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1. Introduction 

To maintain its functional integrity, a cell senses and reacts to the acute or chronic changes 
in the environment under physiological and pathological conditions. This typically involves 
cell surface membrane proteins such as receptors, ion channels, and structural proteins, 
whose surface expression level is regulated at multiple different steps of their biosynthesis 
and trafficking. Protein trafficking is mediated by a series of dynamic interactions between 
the sorting motifs of cargo proteins and the cellular machineries that recognize these motifs. 
While the constitutive trafficking of many cargo proteins relies on intrinsic sorting signals, 
post-translational modification of cargo proteins often serves as a key switch that enables 
the spatio-temporal regulation of their trafficking. Protein phosphorylation is one of the 
most intensively studied post-translational modifications that control the membrane 
trafficking. However, molecular mechanisms by which phosphorylation signal regulates the 
protein localization are diverse and remain not fully understood. The 14-3-3 proteins had 
been identified to specifically recognize phosphorylated serine or threonine residues, and 
thus represents one of the most distinct effector molecules that function downstream of the 
phosphorylation signal by kinases. This chapter will focus on the emerging role of 14-3-3 
proteins in the phosphorylation-dependent control of cell surface membrane protein 
trafficking. 

2. Control of cell surface expression by phosphorylation signal 

A typical mechanism by which phosphorylation signal controls protein trafficking is that 
phosphorylation of cargo proteins creates docking sites for the interacting proteins. A well 
studied example is the internalization of G protein-coupled receptors (GPCRs), where 
ligand binding induces the conformational change of the receptor and subsequent 
recruitment of GPCR kinases (GRKs) to the receptor. Receptor phosphorylation by GRKs 
recruits arrestin that couples the receptor to the adaptor protein of clathrin coat, thereby 
initiating the internalization of the cargo vesicles (Drake et al., 2006; Tobin, 2008). This way 
phosphorylation signal leads to the desensitization of ligand stimulus by reducing the cell 
surface density of GPCRs. On the other hand, phosphorylation signalling can also regulate 
localization of membrane proteins by attenuating the sorting signal activity. In the neuron, 
ligand stimulation of N-methyl-D-aspartate (NMDA) receptor leads to receptor 
phosphorylation by casein kinase II (CK2) at the serine residue within the C-terminal PDZ 
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[postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] binding motif (IESDV-
COOH) of NMDA receptor subunit 2B (NR2B). CK2 phosphorylation disrupts the 
interaction of NR2B with the PDZ domains of PSD-95 and SAP102 and thereby decreases 
cell surface NR2B expression (Chung et al., 2004). This represents the regulatory role of 
phosphorylation in excitatory synaptic function and plasticity.  

In contrast to the downregulation of surface expression, the molecular basis for the role of 
phosphorylation in promoting cell surface trafficking has been less well understood. 
However, studies in the past decade have revealed that 14-3-3s are the key class of phospho- 
sensing proteins which mediate cell surface trafficking of various membrane proteins. Here 
we will review recent findings on the emerging role of 14-3-3 in cell surface protein 
trafficking, with particular focus on their mechanisms of action and relevant kinases. 

2.1 14-3-3 proteins and 14-3-3 binding sites 

The 14-3-3 proteins were first discovered in 1967 as brain-rich, acidic protein (Moore & Perez, 
1967). The name 14-3-3 refers to the elution and migration profile of these proteins on DEAE-
cellulose chromatography and starch gel electrophoresis. They are highly conserved and 
expressed in all eukaryotic cells, with seven isoforms in mammals (ǃ, Ǆ, ǆ, Ǉ, ǈ, Ǖ, ǔ) and two in 
yeast (Bmh1 and Bmh2). 14-3-3 proteins participate in fundamental biological processes such 
as signal transduction, metabolism, protein degradation, and trafficking (Tzivion & Avruch, 
2002; van Hemert et al., 2001). All the 14-3-3 proteins, except for the sigma isoform, are able to 
form stable homo- and heterodimers (Benzinger et al., 2005; Gardino et al., 2006; Wilker et al., 
2005). The dimeric structure of the 14-3-3 protein allows it to simultaneously bind two binding 
sites through an amphipathic ligand-binding groove present in each monomer. In the majority 
of cases, 14-3-3 proteins recognize phosphorylated peptides in their binding partners. 
Screening of phosphoserine-oriented peptide libraries has identified two consensus 14-3-3 
binding motifs that are present in many of known 14-3-3 binding proteins (Yaffe et al., 1997). 

These are R-[S/]-X-pS/pT-X-P (mode I) and R-X-[S/]-X-pS/pT-X-P (mode II) binding sites 

where pS/pT is phosphoserine or phosphothreonine,  is an aromatic residue, and X is any 
residue (typically leucine, glutamate, alanine, and methionine). However, it should be noted 
that 14-3-3-binding sites in numerous proteins do not conform to these optimal motifs, 
presumably because other structural features also contribute to the interactions. For instance, 
proline located at position +2 of the phosphorylation site occurs in only about half of known 
14-3-3 binding motifs in mammalian proteins (Johnson et al., 2010).  

The C-terminal 14-3-3 binding motifs have recently become a newly recognized group with 
a distinct mode of interaction (see Table 1). Based on the similarity between the C-terminal 
14-3-3 binding motifs of the oAANAT (RRNpSDR-COOH) and H+-ATPase (QQXYpTV-
COOH) proteins, a new mode III consensus for 14-3-3 binding (pSX1–2-COOH) had been 
proposed (Ganguly et al., 2005). The focal points of this consensus are that the motif is at the 
extreme C-terminus in contrast to the canonical mode I and II internal binding sites, and that 
the binding is phosphorylation-dependent. Mode III sequences interact with the same 
ligand-binding groove of 14-3-3 as do the mode I and mode II motifs (Coblitz et al., 2005). 
Amino acid selectivity upstream of the phosphorylated residue is conspicuously absent 
from the proposed mode III motif, presumably due to the discrepancy between the 
oAANAT and H+-ATPase motifs. However, upstream arginine residues are preferred for 
modes I and II 14-3-3 binding as determined by random synthetic peptide library screening  
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Table 1. 14-3-3 binding sequences. Consensus mode I and mode II motifs and the reported 
C-terminal mode III binding sequences are shown. S/T: phosphorylated serine or threonine 

required for 14-3-3 binding, : aromatic residue, Reference#1: (Bodnar et al., 1999) , #2: (Sliva 
et al., 2000), #3 and #4: (O'Kelly et al., 2002):, #5 and #6: (Shikano et al., 2005), #7:(Rong et al., 
2007), #8: (Wurtele et al., 2003), #9: (Ganguly et al., 2005), #10: (Fujita et al., 2003).  

