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1. Introduction

Since ancient times mankind is building tools for facilitating survival and work. With time, the
tools became complex and exquisite and even obtained consciousness and limited reasoning.
The recent developments in computing and robotics led to creation of intelligent systems
that are autonomous. The purpose of such autonomous systems is to function in different
environments stand-alone according to some predefined strategy, e.g. protecting some areas
or rescuing people in hazards. The intelligent autonomous systems were defined within the
IBM Autonomic Computing Initiative in IBM (2001), Kephart & Chess (2003) with the following
required abilities:

• Self-Configuration – ability to configure and reconfigure itself under internal and external
changes;

• Self-Optimization – ability to optimize its working;

• Self-Healing – ability to discover and correct faults;

• Self-Protection – ability to identify and protect itself;

• Self-Awareness – ability to know its components, current status, ultimate capacity and
connections to other systems;

• Environment-Awareness – ability to perceive and know the surrounding environment and
context.

An operation of intelligent autonomous systems requires handling of reactive and proactive
activities. The reactive behavior is required for immediate reactions on changes, such as
bipedal locomotion balancing, avoiding direct hazards or grasping deformable items. The
proactive analysis is required to perform planning and sophisticated decision making, e.g.
helping people in a household. Such activities imply so-called constant situation awareness
that demands perception of changes in the surrounding environment, comprehension of their
meaning and projection of their status in the future as defined in Endsley (1995).

In practice, reactive and proactive handling involves complex information acquisition,
processing and management. An example of a complete information workflow is presented in
Fig. 1. At the beginning, a (heterogeneous) sensors system acquires data from the surrounding
environment, called world of interest (WoI). The gathered data concerns WoI entities: topology
features, things, persons, and relations. This data is processed by sophisticated extraction
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Fig. 1. Information workflow of autonomous systems.

methods in order to obtain as much information about the surrounding environment as
possible and then fuse into dynamic models within the world modeling system. The world
modeling system contains the knowledge about the environment and the autonomous
system itself, necessary for the expected autonomous operation, and serves as a global
information hub for all mechatronic sub-systems. The dynamic models contain up-to-date
description of the WoI, expressing each real-world entity with virtual representative. Since
such descriptions are created from sensory information, they lack semantic meaning and
pre-defined characteristics expected for their type. In order to gain missing semantics and
attributes, each representative can be matched and assigned to prior knowledge concepts. The
content of the world modeling system is available to other mechatronic sub-systems, as,
for example, monitors or cognition and planning modules. Based on the world modeling
information cognition and planning modules assess the present situation and future states,
make decisions and compound plans about future actions. These actions are then performed
by actuators that interact with the world of interest. In the case of repeating properties or
dependencies, the autonomous system can find out common patterns and try to extend the
prior knowledge. The extension of prior knowledge is performed for automatic recognition of
previously detected patterns and more efficient environment description. For this, a balance
between description length of concepts and description length of dynamic models given prior
concepts has to be empirically found.

The world modeling system serves as a virtual demonstrative model of the environment for
the whole autonomous system. In order to perform efficiently, its following features are to be
considered:

• Slim symbolic representation of the environment information;

• Gathering station for all the acquired information;
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• Interpretability for humans and machines;

• Object-orientedness;

• Universal probabilistic uncertainty handling;

• Common information hub for all autonomous system components;

• Handling of unknown objects;

• Extensible concepts under Open World assumption.

More detailed operation of world modeling system is presented in the following sections:
the Section 2 describes the relation between the environment and the autonomous system
and defines the modeling domains. The Section 3 covers main aspects of fusing sensory
information within the world modeling system. The detailed discussion of the world
modeling system, including the mathematical concepts of parameter estimations is given in
Section 4. Methods for autonomous prior knowledge extension are highlighted in Section 5.
Some examples of practical realization of the described architecture and methods are given in
Section 6 followed by conclusion and outlook.

