphosite-directed mutant Cx (Lampe et al., 1998; Remo et 

al., 2011). 

3. Metabolic labeling with 
32

P  

The first reports that demonstrated a particular Cx to be a phosphoprotein using metabolic 

labeling with 32P showed phosphorylation of Cx32 in hepatocytes (treated with phorbol 

esters, OAG, forskolin or cAMP analogs)((Sáez et a., 1986; Takeda et al., 1989; Sáez et al., 

1990) and phosphorylation of Cx43 in uninfected and Rous sarcoma virus (RSV)-transformed 

fibroblasts (Crow et al., 1990). Phosphoamino acid analysis indicated that hepatocyte Cx32 

and Cx43 in uninfected fibroblasts were phosphorylated on seryl residues (Takeda et al., 

1989; Crow et al., 1990; Sáez et al., 1990), but Cx43 was also phosphorylated in tyrosyl 

residues in RSV-transformed fibroblasts (Crow et al., 1990). Using metabolic labeling with 32P, 

other studies described that EGF-induced phosphorylation of Cx43 on serine residues in T51B 

cells through activation of mitogen-activated protein kinase (MAPK) (Lau et al., 1992; Warn-

Cramer et al., 1996), FGF-2 induced phosphorylation of Cx43 in cardiomyocytes (Doble et al., 

1996), tyrosine phosphorylation of Cx43 in early passage hamster embryo fibroblast 

(Mikalsen et al., 1997), phosphorylation of Cx56 by PKC and Cx49 by casein kinase 1 (CK1) in 

lens fiber cells (Berthoud et al., 1997; Cheng and Louis, 1999). In some cases, the specific 

phosphorylation site has been identified in reconstituted connexons expressed in Xenopus 

laevis oocytes. Using this approach, it has been demonstrated that v-Src induces tyrosine 

phosphorylation of Cx43 but not Cx32 (Swenson et al., 1990), and that serine368 of Cx43 (but 

not serine372) is directly phosphorylated by PKC (Bao et al., 2004a; 2004b). 
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3.1 In vitro phosphorylation 

Another widely used approach to identify putative phosphorylation sites is in vitro 

phosphorylation assays. In this case, a polypeptide, fusion protein or synthetic peptide 

(corresponding to a fragment of the connexin that includes the putative phosphorylation 

site(s)) is incubated with a purified protein kinase in the presence of [Ǆ-32P]ATP and its 

ability to be a substrate for that protein kinase is evaluated by the incorporation of 32P. Sáez 

and collaborators (1990) also performed in vitro kinase assays using the catalytic subunits of 

PKA, PKC or CaMK II and purified gap junctions or synthetic peptides as substrates, and 

compared their two-dimensional pattern of phosphopeptides with those obtained from 

metabolically labeled cells. Using glutathione S-transferase (GST) fusion proteins of Cx56 

containing the carboxyl terminus or the intracellular loop, in vitro phosphorylation of Cx56 

by PKC and PKA have been demonstrated in serine118 (in the intracellular loop) and 

serine493 (in the carboxyl terminus)(Berthoud et al., 1997). 

Phosphorylation of Cx43 is among the best characterized. Polypeptides, fusion proteins and 

several synthetic peptides containing putative phosphorylation sites within the carboxyl 

terminus of Cx43 have been used to carry out in vitro phosphorylation and identify 

phosphorylation sites. These experiments have demonstrated that Cx43 is a substrate of 

p34cdc2 kinase (cell division cycle 2 kinase also known as cyclin dependent kinase 1) which 

mediates phosphorylation of Cx43 on Ser255 and possibly Ser262 (Kanemitsu et al., 1998). 

Cx43 is also a substrate for PKC and PKA. Kinetic analyses of wild type and mutant (S364P 

and S365N) Cx43 peptides (containing amino acid residues 359-376) in vitro phosphorylated 

by PKA and PKC have suggested that phosphorylation of Ser364 may be required for 

subsequent phosphorylation by PKC (Shah et al., 2002). In vitro phosphorylation of Ser365, 

Ser368, Ser369, and Ser373 by PKA has been described using a His-tagged Cx43-CT 

(containing amino acid residues E227-I382)(Yogo et al., 2006). 