(Yaffe et al., 1997) and by random C-terminal peptide selection in a cell-based genetic screen 
(Shikano et al., 2005). Indeed, the majority of the so far identified C-terminal 14-3-3 binding 
sequences contain arginine residues upstream of the phosphorylated serine or threonine 
(Table 1). Recent mutagenesis study of the C-terminal 14-3-3 binding site in GPR15 
demonstrated the importance of the upstream arginine residue for phosphorylation-
dependent 14-3-3 binding (Okamoto & Shikano, 2011). In a crystal structure with 14-3-3, a 
mode II peptide displayed an arginine in the -4 position from phosphorylated serine 
(RLYHpSLPA) that was looped back to interact with the phosphate on the peptide (Rittinger 
et al., 1999). These lines of evidence support significant contribution of upstream arginine 
residues to the 14-3-3 affinity. Thus, Mode III would be better defined as RXXpS/pTX-
COOH. For all three modes of 14-3-3 binding, phosphorylation is a prerequisite and arginine 
residues located upstream of the phospho-serine/threonine are also important for 
recognition by a number of kinases (Kobe et al., 2005). Thus, the absence of an arginine 
residue in the C-terminal 14-3-3 binding sequence in plant H+-ATPase (QQXYpTV-COOH) 
suggests the possibility that plant and animal differ significantly in kinase recognition. As 
more C-terminal 14-3-3 binding proteins become available, it would be valuable to revisit 
the issue of upstream sequence requirements both in terms of 14-3-3 binding per se and in 
terms of kinase recognition.  

2.2 Protein kinases that phosphorylate 14-3-3 target sites 

Proteomic screens have identified over 200 phosphoproteins which interact with 14-3-3 

(Chang et al., 2009; Ichimura et al., 2002; Kakiuchi et al., 2007; Meek et al., 2004; Pozuelo 
Rubio et al., 2004). Understanding when and how 14-3-3 proteins impact on these targets 
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offers a great opportunity to gain mechanistic insights into many phosphorylation-regulated 
biological pathways. Since 14-3-3 target sites in proteins must satisfy the specificity 

requirements for both 14-3-3s and the protein kinases that create the sites in the first place, 
identification of kinases that phosphorylate 14-3-3 target sites is crucial for elucidating the 

physiological roles of 14-3-3 binding. Unfortunately, in the majority of cases the identity of 
the physiologically relevant kinases that phosphorylate the mode I, II or III 14-3-3 binding 

motifs is still unknown. This is largely due to the high similarities between different 
serine/threonine protein kinase recognition sites (Table 2) and their likely redundant 

activities. One reasonable approach to overcome such obstacles and gain better 
understanding of the physiological kinases for 14-3-3 target proteins would be the global 

analysis of the actual 14-3-3-binding phosphoproteins. Based on the proteomics data and 
other available literature on 14-3-3, Johnson et al. have recently attempted to define 14-3-3 

specificity and identify relevant protein kinases (Johnson et al., 2010). This study points out 
several features that are distinctive of 14-3-3-binding sequences as compared with other 

protein phosphorylation sites. For instance, few reported 14-3-3-binding sites have a +1 
(relative to phosphorylated serine/threonine) proline residue, which contrasts with 

phosphoproteomic studies of cell lysates and subcellular fractions where phosphoserine-
proline is the most commonly reported phosphorylation motif overall (Ubersax & Ferrell, 

2007). This indicates that proline-directed kinases do not phosphorylate 14-3-3-binding sites. 
Similarly, no reported 14-3-3-binding sites conform to the canonical consensus site for casein 

kinase II (pS/pT-X-X-D/S/pS), which is probably the second most common type of motif in 
the entire mammalian phosphoproteome (Salvi et al., 2009). Another interesting notion is 

that, while the optimal mode I (R-[S/]-X-pS/pT-X-P) and mode II (R-X-[S/]-X-pS/pT-X-P) 
14-3-3-binding motifs were defined using phosphopeptides, many 14-3-3-binding sites in 

mammalian proteins (but not in plant 14-3-3-binding proteins) have basic residues in 
position -5 (and -4) in addition to -3. This creates a motif RXRXXS/T, which is a good target 

for the basophilic AGC kinase family (cAMP-dependent protein kinases A, cGMP-
dependent protein kinases G, and phospholipid-dependent protein kinases) and the 

calcium/calmodulin-dependent kinase (CaMK) family (Pearson & Kemp, 1991). Indeed, 
members of these kinase families, including protein kinase A (PKA), protein kinase C (PKC), 

CaMKI, checkpoint kinases 1 and 2 (Chk1 and 2), Akt/protein kinase B (PKB) and p90 
ribosomal S6 kinase (p90Rsk), are all known to phosphorylate sites that mediate 14-3-3 

binding (Dougherty & Morrison, 2004). Among these, Akt is one of the most well 
documented kinases in phosphorylating 14-3-3 client proteins (Mackintosh, 2004).  