2. Domains of the world modeling

During the operation of autonomous systems that have to make decisions, the process
of acquiring and interpreting information from the environment forms the basis for the
state of knowledge of such systems. As defined in Endsley (1995), this process is known
as situation assessment. In today’s autonomous systems, situation assessment is highly
supported through various heterogeneous sensors and appropriate signal processing methods
for extracting as much information as possible about the surveyed environment and its
elements. Theories and methods of multi-sensor data fusion, e.g., as described in Hall
& McMullen (2004), offer a powerful technique for combining information from different
sources. The object-oriented world model (OOWM) is an approach to represent relevant
information extracted from the sensor signals, fused into a single comprehensive, dynamic
model of the monitored area. Bauer et al. (2009) developed a data fusion architecture based
on the JDL (Joint Directors of Laboratories) data fusion process model, see Steinberg et al.
(1999). An application of the OOWM for wide area maritime surveillance is presented in
Fischer & Bauer (2010). Another application is to provide humanoid robots with a memory
structure based on a complete Bayesian network, see for example Baum et al. (2010) or Belkin
(2009).

However, the challenge of intelligent systems that act in an autonomous way is not only
to collect as much sensor data as possible, but also to detect and assess complex situations
that evolve over time. First ideas of modeling higher level entities like situations have been
presented in Fischer et al. (2011). For the situation assessment process, probabilistic methods
like hidden Markov models can be used (see Meyer-Delius et al. (2009)), but they are strongly
dependent on training data. In Gheţa et al. (2010), a Bayesian method for the association of
observations to objects is presented, and in Glinton et al. (2006), Markov random fields are
used to model contextual relationships and maximum a posteriori labeling is used to infer
intentions of the observed entities. In this section, we will clarify the separation of the real
world and the world model represented in the system and introduce the concepts of objects,
scenes, relations, and situations, which are necessary for the internal representation of the
observed entities in the environment.

139World Modeling for Autonomous Systems
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2.1 Information flow in autonomous systems

In applications where autonomous systems are used, a spatio-temporal section of the real
world, the so-called world of interest. The general information flow inside such systems is
visualized in Fig. 2, in which information aggregates, i.e. the stores of several information,
are represented by boxes and processes are represented by circles. The information flow
is as follows. The world of interest consists of entities and can be observed by sensors.
Sensor systems can be of extremely heterogeneous types, e.g., video or infrared cameras, radar
equipment, or RFID-chips. Even human beings can act as a sensor by observing entities of the
real world. Observing the real world with sensors results in sensor data, for example a radar
image or a video stream. Sensor data is then analyzed by means of existing knowledge and
the resulting information is passed to the world model. The existing knowledge contains all
information that is necessary for analyzing sensor data, for example specific methods and
algorithms used for the detection and localization of people in video streams.

Knowledge

Inference

Sensordata

World Model

Learning

Analysis

Obser-

vation
Plan

Real World

Fig. 2. General information flow in autonomous systems represented by information
aggregates (boxes) and processes (circles).

The world model is a representation of entities from the world of interest and contains
representatives. Every representative has a corresponding entity in the real world. The
mapping between entities in the world of interest and representatives in the world model is
structure-preserving and can therefore be interpreted as a homomorphism. Specific mappings
are termed as concepts and are part of the knowledge. Concepts are defined at several levels of
abstraction, e.g., there are concepts for objects, scenes, relations, and situations. Concepts are
used for example in the analyzing process by defining how an observed person is represented
in the world model. As the world of interest is highly dynamic and changes over time, the
history of the representatives is also stored in the world model. However, entities are not
always directly observable. For example the intention of a person could also be an entity
and be represented in the world model. As some entities cannot be observed directly, an
inference process is reasoning about unobservable (and also unobserved) entities by means
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of knowledge. Therefore, the world model is always being updated and supplemented with
new information by the inference process.

Summing up, knowledge contains all the information necessary for analyzing sensor data,
updating the world model and supplementing it with new information. Concepts are used
to describe the possible real-world entities in the world model. Characteristics of knowledge
are of course extremely dependent on the application domain. Additionally, knowledge is not
static. The content of the world model can be used for acquiring new knowledge by a learning
process, for example structure or parameter learning in graphical models.