Other studies have shown in vitro phosphorylation of perch Cx35 by PKA and mouse Cx36 

by CaMKII using fusion proteins containing the carboxyl terminus or the intracellular loop 

(O'Brien et al., 2004; Ouyang et al., 2005; Alev et al., 2008). A polypeptide containing the 

polymorphic variants S319 and P319 of the carboxyl terminus of human Cx37 (amino acid 

residues 233-333) was in vitro phosphorylated by glycogen synthase kinase-3ǃ (Morel et al., 

2010). In vitro kinase assays have also been used to demonstrate that phosphorylation of 

Cx32 by PKC prevents its proteolysis by calpains (Elvira et al., 1993). 

Analyses of two dimensional maps of mixes of tryptic phosphopeptides from a connexin 

immunoprecipitated after metabolic labeling and from a (poly)peptide after in vitro 

phosphorylation together with phosphopeptide sequencing have been used often to identify 

the phosphorylated sites of the immunoprecipitated connexin and changes in their 

phosphorylation state under different experimental conditions.  

4. Pharmacological modulation of phosphoprotein phosphatases 

Changes in the phosphorylation state of Cxs can be induced by activating or inhibiting a 

specific intracellular phosphoprotein phosphatase. This type of approach allows 

identification of the protein phosphatases involved in the effects observed. 
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Using this approach, it has been demonstrated that treatment of V79 fibroblasts with several 
phosphoprotein phosphatase inhibitors (i.e., calyculin A, cyclosporin A or FK506) does not 
change the immunoblot pattern of Cx43 (Husøy et al., 1993; Cruciani et al., 1999). However, 
the dephosphorylation of immunoprecipitated Cx43 from TPA-exposed V79 cells is more 
efficiently reduced by PP2A than by PP1, PP2B or PP2C inhibitors (Cruciani et al., 1999). In 
WB-F344 cells, a rat liver epithelial cell line, calyculin A prevents the dephosphorylation of 
Cx43 induced by 18ǃ-glycyrrhetinic acid (Guan et al., 1996). However, in primary cultures of 
astrocytes, calyculin A had little effect on hypoxia-induced Cx43 dephosphorylation; in this 
cell type, inhibition of PP2B with cyclosporin A or FK506 reduced Cx43 dephosphorylation 
after hypoxia (Li and Nagy, 2000). Calyculin A significantly retarded the loss of channel 
activity seen in ventricular myocytes in ATP-deprived conditions; conversely, stimulation of 
endogenous PP1 activity by treatment with p-nitrophenyl phosphate or 2,3-butanedione 
monoxime (a dephosphorylating chemical agent) induced a reversible interruption of cell-
to-cell communication (Duthe et al., 2000; 2001). 

The effect of okadaic acid on Cx43 also varies depending on cell type. It inhibits 
dephosphorylation of Cx43 in untreated and EGF-treated T5lB rat liver epithelial cells and 
prevents the dephosphorylation of Cx43 induced by 18ǃ-glycyrrhetinic acid in WB-F344 rat 
liver epithelial cells (Lau et al., 1992; Guan et al., 1996). Okadaic acid also significantly 
retards the loss of gap junction channel activity seen in ventricular myocytes in ATP-
deprived conditions (Duthe et al., 2000; 2001). In other cell types, it has little or no effect on 
the immunoblot pattern of Cx43 (Berthoud et al., 1992; Husøy et al., 1993; Cruciani et al., 
1999), and has little effect on hypoxia-induced Cx43 dephosphorylation in primary cultures 
of astrocytes (Li and Nagy, 2000). Altogether these results suggest the involvement of 
different protein phosphatases in the phosphorylation state of Cx43 in different cell types 
under various experimental conditions. 

5. Genetic activation or inhibition of a protein kinase or phosphatase 

In some studies, changes in the phosphorylation state of Cxs have been induced by genetic 
manipulation through chemical-induced mutagenesis of genomic DNA or transfection with 
mammalian expression vectors and/or infection with virus containing cDNAs coding for a 
protein of interest. These methods can be used to modify the kinase activity using cDNAs 
encoding active or dominant negative mutant forms of a specific kinase. Lampe et al. used 
the FT210 cell line which contains a temperature-sensitive mutant of p34cdc2/cyclin B kinase 
to demonstrate that the formation of the phosphoform of Cx43 present in mitotic cells was 
dependent on the activity of this kinase.  However, the two-dimensional tryptic 
phosphopeptide map of immunoprecipitated Cx43 from mitotic cells had many major and 
minor tryptic phosphopeptides that could not be attributed to direct p34cdc2/cyclin B kinase 
phosphorylation of the Cx43CT (Lampe et al., 1998). Doble et al. (2000) used transient 
tranfection and adenoviral infection of truncated or dominant-negative forms of PKCǆ to 
demonstrate that this kinase is required for Cx43 phosphorylation in cardiomyocytes (Doble 
et al., 2000). 