 

Table 2. Consensus recognition sequences of major serine/threonine kinases that are known 
to phosphorylate 14-3-3 binding site. 
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2.3 Molecular mechanism for the 14-3-3 effects on membrane protein trafficking 

The phospho-binding ability of 14-3-3 proteins is reminiscent of other proteins carrying 

specific modules that recognize phosphorylated sites. Such modules include FHA (Durocher 

et al., 2000), WD40 (Yaffe & Elia, 2001), Polo-box (Lowery et al., 2005), and BRCT (BRCA-1 C-

terminal) repeat domains (Manke et al., 2003), which target serine and threonine 

phosphorylation, as well as SH2 (Src-homology 2) domains which target phosphorylated 

tyrosine residues in specific sequence contexts (Bradshaw & Waksman, 2002). These 

domains are found in a large number of proteins involved in a wide range of signaling 

processes. 14-3-3s are distinct from those proteins in that 14-3-3s are not modular 

components of other proteins. They are discrete binding proteins with no intrinsic enzyme 

activities, except for the nucleoside diphosphate (NDP) kinase-like activity (Yano et al., 

1997) and chaperonic activity toward selected substrates (Yano et al., 2006). So, how do 14-3-

3s exert their effects? Several excellent reviews discuss different models of 14-3-3 action as 

masking, scaffolding, or clamping of proteins (Dougherty & Morrison, 2004; Mackintosh, 

2004; Mrowiec & Schwappach, 2006). Recruitment of proteins may be regulated by masking 

of functional signals by 14-3-3 binding. Alternatively, the scaffolding model suggests that 

14-3-3 proteins tether different molecules together and form a platform for complex 

assembly. Clamping describes the idea that 14-3-3 binding alters the functional property of 

the client protein by stabilizing a certain conformation (Figure 1). It should be noted that 

combinations of these 'masking', 'scaffolding', and 'clamping' types of 14-3-3 action may 

occur together. As far as membrane proteins are concerned, very few examples exist where 

the interactions of 14-3-3 with client proteins are sufficiently well understood to ascribe a 

particular mode of action. Nevertheless, 14-3-3s may be considered as general switch 

proteins, of which effect of binding depends on the client protein. In most cases, 

phosphorylation at a serine or threonine residue activates the switch, and the subsequent 

binding of 14-3-3 proteins is thought to prevent rapid dephosphorylation. Recent studies 

have firmly demonstrated that 14-3-3 proteins are involved in controlling cell surface 

expression level of various cargo membrane proteins. We will discuss the pertinent evidence 

and hypothetical molecular mechanisms explaining these observations, with attention to the 

relevant kinases that regulate 14-3-3 binding. 

2.3.1 Masking  

14-3-3s are implicated in regulating the subcellular localization of many phosphorylated 
target proteins. The majority of the cases seem to involve the mechanism where 14-3-3 
binding blocks the access of other proteins to the sorting signal of target proteins. Such a 
'masking' role of 14-3-3 was first implicated in the mitochondria-cytoplasm translocation of 
the pro-apoptotic protein BAD. BAD interferes with the anti-apoptotic function of Bcl-2 and 
Bcl-xL in the mitochondria by binding to those proteins via its BH3 domain (Zha et al., 1996). 
BH3 domain is located immediately adjacent to the serine136, of which phosphoryaltion by 
Akt (Datta et al., 1997) is required for the binding of BAD to 14-3-3 in the cytoplasm (Zha et 
al., 1997). These results suggested that 14-3-3 binding obscures the BH3 domain and 
prevents the targeting of BAD to mitochondria. A similar mechanism was found for the 
nuclear-cytoplasmic shuttling of various proteins including tyrosine phosphatase Cdc25C 
(Kumagai & Dunphy, 1999), transcription factor FKHRL1 (Brunet et al., 1999), 
glucocorticoidreceptor (Kino et al., 2003), CDK (cyclin-dependent kinase) inhibitor p27  
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Fig. 1. Hypothetical models for the effects of 14-3-3 binding on the trafficking of membrane 
proteins. (A) Masking. Sorting signals (e.g., RXR motif) are physically masked by 14-3-3 

binding to the nearby phosphorylated target site (shown as ○P). This blocks the access of 
transport machineries (e.g., COPI proteins) to the sorting signal. Only the action of one 14-3-
3 monomer is drawn here. (B) Scaffolding. Dimeric 14-3-3 facilitates the interaction of cargo 
proteins with transport machineries (e.g., motor proteins and microtubules). Binding of 14-
3-3 dimer to two different targets might involve phosphorylation-independent and/or outer 
surface-mediated interaction (see main text). (C) Clamping. Binding of a 14-3-3 dimer 
induces a conformation that is unfavorable for sorting signals (e.g., RXR motif), which can 
be achieved by clustering of targets or relocation from active zones (e.g., proximity to the 
transmembrane region (see main text)). This could result in reduced accessibility by 
transport machineries (e.g., COPI proteins).  

(Fujita et al., 2003), and catalytic subunit of telomerase TERT (Seimiya et al., 2000). In most 

cases, 14-3-3 binding promotes the cytoplasmic localization of target proteins. For instance, 

14-3-3 binding to serine287 of Cdc25C leads to the cytoplasmic retention of Cdc25C. This 

seems to be due to the occlusion of the closely located bipartite nuclear localization sequence 

(NLS) at amino acids 298-316 of Cdc25C from importin-, a receptor for bipartite NLS 

(Kumagai & Dunphy, 1999). These observations are consistent with the predominant 

cytoplasmic localization of 14-3-3 proteins at the steady-state, which has led to the 

hypothesis that they might serve as a universal cytoplasmic anchor that blocks import into 
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the nucleus or other organelles. However, this model of 14-3-3 action is contradicted by the 

observation that 14-3-3 can also promote the nuclear localization of other binding partners. 

Seimiya et al. found that 14-3-3 binding to human TERT, which requires threonine1030, 

serine1037 and serine1041, lead to the nuclear localization of hTERT. This was attributed to the 

blocking of the nearby leucine-rich nuclear export sequence (NES) present at residues 970–

981 of hTERT, which is otherwise recognized by the nuclear export receptor CRM1 (Seimiya 

et al., 2000). So, how does 14-3-3 regulate nuclear-cytoplasmic shuttling of different proteins 

in two opposing directions? One simple hypothesis may be that 14-3-3 itself bears no 

specific information about protein sorting and the effect of 14-3-3 binding on the subcellular 

localization of a client protein depends entirely on sorting signals encoded within the client 

protein and the proximity of those signals to a 14-3-3 binding motif. If so, 14-3-3 binding 

could possibly affect any other protein sorting pathways.  