To close the loop of the information flow, the result of an inference process can also include a
plan, of how to act further in the real world. This could be an action plan for an agent, e.g.,
to call the police, or a sensor management plan, e.g., a request for more detailed information
from a specific sensor.

2.2 Concepts for world modeling

We will now introduce the concepts for objects, scenes, relations, and situations. The concept
of an object is defined as a physical entity of the real world. An object can be (spatially)
movable (e.g., a person) or stationary (e.g., a room). An object has several attributes, which
can be divided into properties and states. Properties are time-invariant attributes, for example
the height or the name of a person. State values can change over time and are therefore
time-variant, for example the position or the velocity of a person. The representation of an
object in the world model includes not only observed attributes, but also inferred ones. For
example, the velocity can be inferred based on observed positions of a person. Furthermore,
attribute values can be quantitative or qualitative. For example, the absolute position and the
velocity of a person are quantitative attributes, and the attribute value that a person is smiling
is a symbolic one.

By the concept of a scene, we define all observed and inferred object information at a point
in time. A scene can therefore be interpreted as a time-slice, consisting of all objects and
their attributes. To include the time aspect, we also speak of a sequence of scenes, when the
scenes are considered at several discrete points in time. However, a scene does not include
any type of relations. The concepts of a scene and a sequence of scenes are visualized in Fig.
3. By the concept of relations, we mean a statement about dependences between at least two
different attribute values of one or more objects. Relational values can also be quantitative,
e.g., the distance of two objects, or they can be qualitative, e.g., two objects are close to each
other. Mostly, relational values are inferred, but some can also be observed, e.g., a distance
measured by a laser. A relation can also exist between representatives of the same object in
different scenes, e.g., the distance an object has covered between the two scenes.

The concept of a situation is defined only on the symbolic level. Thus, they have a higher
level of abstraction, but the level of detail of the quantitative attribute values of objects and
relations is getting lost. Situations are therefore characterized by symbolic attribute values.
The simplest situation is a symbolic attribute value of an object, e.g., a person is smiling.
There are also situations, which can only be inferred by observing the real world over a
period of time, e.g., a person is dancing or two persons have a conversation. And, of course,
situations can be inferred from other situations, e.g., if some persons are dancing and some
persons are drinking beer, the inferred situation could be that there is a party going on.
Although situations are also characterized by the information collected over a period of time
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Fig. 3. The concepts of a scene and a sequence of scenes.

they only exist at a point in time. Their existence in the next time-point has to be verified
again. However, the earlier existence and also the collection of further evidence over time can
support the existence of a situation in the future. The concepts of a relation and a situation are
visualized in Fig. 4.
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Fig. 4. The concepts of a relation and a situation.

3. Information fusion

An autonomous system perceives the surrounding environment with sensors. The acquired
data are processed, analyzed and passed to a world modeling system, which contains a
description of the current state of the environment. The new sensory information is fused into
the existing environment description by matching and updating relevant representatives in
the model. Since information from sensors contains uncertainty, this information matching
and description update is not trivial. Before constructing such mechanisms, a suitable
information and uncertainty representation has to be defined.
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3.1 Information representation

There are many ways to represent information in the context of world modeling (see Belkin
(2009)). The simplest way is to describe each parameter with a single numerical value (e.g.
“36.65”) or a fact value (e.g. “Dog”). However, this method does not reflect uncertainties,
emerging from measurements always limited by sensor acceptance and efficiency. Accounting
for uncertainty (e.g. keeping error values) allows for a more faithful representation of
measured values. The next level of generalization of the information representation accounts
for relations between parameters. The uncertainty, however, can be represented more
accurately with probability distributions over possible values, e.g. by means of Degree-of-Belief
(DoB). In the Fig. 5, there is a typical temperature DoB distribution of an object. The parameter
relations can be incorporated into distributions by joint DoBs for groups of correlated
attributes (e.g. joint DoB of type and temperature). In this case, the DoB combines discrete and
continuous distributions into one common frame. The most general level of the information
representation is then the joint DoB distribution for all modeling attributes that typically has
combinatorially growing complexity and computational costs. The generalization hierarchy
is shown in Fig. 6.