The mechanism by which v-Src affects Cx43 phosphorylation and function has been 
extensively explored. Several studies have shown that expression of v-Src in mammalian 
fibroblasts leads to phosphorylation of Cx43 in tyrosyl residues (Crow et al., 1990). Mutants 
of Cx43 and v-Src SH2 and SH3 domains have been used to demonstrate that the SH2 and 
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SH3 domains of v-Src interact with Cx43; the SH3 domain binds to a proline-rich motif and 
the SH2 domain binds to a phosphorylated tyrosyl residue in the carboxyl terminus of Cx43 
(Kanemitsu et al., 1997). Two specific phosphorylation sites for v-Src have been identified in 
Cx43, Tyr247 and Tyr265, by stably re-expressing wild type or mutant Cx43 with v-Src in 
Cx43 knockout cells (Lin et al., 2001). Moreover, using a triple serine-to-alanine mutant at 
the MAPK sites (S255/279/282A) it has been shown that phosphorylation of Cx43 by MAPK 
is not required for v-Src-induced disruption of gap junctional intercellular communication 
(Lin et al., 2006). 

Several studies have been carried out on cardiac cells. Phosphorylation of Cx43 in Ser262 

regulates DNA synthesis in cardiomyocytes forming cell-cell contact (Doble et al., 2004). 

Expression of an activated mutant of mitogen-activated protein kinase kinase 7 (a JNK-

specific upstream activator) in cultured cardiomyocytes and in the heart in vivo demonstrated 

that Cx43 expression is regulated by JNK, although this effect may not be mediated by direct 

phosphorylation of Cx43 (Petrich et al., 2002). Transgenic mice with cardiac-specific 

overexpression of a constitutively active form of calcineurin (a calcium-dependent 

serine/threonine phosphatase) showed differences in the distribution of Cx43 in the 

ventricles, and Cx43 was mainly present in the nonphosphorylated form (Chu et al., 2002). 

Overexpression of p21-activated kinase 1 (PAK1, an activator of PP2A) increased PP2A 

activity and induced dephosphorylation of Cx43 in rabbit myocytes and Cx43-overexpressing 

HEK293 cells (Ai et al., 2011).  

6. Genetic modification of a phosphosite-specific mutant connexin 

A more recent approach is the generation of connexin knock-in mice in which the coding 

region of the wild type protein is replaced by DNA encoding a phosphosite-specific mutant. 

The only available report to date using this approach showed that mice in which Cx43 was 

replaced by a Cx43 mutant at the CK1 sites in which serines 325/328/330 were replaced 

with phosphomimetic glutamic acids (S3E) were resistant to gap junction remodeling and 

less susceptible to the induction of arrhythmias. In contrast, mice in which a Cx43 mutant 

with serines 325/328/330 mutated to non-phosphorylatable alanines (S3A) was knocked-in 

in place of Cx43 had severe alterations in gap junction formation and function, and had a 

proarrhythmic phenotype (Remo et al., 2011). This report shows a mechanistic link between 

the phosphorylation state of Cx43 and arrhythmic susceptibility (Remo et al., 2011). 

7. Phosphospecific antibodies 

Antibodies that recognize a specific phosphorylated (or dephosphorylated) site in a 
connexin have been developed. These have been extensively used to identify the state of 
phosphorylation of the phosphosite they recognize and to determine associated changes in 
connexin distribution in cells under different physiological and pathological conditions. 
Using this approach, it has been described that ischemic preconditioning prevents the 
changes in the phosphorylation state of Cx43 observed in a model of ischemia/reperfusion 
in pig hearts (Schulz et al., 2003). It has also been reported that PKC phosphorylates Cx43 in 
Ser368 (Solan et al., 2003), and that scratch wounding of primary human keratinocytes 
causes a PKC-dependent increase in phosphorylation at this site in cells adjacent to the 
scratch (Richards et al., 2004). Leykauf et al. used a specific antibody against PSer279-
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PSer282 of Cx43 to demonstrate that different phosphorylated forms of Cx43 coexist at the 
plasma membrane (Leykauf et al., 2003). Two antibodies recognizing the same phosphosites 
were used to show that EGF and activation of its receptor with quinones induce 
phosphorylation of Cx43 in these serine residues (Abdelmohsen et al., 2003; Leykauf et al., 
2003). Using an antibody that specifically recognizes Cx43 phosphorylated at serines 325, 
328 and/or 330 (PS325/328/330), Lampe and colleagues showed that while Cx43 relocalizes 
to the lateral edges in ischemic hearts, Cx43 phosphorylated at these residues remained 
mostly at the intercalated disk (Lampe et al., 2006). An antibody that recognizes 
dephosphorylated Ser364/Ser365 and binds preferentially to Golgi-localized Cx43 in 
cultured cells has been used to demonstrate conformational changes in Cx43 (Sosinsky et al., 
2007). Other studies have described that phosphorylation of connexin 43 at Ser262 is 
associated with a cardiac injury-resistant state (Srisakuldee et al., 2009). 