Consistent with this idea, recent studies report a critical role of 14-3-3 in controlling the cell 

surface expression level of membrane proteins of different functions, including ion channels, 

receptors, and adhesion molecules. In many cases, the underlying mechanism seems to 

involve 'masking' of a short sequence motif, namely a di-arginine or di-basic (RXR) ER 

localization signal. The RXR-type ER-localisation signals were first identified in ATP-

sensitive potassium channels (KATP channels) (Zerangue et al., 1999). These channels 

assemble as octameric complexes consisting of four Kir6 channel subunits and four 

sulphonylurea receptor (SUR) subunits, and each of these subunits carries an RXR signal in 

the cytoplasmic tail. It is believed that the ER-localisation activity of these motifs is mediated 

by the retrieval of cargo proteins from the post-ER compartments such as ER-Golgi 

intermediate compartment (ERGIC) and cis-Glogi through their interaction with the 

retrograde transport coatomer protein, COPI (Michelsen et al., 2007; Zerangue et al., 1999). 

Although the RXR motif resembles the C-terminal di-lysine (KKXX) motif which also 

mediates ER retrieval of membrane protein cargos through direct interaction with COPI 

(Michelsen et al., 2007), RXR motif is distinct in that it is present almost exclusively in the 

multimeric cell surface membrane proteins (Michelsen et al., 2005), while KKXX motif is 

found in the membrane proteins that are resident to the ER such as nucleotide sugar 

transporters (Jackson et al., 1990, 1993).  

Efficient cell surface transport of proteins harbouring RXR motifs will be allowed only when 
the motif becomes inaccessible to COPI probably by multiple different mechanisms including 
folding, subunit assembly, post-translational modification, and protein recruitment. 14-3-3 
proteins have been implicated in the masking of RXR motif in several instances. The first 
evidence that 14-3-3 proteins control cell surface transport of membrane protein was shown 
for two-pore-domain potassium (K2P) channels TASK1 and TASK3 (O'Kelly et al., 2002). 
These channels bound to 14-3-3 via a mode III C-terminal binding motif (RRSSV-COOH and 
RRKSV-COOH for TASK1 and TASK3, respectively), where phosphorylation of the 
penultimate serine and the upstream arginine residues were critically required. In the 
absence of phosphorylation on the penultimate serine, COPI proteins bind to the adjacent 
RXR-like sequence (KRR) which shares two arginine residues with the 14-3-3 binding motif. 
It is thought that phosphorylation switch allows 14-3-3 binding that occludes the partially 
overlapping RXR-like COPI binding motif. A very recent study by Mant et al. reports that 
PKA, which recognizes a consensus sequence of RXXS/T, phosphorylates the penultimate 
serine residue in TASK1 and TASK3 channels and promote their expression on cell surface, 
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although it was not shown in the literature whether this phosphorylation actually promotes 
the binding of 14-3-3 proteins to these sites (Mant et al., 2011).  

A similar masking mechanism was suggested for the ER-export of Iip35 isoform of major 
histocompatibility complex (MHC) class-II-associated invariant chain (O'Kelly et al., 2002). 
During their assembly in the ER, MHC class-II ǂǃ dimers associate with preformed trimers 
of the invariant chains (Iip33, Iip35, Iip41, Iip43), to form nonameric (ǂǃIi)3 oligomers. It had 
been known that phosphorylation of an N-terminal serine8, present exclusively in the Iip35 
cytoplasmic tail (NH3-MHRRRSRS…), is a prerequisite for efficient ER exit and sorting of 
class-II/Iip35 complexes to the cell surface. Phosphorylation of serine8 leads to the 14-3-3 
binding to Iip35 and the alanine mutation on this residue inhibits the ER exit of class-
II/Iip35 complex (Kuwana et al., 1998). Together with the fact that 14-3-3 and COPI bound to 
the N-terminal sequence of Iip35 in a mutually exclusive manner, it was concluded that the 
cell surface transport of MHC class-II complex is promoted by 'masking' effect of 14-3-3 
(O'Kelly et al., 2002). However, as Khalil et al. pointed out (Khalil et al., 2005), this model 
seems to require further investigation, since it is not consistent with the fact that, even when 
associated with a 14-3-3 protein, Iip35 will not leave the ER in the absence of class-II 
molecules and that mutation of serine8 to asparagine prevents 14-3-3 protein binding but 
still allows ER export if class-II molecules are present (Kuwana et al., 1998).  

The effect of 14-3-3 binding on promoting cell surface transport was also found by a 

completely different approach. Shikano et al. screened a random peptide library to identify 

C-terminal peptide signals that would functionally override the ER localization activity of 

the RXR motif (Shikano et al., 2005). The screening was based on the yeast growth 

complementation assay using a mutant Saccharomyces cerevisiae SGY1528 which cannot 

survive in low potassium media due to the lack of endogenous potassium uptake 

transporters. However, SGY1528 growth in low potassium media can be rescued by 

heterologous expression of mammalian inward rectifying potassium channel Kir2.1, but not 

when Kir2.1 was artificially fused with the RXR motif (RKR) due to the efficient retention of 

channel in the ER (Shikano et al., 2005). In the screen, SGY1528 cells were transformed with 

Kir2.1 constructs where random peptide library of 8-mer sequences was placed at the 

extreme C-terminus, downstream of the implanted RXR motif. By selecting the transformed 

cells that survived in low potassium media, the authors searched for the sequence that were 

able to override the ER localization activity of the RXR motif and restored the surface 

expression of the chimeric Kir2.1 channel. The screen of about 2x106 clones yielded several 

sequences that showed robust surface expression of Kir2.1 as tested in mammalian cell. 

Those sequences shared a minimum consensus of RXXS/TX-COOH and showed strong 

binding to 14-3-3, which required penultimate serine or threonine and the upstream 

arginine residues (Shikano et al., 2005). By using one of the identified C-terminal sequences, 

namely RGRSWTY-COOH, Chung et al. investigated the relevant kinases. Using in vitro 

phosphorylation assay using recombinant proteins and in vivo studies using reporter Kir2.1 

channel bearing both RXR motif and downstream C-terminal RGRSWTY sequence, the 

authors found that Akt, but not PKA or CamKII, is responsible for direct phosphorylation of 

the RGRSWTY sequence which recruits 14-3-3 proteins to this site (Chung et al., 2009). 