Fig. 5. A Degree-of-Belief distribution for the attribute “temperature”.

3.2 Information life cycle

The sensory information has to be fused into the world model in order to update the current
environment description. When a new entity is observed in the environment, a corresponding
representative has to be created in the dynamic model. This can be achieved by the calculation
of the posterior probability that from one hand a new entity has been observed at some time
step and the other hand the observed entity exists, exceeding some instantiation threshold. If
the entity is already present in the model with a representative, the new information is merged
into the existing description by means of Bayesian fusion, raising the existence probability. In
the absence of new measurements related to an entity, the aging mechanism changes the DoB
distributions according to the maximum entropy principle, i.e. the uncertainty of the information
increases. In particular, the uncertainty increase leads to the existence probability reduction. If
the existence probability falls below some reconfirmation threshold, the world modeling system
signals the need to re-observe the entity. The representative is deleted from the model, if the
maximum of the DoB distribution for the existence goes below the deletion threshold, in order
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Fig. 7. An example of the existence probability life cycle.

to reduce the computational complexity of the whole model. The aging mechanism can be
applied on demand: the existence probability of a representative is calculated as soon as the
representative is requested by the system. The existence probability life cycle is presented in
Fig. 7.
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3.3 Bayesian framework

The management of the information life cycle requires the formal definition of observations,
a mechanism to associate observations to representatives, and procedures to information
update. Such a formal description is developed within the Bayesian framework presented
briefly below and is given in details in Belkin (2010), Baum et al. (2010).

A modeled entity i at time step k is represented as a DoB distribution p(ei
k, ai

k), where ei
k ∈

{0, 1} denotes whether the entity i exists and ai
k :=

[

ai,1
k . . . ai,na

k

]T
denotes the vector of na

descriptive attributes.

The fusion of an observation into the world model requires some observation model, which
connects observations to representatives on some probabilistic basis. This connection can
be described with the connection probability p(dk|ek), where dk ∈ {0, 1 . . . , Nk} denotes the

representative, Nk is the number of representatives, and ek :=
[

e1
k , . . . , eNk

k

]T
.

The observation vector can be written as yi
k

:=
[

yi,1
k

, . . . , y
i,ny

k

]T
composed of observations for

each given attribute (totally ny).

After the association of observations, the existing description is updated in the prediction and
the update steps. The prediction step propagates representatives from the time point k − 1 to
k, resulting in the predicted existence p(ei

k = 1|ŷ
1:k−1

) and the predicted attributes p(ai
k|e

i
k =

1, ŷ
1:k−1

), where ŷ
k

is an observation on the time step k and ŷ
1:k−1

is a set of all observations

till the time step k − 1. This propagation increases the entropy of DoB distributions and, thus,
the uncertainty. The predicted existence probability can be defined by a Hidden Markov Model

p(ei
k = 1|ei

k−1 = 1) = βi, (1)

with βi ∈ (0; 1].

The existence probabilities can then be predicted as

p(ei
k = 1|ŷ

1:k−1
) = βi · p(ei

k−1 = 1|ŷ
1:k−1

). (2)

The attribute probabilities can be predicted based on the Chapman-Kolmogorov equation as

p(ai
k|e

i
k = 1, ŷ

1:k−1
) =

∫

p(ai
k|a

i
k−1) · p(ai

k−1|e
i
k = 1, ŷ

1:k−1
)dai

k−1, (3)

with a propagation model p(ai
k+1|a

i
k) for entity attributes.