Phosphospecific antibodies have been used in combination with PKC or MEK inhibitors to 

determine the protein kinase pathway involved in the effects observed. Sirnes et al. reported 

that TPA induces phosphorylation of Ser255 and Ser262 of Cx43 in a MAPK-dependent 

manner (Sirnes et al., 2009). A MAPK-dependent phosphorylation of serines 255, 262 and 

279/282 of Cx43 has also been demonstrated using phosphospecific antibodies and a MEK 

inhibitor in follicles exposed to luteinizing hormone (Norris et al., 2008). In MC3T3-E1 

osteoblasts, treatment with fibroblast growth factor 2 induces a PKCǅ-dependent increase in 

phosphorylation at Ser368 of Cx43 (Niger et al., 2010). Solan and Lampe used several anti-

Cx43 phosphospecific antibodies that recognize Src, MAPK or PKC sites and LA-25 cells 

(which express a temperature-sensitive v-Src) grown at the permissive and non-permissive 

temperatures to show that distinct tyrosine and serine residues are phosphorylated in 

response to v-Src activity (Solan and Lampe, 2008). Li et al. used antibodies that specifically 

recognize PSer110 and PSer276 in Cx35 to demonstrate that the level of phosphorylation of 

these serines depends on PKA activity and regulates photoreceptor coupling in zebrafish 

retina (Li et al., 2009). 

8. Mass spectrometry analyses 

Another technique that has been used to identify putative phosphorylation sites is mass 
spectrometry (MS) analysis of connexins isolated from tissue or cultured cells or in vitro 
phosphorylated (poly)peptides. For this purpose, the immunoprecipitated/isolated 
connexin or in vitro phosphorylated polypeptide is digested with a protease or a mix of 
proteases, the sample is enriched in phosphopeptides and subjected to MS. This technique is 
highly sensitive and it does not require the use of radioactivity. 

The first studies using this technique to identify phosphorylation sites in Cxs were reported 
several years ago (Cooper et al., 2000; Yin et al., 2000). Cooper et al. showed that in vitro 
phosphorylation of the carboxyl terminus of Cx43 with p34cdc2/cyclin B kinase resulted in 
phosphorylation of Ser255 using liquid chromatography coupled with tandem mass 
spectrometry (LC-MS/MS) (Cooper et al., 2000). Yin et al. demonstrated that lens Cx45.6 is 
phosphorylated in the chicken lens in vivo at Ser363 using nanoelectrospray and tandem 
mass spectrometry (Yin et al., 2000). 

Several studies using mass spectrometry analysis have been performed on Cx43. Ser364 was 
identified as a phosphorylation site in Cx43 using matrix-assisted laser 
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desorption/ionization-time of flight (MALDI-TOF MS) and LC-MS/MS (TenBroek et al., 
2001). MALDI-TOF MS in combination with metabolic labeling of normal rat kidney (NRK) 
epithelial cells (in the presence and absence of a casein kinase 1 inhibitor) and in vitro 
phosphorylation of Cx43CT fusion proteins with casein kinase 1ǅ (CK1ǅ) have been used to 
determine that serines 325, 328 or 330 are potential sites of CK1 phosphorylation in these 
cells (Cooper and Lampe, 2002). Cameron et al. (2003) used MALDI-TOF MS to identify 
Ser255 of Cx43 as the preferred site for big MAPK 1 (BMK1)/ERK5 phosphorylation.  This 
finding was further supported by the lack of phosphorylation of GST fusion proteins 
containing mutant carboxyl termini of Cx43 in which Ser255 had been mutated to alanine 
(S255A and S255A/S279A/ S282A). Axelsen et al. (2006) reported the time course of changes 
in phosphorylation of Cx43 immunopurified from perfused rat hearts under non-ischemic 
and ischemic conditions. These authors identified thirteen phosphorylation sites using 
MALDI MS and LC-MS/MS in non-ischemic conditions and detected site-specific changes  