Importantly, the extracellular stimulation that activates Akt pathway, such as insulin and 

platelet-derived growth factor (PDGF), enhanced 14-3-3 binding and promoted the cell 

surface transport of the reporter Kir2.1 channel (Chung et al., 2009). These results 
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demonstrate that, despite high similarity in the recognition sequences of basophilic 

serine/threonine protein kinases, specific kinase signaling can modulate membrane protein 

trafficking through 14-3-3 binding. Further search of the human protein database for this C-

terminal 14-3-3-binding motif has identified several candidate membrane proteins that 

would interact with 14-3-3. These include GPR15, an orphan GPCR that serves for a co-

receptor for human immunodeficiency virus (HIV) entry (Farzan et al., 1997). GPR15, which 

has a C-terminal sequence of RRRKRSVSL-COOH, was indeed confirmed to bind 14-3-3 and 

this binding absolutely required phosphorylation of penultimate serine359. A recent study by 

Okamoto and Shikano reported that alanine mutation of the serine359 resulted in substantial 

ER localization of GPR15 and this was mediated by the upstream arginine residues at amino 

acids 352 and 354, which constitute a COPI-binding RXR motif (Okamoto & Shikano, 2011). 

These results suggested that mode III binding of 14-3-3 to the receptor C-terminus 

physically occludes the adjacent RXR motif from the access by COPI, similar to the cases for 

TASK channels. Thus, a non-biased screening has led to the identification of 14-3-3 function 

as a key switch that converts phosphorylation signal to the sorting of membrane proteins by 

modulating the activity of an ER localization signal.  

The masking effect of 14-3-3 on the cell surface transport is not restricted to the mode III C-
terminal binding. The cytoplasmic tail of ADAM22, a member of ADAM (a disintegrin and 
metalloprotease domain) protein family, contains two internal 14-3-3 binding sites and three 
RXR-type ER-localization signals that overlap with both of the 14-3-3 protein binding sites. 
Mutations in both 14-3-3 binding sites inhibited surface expression of ADAM22, while 
deletion of both RXR motif and 14-3-3 binding sites restored the surface expression (Godde 
et al., 2006). Although this study did not investigate COPI interaction with ADAM22, the 
results suggest the possibility that 14-3-3 binding inhibited the COPI-dependent ER 
localization activity of RXR signal.  

The cell surface transport of a gap junction protein connexin 43 is also promoted by 14-3-3 

binding to its internal mode I binding site (RASSRP) (Park et al., 2007). The authors have 

found that Akt phosphorylates the serine373 in this site in the epidermal growth factor (EGF)-

stimulated cell. Although not characterized yet, the existence of an overlapping RXR motif 

(RPR) suggests a possible masking effect of 14-3-3 on the cell surface transport of connexin 43. 

NMDA receptors are tetramers composed of homologous subunits (NR1; NR2A-D; NR3A-B 

(Cull-Candy & Leszkiewicz, 2004). There are multiple NR2 subunits, each with unique 

spatio-temporal expression patterns, ensuring functional diversity of NMDA receptors. 

Recently, cerebellar NR2C subunit was found to be directly phosphorylated by Akt at the 

sequence that conforms to mode I 14-3-3 binding motif (RPRHASLP) (Chen & Roche, 2009). 

The Akt phosphorylation induced by insulin growth factor (IGF-1) results in the recruitment 

of 14-3-3 and the increase of cell surface expression of NMDA receptors. Although the 

causative role of 14-3-3 in surface transport remains unclear in this study, the presence of ER 

localization signals (Horak & Wenthold, 2009) in the NR1 subunit and the obligatory 

assembly of NR2 with NR1 for functional NMDA receptor suggest a possible mechanism 

where Akt-induced 14-3-3 binding to NR2C attenuates the activity of ER localization signals 

in NR1 by physically occluding them. 

Interestingly, 14-3-3s have also been reported to bind directly to the RXR motif itself in a 
phosphorylation-independent manner. By using an artificial multimer of the distal C-
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terminus of Kir6.2 channel in pull-down assays from cytosolic cellular extracts, Yuan et al. 
showed that 14-3-3 proteins preferentially bound to the RXR motif (RSRR) in the 
oligomerized form (Yuan et al., 2003). This interaction was sufficient to allow the exit of a 
multimeric reporter protein carrying this motif from the ER and promote the subsequent 
transport to the cell surface. Although the precise role of the 14-3-3 binding in the cell 
surface transport of octameric KATP channel consisting of four Kir6.2 and four SUR1 seems 
to require further investigation (Heusser et al., 2006), this study demonstrated the possibility 
that 14-3-3 serves for a constitutive check point of ER protein quality control which ensures 
the cell surface delivery of functional multimeric membrane proteins by preferentially 
inactivating the ER localisation signals on the properly oligomerized subunits. 

2.3.2 Scaffolding  

The stable dimeric structure immediately suggests that 14-3-3s might serve as a simple 
'scaffold', where two different target proteins bind simultaneously to each monomer of the 
same 14-3-3 dimer. Indeed, 14-3-3 proteins are often referred to as 'scaffolding proteins' in 
the literature. However, while 14-3-3s are components of multiprotein complexes (Munday 
et al., 2000; Pnueli et al., 2001; Widen et al., 2000), the evidence showing the 14-3-3 dimers 
acting as an intermolecular bridge between two different substrates had been limited to 
several earlier studies including those reporting the pairings involving Raf-1, namely Raf-1 
and Bcr (B-cell receptor) (Braselmann & McCormick, 1995), Raf-1 and A20 (Vincenz & Dixit, 
1996) and Raf-1 and PKCζ (Van Der Hoeven et al., 2000). Nevertheless, in the context of 
membrane protein trafficking, some recent studies implicate the scaffolding role of 14-3-3 in 
promoting the cell surface expression of membrane proteins.  

14-3-3 promotes the ER export of N-cadherin through coupling the N-cadherin/-catenin/PX-
RICS complex to the microtubule-based motor proteins dynein/dynactin (Nakamura et al., 
2010). 14-3-3Ǉ or 14-3-3ǉ directly interacts in a phosphorylation-dependent manner with a 
mode I site (RSKSDP) of PX-RICS, a ǃ-catenin-interacting GTPase-activating protein for 
Cdc42, and this seems to facilitate ER to Golgi trafficking by association of N-cadherin/ǃ-
catenin cargo with minus-end motor proteins dynein/dynactin. This results in the increased 
localization of N-cadherin/ǃ-catenin at cell-cell contact sites. The authors have also shown 
that CaMKII is responsible for direct phosphorylation of PX-RICS and the subsequent 14-3-3 
binding by using in vitro phosphorylation assay and siRNA knockdown of CaMKII 
(Nakamura et al., 2010). It is of note that a similar scaffolding function has been reported for 
a PDZ protein that couples a cargo receptor and a motor protein which mediates 
microtubule-based trafficking. PDZ domain of mLin-10 directly interacts with the C-
terminal PDZ-binding motif of a neuron-specific plus-end molecular motor KIF-17. mLin-10 
also forms a complex with its family members mLin-2 and mLin-7, which in turn interact 
with PDZ-binding motif of NMDA receptor subunit 2B (Setou et al., 2000).  