The update step merges the predicted state with the associated observation. The update
attributes are given by

p(ai
k|e

i
k = 1, ŷ

1:k
) = ∑

dk

p(ai
k|e

i
k = 1, ŷ

1:k
, dk) · p(dk|e

i
k = 1, ŷ

1:k
), (4)

where the first factor is the posterior distribution

p(ai
k|e

i
k = 1, ŷ

1:k
, dk) ∝ p(ŷdk

k
|ei

k = 1, ai
k) · p(ai

k|e
i
k = 1, dk, ŷ

1:k−1
). (5)
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The updated existence is given by

p(ei
k = 1|ŷ

1:k
) = ∑

dk

p(ei
k = 1, dk|ŷ1:k

). (6)

3.4 Kalman filter and its extensions

In the case of linear dependence of attributes on observed parameters and Gaussian
measurement noise, modeling attributes can be updated by the Kalman filter (KF) (cf.
Bar-Shalom & Fortmann (1988)) and its extensions. The KF takes multiple sequential
measurements of some parameters and combines them in order to evaluate the entity’s state at
that time instant, resulting in a better estimate than obtained by using one observation alone.
During the fusion of multiple measurements, a system’s dynamics model (e.g. physical laws
of motion), known control inputs, and covariances (a measure of the estimated uncertainty)
are considered in the prediction step. In the update step, the filter averages a prediction of an
entity’s state with a new observation based on a weighted average. The weights are calculated
from the covariance, estimated on the prediction step, and assure that the more exact values
(i.e. with lower uncertainty) have a greater influence on the state estimate.

More specifically, the Kalman Filter model assumes the following evolution of the
(unobservable) true state of the system ãk (index i is omitted for clarity) from time step k − 1
to step k and the description of the observed values ŷ

k
at time step k:

ãk = Fk ãk−1 + Bkuk + wk, (7)

ŷ
k
= Hk ãk + vk, (8)

where Fk is a propagation matrix, Bk is a control-input model matrix, uk is a control vector,
wk ∝ N(0, Qk) is a process noise with a covariance Qk, Hk is an observation model, and
vk ∝ N(0, Rk) is an observation noise with a covariance Rk.

The prediction step gives an estimate âk|k−1 of the attributes and its covariance matrix P̂k|k−1
according to:

âk|k−1 = Fk âk−1|k−1 + Bkuk−1, (9)

P̂k|k−1 = Fk P̂k−1|k−1FT
k + Qk−1. (10)

The update step corrects the prediction using the information observed at step k:

âk|k = âk|k−1 + Kk

(

ŷ
k
− Hk âk|k−1

)

, (11)

P̂k|k = (I − Kk Hk)P̂k|k−1, (12)

where Kk = P̂k|k−1HT
k S−1

k is the Kalman matrix with pre-calculated residual matrix Sk =

Hk P̂k|k−1HT
k + Rk and I is the appropriate unit matrix.

In practical application, it is useful to simplify the attributes vector. For example, in entity
tracking one can describe the movements with the constant velocity model (see Das (2008)),
assuming accelerations as random evolution of the process.
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In the case of multiple targets being tracked in clutter by multiple sensors, an extension
to Kalman filter is required. For example, the Probabilistic Data Association (PDA) filter
weights the association hypotheses according to their probabilities (Bar-Shalom & Tse (1975),
Bar-Shalom & Fortmann (1988)). The further development, called Joint PDA (JPDA), analyzes
joint events in order to track closely located entities (Fortmann et al. (1983)). The Integrated
PDA (IPDA), proposed in Mušicki et al. (1994), introduces creation and deletion of tracked
entities on a probabilistic basis. One of the most advanced methods, called Joint Integrated
Probabilistic Data Association Filter (JIPDAF), combines all above mentioned ideas and
considers all combinations of the observation to entity assignments and the creation and
deletion mechanisms of modeling entities (Mušicki & Evans (2002)).

4. World modeling architecture

The world modeling represents the complete knowledge that is required for the operation
of an autonomous system. The dynamic models contain up-to-date description of the
world of interest, expressing each real-world entity with a virtual representative, and are
similar to short-term memory. The prior knowledge contains pre-defined information about
known particular entities or generalizations of entity classes, thus representing a long-term
memory. The modeling system serves as a global information hub for all other mechatronic
sub-systems. Hence, the structure of the world modeling is organized in a consistent, robust
and efficient way, enabling fast search over representatives and attributes on a probabilistic
basis. Moreover, there are mechanisms for consistency checks, correcting improbable states,
e.g. flying cups or spatially overlapping representatives. Before introducing these advanced
mechanisms, we demonstrate here the practical realization of attributes.