 

Table 1. Techniques used for identification of connexins as substrates for protein kinases and 
phosphoprotein phosphatases. 
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in Cx43 phosphorylation during the course of ischemia. Phosphorylation of Ser365 has also 
been demonstrated in Cx43 immunoprecipitated from NRK cells using liquid 
chromatography coupled to electrospray ionization tandem mass spectrometry (LC/ESI 
MS/MS) (Solan et al., 2007). Fifteen putative phosphorylation sites on Cx43 have also been 
identified after in vitro phosphorylation of a GST fusion protein containing the Cx43CT with 
CaMK II by high-resolution mass spectrometry (Huang et al., 2011). 

Post-translational modification by phosphate has also been identified by mass spectrometry 
in Cx26 and Cx32; Cx26 is phosphorylated in the intracellular loop and the second 
extracellular loop, and Cx32 is phosphorylated in the amino and carboxyl termini (Locke et 
al., 2006). Two studies have used mass spectrometry to identify phosphorylation sites in the 
bovine lens fiber connexins, Cx44 and Cx49. While phosphorylation sites were identified 
only on the carboxyl terminus of Cx44, phosphosites were identified in both the intracellular 
loop and carboxyl terminus of Cx49 (Shearer et al., 2008; Wang and Schey, 2009). 

9. Luminescence resonance energy transfer 

Another recent approach used to evaluate the functional effect(s) of phosphorylation of Cxs 
is the generation of hemichannels of known composition, stoichiometry that can be assessed 
by luminescence resonance energy transfer (LRET)(Bao et al., 2007). This method uses 
terbium ions (Tb3+), which have a long lifetime emission as donor and fluorescein as acceptor. 
The technique is based on the detection of LRET between Cx43 subunits labeled with Tb3+ 
and those labeled with fluorescein. The composition of the HCs can be determined based on 
the number of acceptor-labeled monomers per HC. Using HC of known composition, Bao 
and colleagues have determined that in a Cx43 HC all six subunits have to be 
phosphorylated by PKC at Ser368 to abolish sucrose permeability, although the HC pore 
still has a sizable diameter and allows permeation of smaller molecules (Bao et al., 2007). 

10. Conclusions and future directions 

In summary, connexins are substrates for various protein kinases and phosphoprotein 

phosphatases. Several of the phosphorylation sites have been identified, and the effect of 

phosphorylation at many of these sites on connexin channel activity has been studied. In some 

cases, pathophysiological conditions that alter their phosphorylation state have been reported. 

Although significant progress has been made in the area of connexin phosphorylation, there 

are many associated aspects that require further investigation. 

A question that remains unanswered is whether all connexins are phosphoproteins. Does 
phosphorylation affect connexin channel function in all members? Does phosphorylation at a 
specific site induce consistent functional changes in gap junction channels and hemichannels? 
Or, can phosphorylation at a specific site induce changes in one channel type, and not in the 
other?. Because phosphorylation has been implicated in several steps of the connexin’s life 
cycle, it is also important to determine which phosphorylation events are associated with 
proper trafficking to the plasma membrane, formation of gap junctional plaques or 
internalization and degradation. Are connexins sorted/targeted to different compartments 
depending on their cohort of phosphorylated sites? Where do these phosphorylation events 
take place? Since some hierarchy in the phosphorylation events has been shown for Cx43, it is 
interesting to know whether changes in phosphorylation are also associated with other post-

www.intechopen.com



 
Connexins as Substrates for Protein Kinases and Phosphoprotein Phosphatases 

 

209 

translational modifications. Do these have a hierarchical sequence? Because connexins and 
changes in the activity of protein kinases/phosphoprotein phosphatases have been associated 
with disease, it would be important to know how the phosphorylation state of connexins is 
affected in disease. What are the intracellular signals and mechanisms of regulation of 
phosphorylation/dephosphorylation of connexins? What are the endogenous activators of 
the protein kinases/phosphoprotein phosphatases involved? Although the answers to some 
of these questions are known for some of the phosphorylation sites identified, especially in 
the case of Cx43, these questions have not been addressed for most connexins. 
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