The interactions between the ǂ3 subunit of the nicotinic acetylcholine receptor (nAChR) and 
a multi-subunit cytoskeletal-anchoring complex provide another evidence suggesting 
possible scaffolding role of 14-3-3 (Rosenberg et al., 2008). APC (adenomatous polyposis coli) 
organizes a multi-protein postsynaptic complex that targets ǂ3nAChRs to synapses. APC 
interaction with the microtubule plus-end binding protein EB1 is essential for ǂ3nAChR 
surface membrane insertion and stabilization. 14-3-3 directly interacts with ǂ3 subunit in a 
phosphorylation-dependent manner and also forms complex with APC. Thus, 14-3-3 
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proteins may provide for a mechanism by which nAChRs containing only specific subunits 
are recruited to postsynaptic clusters and may stabilise them there. In both of the above 
studies, it is still not clear whether and how a 14-3-3 dimer binds to two separate targets 
with each monomer. Multiple proteomic screenings have revealed that 14-3-3s form 
complex with a large number of proteins closely involved in vesicular trafficking such as 
motor proteins, coat proteins, and GTPase regulators (Mrowiec & Schwappach, 2006). 
Therefore it is conceivable that 14-3-3 proteins do modulate membrane trafficking by 
serving as a scaffold that connects cargo proteins with cellular transport machineries.  

Then, does a 14-3-3 dimer really bind to two different proteins at the same time? It seems 
somewhat unlikely that there would be frequent occasions where a 14-3-3 dimer binds two 
separate targets via each canonical ligand-binding groove, unless those target proteins 
happen to be already close enough to each other and in such position that both of their 
phosphorylated binding sites can be accommodated by the binding grooves of the same 14-
3-3 dimer, whose core is a rigid and unyielding structure (Obsil et al., 2001), but not by the 
neighboring 14-3-3 dimers. Crystal structure of 14-3-3ζ : AANAT revealed that in addition to 
the phosphorylation-dependent interaction through its canonical ligand-binding groove, 14-
3-3 also makes extensive contacts with AANAT via other regions of the 14-3-3 channel, 
although these contacts must be insufficient to form a stable complex (Obsil et al., 2001). 
Moreover, a recent finding by Barry et al. demonstrated that 14-3-3 can directly interact with 
other proteins outside of the canonical binding groove, providing a possible molecular basis 

for the scaffolding function of 14-3-3 (Barry et al., 2009). 14-3-3 undergoes phosphorylation 
at tyrosine179 upon cytokine stimulation and this leads to the binding of Shc protein through 
its SH2 domain that recognizes phosphorylated tyrosine. This 14-3-3/Shc complex is 
required for the recruitment of a phosphatidylinositol 3-kinase (PI3K) signaling complex 
and the regulation of cell survival in response to cytokine. Although this study did not 
describe whether Shc-bound 14-3-3 proteins bind to any serine/threonine-phosphorylated 
targets, the result suggests that 14-3-3/Shc scaffolds can act as multivalent signaling nodes 
for the integration of both phosphoserine/threonine and phosphotyrosine pathways to 
regulate specific cellular responses. Thus, interaction of 14-3-3 with proteins via non-
canonical binding sites of 14-3-3 should contribute to the diversity of its roles in a wide 
variety of biological pathways including membrane trafficking.  

In addition, the propensity of the different 14-3-3 isoforms to form homo- or hetero-dimers 
may confer additional specificity to the scaffolding roles. Those regions of the 14-3-3 protein 
which vary between the isoforms are primarily located on the surface of the protein. 
Therefore, the specificity of interaction of 14-3-3 isoforms with diverse target proteins may 
involve the outer surface of the protein. For instance, C-termini of 14-3-3 proteins are most 
divergent and hence most likely to contain isoform-specific structural determinants 
(Williams et al., 2011). Identification of more protein complexes whose assembly requires 14-
3-3 is necessary to gain more mechanistic insights into the scaffolding function of 14-3-3. 

2.3.3 Clamping  

Another mechanism by which 14-3-3 proteins are thought to exert their effect on their 
targets are conformational 'clamping'. Clamping can occur when a 14-3-3 dimer binds two 
sites on the same target protein. A synthetic phosphopeptide with two tandem 14-3-3 
consensus motifs binds over 30-fold more tightly than the same peptide containing only a 
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single motif (Yaffe et al., 1997). A number of 14-3-3-binding proteins, including Raf-1 (Muslin 
et al., 1996), AANAT (Ganguly et al., 2005), ADAM22 (Godde et al., 2006), tyrosine hydroxylase 
(Toska et al., 2002), and Ndel1 (Johnson et al., 2010), contain two phosphorylated sites that are 
implicated in 14-3-3 binding, and are separated by polypeptides of various lengths. It has been 
postulated that one site called the 'gatekeeper' is indispensable for a stable 14-3-3 interaction, 
whereas a second site 'enhances' the interaction, but has too weak an affinity to bind 14-3-3 
alone (Yaffe, 2002). In the case of AANAT, the gatekeeper residue is phosphorylated 
threonine31. Binding of the gatekeeper leads to binding of a second low-affinity site, in this 
case phosphorylated serine205, which reflects both the intrinsic affinity of that site and the 
'high local concentration induced by its proximity' (Ganguly et al., 2005; Yaffe, 2002). This 
dual-site binding of AANAT to 14-3-3 provides optimal conformation of the enzyme for 
high-affinity binding of the substrate arylalkylamine.  

14-3-3 clamping can also occur when a 14-3-3 dimer binds two neighboring target proteins. 