4.1 Modeling attributes

Since modeling information, in particular attributes, can be updated by different mechatronic
sub-systems (e.g. perception and cognition modules) there has to be a global scheme or
protocol for the information interchange. This global scheme defines attribute and relation
concepts: which attributes are allowed, which possible values do they have, their semantic
meaning, units, coordinate system, prior probability distribution (e.g. prior size distribution
for kitchen tables), and so on. After defining attributes, the specific Degree-of-Belief
description has to be introduced.

In practice, a continuous Degree-of-Belief distribution can be conveniently given via a
Gaussian mixture model (GMM) approximation. The GMM represents a weighted sum of
M component Gaussian densities as given in Eq. 13. The parameter M is empirically selected
to find a balance between the computational complexity and the approximation precision. As
new sensor information is fused into the dynamic model, the number of components in the
mixture usually increases. In order to sustain the predefined number of M densities in the
mixture, reduction techniques can be applied as discussed in Williams (2003).

p(x|ω, μ, Σ) =
M

∑
i=1

ωig
(

x|μ
i
, Σi

)

, (13)

where x denotes a D-dimensional continuous data vector, ωi are the normalized mixture

weights with ∑
M
i=1 ωi = 1, and g

(

x|μ
i
, Σi

)

are the component Gaussian densities. Each
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component density is a D-variate Gaussian function as given in Eq. 14:

g
(

x|μ
i
, Σi

)

=
1

(2π)D/2 |Σi|
1/2

exp

{

−
1

2

(

x − μ
i

)T
Σ−1

i

(

x − μ
i

)

}

, (14)

where μ
i

denotes mean vectors and Σi covariance matrices.

4.2 Progressive mapping

After modeling attributes are clearly defined, it is important to introduce a common
mechanism for attribute groups management. It is convenient to group attributes, which
correspond to the same entity in the real world. It is natural then to describe representatives
within the object-oriented (OO) methodology. It is important though to distinguish the
OO approach in the most common sense and OO programming paradigm, which limits
many modern world modeling systems to one application field. The OO languages have
a clear inheritance structure of classes that is inapplicable for modern autonomous systems
due to many arising problems. One of the problems is the arbitrariness of measured
attribute sequences, e.g. color before size or vice versa, which prevents creation of one clear
hierarchy of concepts. Another problem is the open world assumption, vital for intelligent
autonomous systems. In the absence of clear inheritance hierarchy of classes, modeling entity
is represented by a growing conglomerate of attributes and relations, created from incoming
sensory information. Each observation is associated with the sets of attributes and relations
and fused on a probabilistic basis. The update of such growing unclassified information
containers is called progressive mapping (cf. Belkin (2009), Kühn et al. (2010)).

The progressive mapping can be visually described by the abstraction level pyramids (cf.
Gheţa et al. (2008)). The dynamic model can be viewed as a hierarchy of abstraction levels,
which contain blank representatives at the top and more specific representatives downside the
hierarchy. The blank representative is an empty information container that marks the existence
of "something", e.g. the existence of an entity that has not yet been measured. Each observation
associated with the entity is iteratively fused into the information container, lowering the
representative in the abstraction hierarchy. The idea of dynamic extension of information
containers allows for an arbitrary information flow and an abstract information management.
In order to understand these kind of attribute sets, they can be at any time matched to known
concepts in the prior knowledge.