14-3-3 proteins activate the plant plasma membrane H(+)-ATPase (PMA2) by binding to its 

C-terminal autoinhibitory domain. This interaction requires phosphorylation of a C-terminal 

mode III recognition motif as well as an adjacent span of 52 amino acids. X-ray diffraction 

studies using crystals of 14-3-3 in complex with the entire binding motif of the PMA2 have 

shown that each 14-3-3 dimer simultaneously binds to two H+-ATPase molecules. The 3D 

reconstruction of the purified H(+)-ATPase/14-3-3 complex demonstrated a hexagonal 

structure consisting of six PMA2 subunits and six 14-3-3 proteins (Ottmann et al., 2007). 

Thus, a rigid 14-3-3 'clamps' stabilize the dodecameric compex in the active conformation 

where C-terminal auto-inhibitory domain of PMA would be displaced.  

With regards to membrane protein trafficking, clamping activity of 14-3-3 proteins has 

been much less well understood. This is largely due to the, as yet, small number of studies 

in this research area and the lack of high-resolution structure of the 14-3-3/target 

membrane protein complex, which are also true for 'masking' and 'scaffolding' 

mechanisms. However, the ability of 14-3-3 to change conformation of target proteins 

suggests the possibility that such conformational change will lead to a new interaction of 

the target with proteins that are involved in protein trafficking. This way 14-3-3 might 

indirectly exert the scaffolding function that eventually modulates the protein sorting of 

the client protein. Alternatively, instead of direct 'masking' of RXR motif by 14-3-3, 14-3-3 

binding might force the target protein into the conformation where the RXR motif will be 

occluded. The RXR motif was previously found to have its functional 'zoning' in relation to 

the transmembrane region in the context of a reporter CD4 protein (Shikano & Li, 2003). 

This notion was based on the observation that the ER localization activity of RXR motif was 

lost when it was positioned proximal to the transmembrane region of CD4. This zoning 

model was supported by the later study on the gamma-aminobutyric acid type B (GABAB) 

receptor (Gassmann et al., 2005). An RXR motif (RSRR) is responsible for the ER retrieval of 

the GABAB1 subunits that were not properly assembled with GABAB2 subunits. It had 

been thought that coiled-coil interaction of the GABAB1 with GABAB2 will shield RSRR 

signal on GABAB1. However, closer positioning of RSRR signal to the membrane region 

drastically reduced its effectiveness and also functional ectopic RSRR signals in GABAB1 

were efficiently inactivated by the GABAB2 subunit in the absence of coiled-coil 

dimerization (Gassmann et al., 2005). These results were consistent with a model in which 

removal of RSRR from its functionally active zone, rather than its direct shielding by 
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coiled-coil dimerization, triggers cell surface trafficking of GABAB receptors. Thus, it is 

interesting to speculate that clamping of two different 14-3-3 binding sites, either within 

the same target protein or in two neighboring proteins, might lead to the placement of RXR 

motifs in a non-functional zone such as membrane proximity and suppress ER localization 

of target membrane proteins. 

2.3.4 Other mechanisms by which 14-3-3s modulate membrane protein trafficking  

Modulation of membrane protein localization by 14-3-3s is not necessarily mediated by their 

binding to the cargo protein itself. It is not surprising that 14-3-3 binding to any cellular 

machinery proteins involved in biosynthetic pathways would affect their functions and 

thereby affect the sorting of the cargo protein.  

The best characterized mechanism of this type involves the interaction of 14-3-3 with AS160, a 

Rab GTPase-activating protein (Rab-GAP). AS160 is an Akt substrate whose phosphorylation 

contributes to the recruitment of GLUT4 transporters to adipocyte plasma membrane in 

response to insulin (Watson & Pessin, 2006). It maintains Rab proteins with which it 

associates in their inactive, GDP-bound states. Several evidences implicate Akt-mediated 

AS160 phosphorylation and the subsequent 14-3-3 binding in the recruitment of the GLUT4 

glucose transporter to the cell surface of adipocytes (Ramm et al., 2006; Watson & Pessin, 

2006). Insulin stimulation leads to the recruitment of Akt to the plasma membrane where it 

gets activated and then phosphorylate AS160 at serine341 and threonine642. It is thought that 

the binding of 14-3-3 to AS160 inhibits its Rab-GAP activity toward substrate Rabs (Ishikura 

et al., 2007), which stabilizes them at GTP-bound active form and thereby facilitate the 

trafficking of cargo vesicles. Interestingly, insulin-dependent cell surface transport of GLUT4 

is known to be primarily mediated by Akt isoform 2 (Akt2) but not Akt1 in adipocytes (Bae et 

al., 2003; Cho et al., 2001). A recent study by Gonzalez and McGraw demonstrated that upon 

insulin stimulation, Akt2 is able to remain associated with plasma membrane longer than 

Akt1 does and this leads to the Akt2-specific phosphorylation of AS160, which is necessary 

for GLUT4 trafficking (Gonzalez & McGraw, 2009). It will be interesting to investigate 

whether and how this Akt isoform-specific phosphorylation of AS160 regulates 14-3-3 

binding. 

The surface expression of the epithelial sodium channel (ENaC) seems to be regulated in a 

similar manner that involves AS160-14-3-3 interaction (Liang et al., 2010). Aldosterone 

stimulation of renal epithelial cell induces the expression of serum- and glucocorticoid-

induced kinase (SGK1) that increases the cell surface expression of ENaC and Na 

absorption (Bhalla et al., 2006). Aldosterone also induces the expression of two 14-3-3 

protein isoforms, ǃ and ǆ (Liang et al., 2006). Liang et al. reported that SGK1, which is the 

downstream kinase of PI3K and shares with Akt the recognition motif of RXRXXS/T 

(Tessier & Woodgett, 2006), phosphorylates AS160 upon aldosterone stimulation and this 

recruits the induced 14-3-3 isoforms (Liang et al., 2010), similar to the insulin-induced Akt 

phosphorylation of AS160. Inhibition of ENaC surface transport by expression of AS160 

carrying mutations in SGK1 target sites suggests that 14-3-3 downregulates AS160 function 

to eventually promote surface transport of ENaC and augment Na absorption in response 

to aldosterone.  

www.intechopen.com



 
Protein Kinases 178 

Furthermore, 14-3-3 also controls the surface expression level of ENaC by regulating its 
degradation machinery. Ubiquitination of ENaC by ubiquitin-E3 protein ligase Nedd4-2 
leads to an increased rate of protein degradation. The activation of SGK1 by aldosterone 
results in the phosphorylation of Nedd4-2 and recruitment of 14-3-3 proteins to Nedd4-2. 
This 14-3-3 binding inhibits the interaction of Nedd4-2 with ENaC and thereby suppresses 
the ubiquitin-dependent degradation of ENaC (Ichimura et al., 2005; Liang et al., 2006). This 
results in the longer stability of ENaC on the cell surface. 

14-3-3s also bind to another transport machinery protein, phosphofurin acidic cluster sorting 

protein (PACS)-2 (Aslan et al., 2009). PACS-2 recognizes an acidic cluster in the cytoplasmic 

tail of TRPP2 cation channel and localize the channel in the ER through interaction with the 

COPI complex (Kottgen et al., 2005). The 14-3-3 binding to PACS-2 is dependent on the 

phosphorylation of PACS-2 by AKt, and this 14-3-3 binding was found to be required for the 

ER targeting of the PACS-2 substrate cargo protein TRPP2 (Aslan et al., 2009). How binding 

of PACS-2 to 14-3-3 and COPI cooperate to mediate cargo traffic remains to be determined. 

Cell surface expression of membrane proteins could be also regulated by 14-3-3 through 
modulation of endocytic processes. Recent study demonstrates the interaction of 14-3-3 with 
transferrin receptor trafficking protein (TTP) (Chiba et al., 2009). TTP specifically promotes 
the internalization of transferrin receptor (TfR), but not other receptors such as epidermal 
growth factor receptor (EGFR) and low-density lipoprotein receptor (LDLR), through the 
clathrin-dependent pathway (Tosoni et al., 2005). 14-3-3 proteins directly bind to TTP in the 
Akt-dependent manner and this interaction was enhanced by oxidative stress (Chiba et al., 
2009). Although the in vivo role of this 14-3-3 binding in TTP transport was not shown in this 
study, it suggests another possible mechanism where kinase signaling utilizes 14-3-3 as an 
effector molecule to control the cell surface density of proteins. 

3. Conclusion 

The requirement of phosphorylation for 14-3-3 binding confers 14-3-3 proteins a primary 

role in regulating protein-protein interactions that are under the control of specific kinases 

and phosphatases. Accordingly, 14-3-3 constitutes a key player which stands at a point of 

cross-talk between a plethora of vital biological processes including signaling, metabolism, 

cell cycle, and protein trafficking. Although available data from biochemical, structural, and 

bioinformatics studies have provided substantial amounts of information that characterize 

14-3-3/client interaction, several fundamental questions regarding 14-3-3 protein biology 

remain to be addressed.  

Although proteomics have revealed over 200 proteins forming complex with 14-3-3, the 
information regarding kinases and phosphatases that regulate these interactions are limited. 
The relevant kinase is not known for the majority of 14-3-3-binding proteins and the 
substantial overlap between the recognition sites of numerous basophilic serine/threonine 
kinases and 14-3-3 binding sites make their identification very difficult. Equally important 
but even less well studied are the phosphatases relevant for 14-3-3 binding. When and how 
the 14-3-3 proteins dissociate from the client proteins is very poorly understood. Does it 
require dephosphorylation of the 14-3-3 binding site by phosphatases? If so, how can the 
phosphatases do that when the phosphorylated serine/threonine of a target protein is 
buried in the amphipathic ligand-binding groove of 14-3-3? Alternatively, does some other 

www.intechopen.com



 
Phosphorylation-Regulated Cell Surface Expression of Membrane Proteins 179 

signaling event facilitate the release of 14-3-3s from client proteins? In the context of protein 
trafficking, 14-3-3 is known to modulate sorting of the client proteins by various different 
mechanisms. In many of the cases where surface membrane transport is promoted by 14-3-3 
binding, 14-3-3 seems to impinge on the early step of ER-to-Golgi trafficking. However, 
except for a very small number of studies (Godde et al., 2006; Okamoto & Shikano, 2011), it 
is not understood if 14-3-3 proteins remain bound to the client all along the trip to the cell 
surface or dissociate in any particular step of the vesicular trafficking by phosphatase 
activity. These problems make us realize that we still do not know enough about the biology 
of kinases and phosphatases, especially the spatio-temporal regulation of their activities in 
different cellular compartments.  

Another important question that has been long discussed but not fully addressed is whether 
and how 14-3-3 isoforms play specific roles. The complete sequence conservation in the 
observed ligand-binding regions of 14-3-3 would support the hypothesis that there may be 
little isoform specificity in the interaction between 14-3-3 and client proteins; therefore 
isoform-specific function of 14-3-3 may result either from subcellular localization (Paul et al., 
2005; van Hemert et al., 2004) or transcriptional regulation (Liang et al., 2006) of particular 
isotypes rather than from inherent differences in their ability to bind to particular ligands. 
However, several findings (Dubois et al., 1997; Gu & Du, 1998; Ichimura et al., 1995) suggest 
that additional interactions may occur on the outer surface of 14-3-3. This may confer 
isoform specificity, since residues that are variable between 14-3-3 isoforms are located on 
the surface of the protein. It is also conceivable that due to the common occurrence of two 
14-3-3 binding sites within the target protein, the synergy between the two may also lead to 
isoform preference of interaction. Studies have shown that 14-3-3 isoforms form hetero-
dimers in vivo (Alvarez et al., 2003; Liang et al., 2008). The isoform-specific interaction with 
client proteins may become most relevant in a 'scaffolding' model, where a hetero-dimer 
consisting of different isoforms would bind to two separate targets via each isoform. Thus, it 
is likely that its propensity to form homo- and various heterodimeric combinations is crucial 
for the specificity of 14-3-3 isoform functions. Many apparent conclusions of 14-3-3 function 
within particular cell types are based on observations of a single isoform, and comparative 
data among isoforms are still limited. More analysis of the exact combinations of homo- and 
hetero-dimers of 14-3-3 isoforms that are present within cell compartments and that are 
involved in interactions with particular proteins will be important. 
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