4.3 Prior knowledge

In order to classify each attribute container, e.g. assign a type, it can be at any time matched
to the prior knowledge as shown in Fig 8. The prior knowledge contains general concepts
as well as information about specific entities. This match, made on a probabilistic basis,
provides the missing semantics and deduces the deficient attributes. The contents of the prior
knowledge database can be predefined and then extended during the operation by concepts
and entities via a learning process, as described in Section 5. Since prior knowledge contains a
global information compendium about the environment, it is reasonable to store it outside the
autonomous system (e.g. on a computer cluster) and provide a remote connection. In a case
of remote connection failure, it is possible to operate the autonomous system without prior
knowledge, though, without complex cognition abilities.
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Fig. 8. World modeling architecture.

The concrete realization of matching between a dynamic representative and a class concept
or specific entity is not trivial. It is possible to perform a deep search through one given
tree-organized concepts hierarchy. Each node can be compared to the representative by
two criteria: the structural similarity of attributes and the DoB distributions similarity. The
structural similarity implies counting attributes that were observed and added to dynamic
description to prior attributes described in ontology. Mathematically, such comparison can be
performed by sets metrics, e.g. Tanimoto distance (Rogers & Tanimoto (1960)), Sørensen index
(Sørensen (1957)) or other discussed in the overview article Jackson et al. (1989). The DoB
distribution similarity between a representative attribute and the prior DoB can be calculated
based on Gaussian mixture model metrics, such as Kullback-Leibler distance (Kullback &
Leibler (1951), Cover & Thomas (1991)) or Wasserstein L2 metric (Hazewinkel (2001), Jensen
et al. (2007)).

4.4 Quantitative evaluation of the model

The information coming from sensors or stored in the world model can be evaluated
numerically. For example, each observation or attribute vector can be characterized by some
information entropy, that is a measure of uncertainty of a random variable (see Cover & Thomas
(1991)). The difference between entropies before and after the observation and dynamic model
fusion can give estimation on the information gain.

The numerical estimation of a given attribute can be quantified through the information
entropy formulas:

H(A) = −∑ P(a) log2 P(a), (15)

where A denotes some attribute and a is its discrete value and

h(A) = −
∫

p(a) log2 p(a)da, (16)

in case a is continuous.
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Fig. 9. Discretization of a Degree-of-Belief distribution to Least Discernible Quantum.

In order to numerically estimate a representative as a whole, one has to analyze the entropies
of all its attributes. Thus, one needs a unified framework for handling discrete and continuous
distributions uniformly. However, by discretizing attribute A to A∗ with smaller and smaller
steps, so that P(a∗) → p(a) the corresponding entropy diverges from the continuous as
lim

a∗→a
H(A∗) �= h(A). One of the possible ways to overcome this problem is the introduction

of the least discernible quantum (LDQ) (cf. Oswald (1991)), which specifies the utmost precision
of any operation over the given attribute.

The least discernible quantum ∆ defines the precision of each considered attribute. It is natural
to set ∆ equal to the accuracy of sensors. The discretization to LDQ can be performed by
dissecting the distribution into sections as shown in Fig. 9 and integrating each section as in
Eq. 17:

p(a) → P(ν) :=
∫ aν+

∆
2

aν−
∆
2

p(a)da, (17)

where a ∈ [aν −
∆
2 , aν +

∆
2 ] and ν ⊆ N.

The discretized entropy is defined then as

H∆(A) := H(ν) = −∑
ν

P(ν) log2 P(ν). (18)

5. Concept learning

For autonomous systems, concepts contained in its knowledge characterize the mapping from
real world entities to representatives in the world model in a homomorphic way (Sydenham
(1982)). The main purpose of the mapping is to share a meaningful set of symbols with its
environment: on the one hand this mapping allows classification and even identification
of the observed entities based on measurements of their attribute values. On the other
hand, concepts allow to interoperably exchange meaningful information, e.g., when receiving
requests from humans. Based on the mapping of representatives to concepts, human requests
and sensor data can be interrelated and furthermore represented entities can be enhanced with
rich semantics not derivable from pure observations (Heizmann et al. (2010)).
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Attribute Concept Definition

• Name
• Domain
• Range of values
• Unit of measurement
• Grounding

Relation Concept Definition

• Name
• Cardinality
• Domain
• Range of values

Fig. 10. Definition of attribute concepts and relation concepts.

Within a world model for autonomous systems, semantics, i.e. the meaning of symbols
received from sensors or humans, have to be introduced in one or another way (Lim
et al. (2011)). When preparing a system for operation, it is possible to equip the system
with definitions of all the relevant concepts that are supposed to be encountered within
its operational tasks. Since these concepts are defined prior to operation, they constitute
a priori knowledge. By relying on a priori knowledge, an autonomous system is able to
interrelate, classify and semantically handle only the entities occurring in a closed world.
When operating in a real-world environment, however, modeling tasks often go beyond
closed worlds towards an open-world modeling task: representing and handling a dynamic
and changing environment which consists of entities of possibly unforeseen types (Kennedy
(1998)). To cope with open-world modeling, an autonomous system must be able to extend its
knowledge beyond a priori information by acquiring new concept definitions. Another purpose
of knowledge is thus to store information learned from experience during operation.

The task of dynamically expanding the knowledge of an autonomous system constitutes an
extension to the classical concept learning problem, i.e. learning Boolean valued functions
(over attributes) from a given set of (training) data (Mitchell (1997)). In order to extend
the knowledge of an autonomous system, new entity concepts must be learned. In concept
learning, the process of learning can be regarded as a search within concept space (Mitchell
(1997)), i.e. the space of all representable concepts. The structure of this space constitutes the
bias to the concept learning problem and thus determines how concepts are learned and which
concepts can be learned at all (Mitchell (1980)).

Within our presented approach to world modeling for autonomous systems, the structure
of concept space is loosely defined by the object-oriented world model. In the following,
this structure shall be further formalized to enable structured concept learning. Besides
structuring concept learning, this formalization extends the general applicability of
object-oriented world modeling by formally abstracting entity representation from the sensor
data, thus making sensor components exchangeable and acquired knowledge interoperable.

Entity concepts we are interested in generally comprise a set of attributes. An attribute thereby
is associated with an attribute concept. Attribute concepts describe the domain of an attribute
(e.g., a height value, a position, a color, the number of wheels, the kind of fuel, etc.), its
allowed range of values, its unit of measurement and the information on how instances of
this attribute concept are grounded in the real-world (e.g., modeled a priori, measured by a
sensor system, related to an effector interaction or to communication with humans). When
instantiating attribute concepts within an entity concept, the expected attribute value(s) have
to be specified in the form of a probability distribution interpreted in a DoB sense. Fig. 10
shows the definition of an attribute concept. Besides their attribute values, real-world entities
can be characterized by their relations to other entities. Relations are associated with relation
concepts. As shown in Fig. 10, a relation concept includes a name, the cardinality of the
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Object Concept Definition

• Name
• Attributes
• Class relations

Fig. 11. Object concept definition

relation, its domain and its range of values. Relation concepts define the relations occurring
between entity concepts as well as relations existing between single concept instances, i.e.
representatives, or even attributes. The domain in attribute concepts and domain and range
of values in relation concepts are specified by appropriate entity concepts, e.g., a concept
for color. The unit of measurement in attribute concepts can take values from a predefined
hierarchy of unit concepts, e.g., specifying length units like meter or centimeter and their
conversions. By abstracting the range of values and the unit of measurement from the
domain to be represented within attribute concepts, sensors of different type can define
different attributes (e.g., differing in unit and range of measured quantities) associated with
the same attribute concept. Thus, these sensors are either interchangeable or can consistently
interoperate.

The most basic entity concepts for world modeling are object concepts, which map physical
real-world entities to representatives. Object concepts are defined based on attribute concepts
and relation concepts. They consist of a name, a set of attributes and a set of class relations
to other entity concepts (which apply to all representatives of a given concept). Fig. 11
shows the definition of object concepts. More abstract entities like roles (e.g., a customer),
groups of objects, situations, etc. can be modeled by extending the given definition for
object concepts. Following the definitions for entity concepts given above, concept learning
within object-oriented world modeling allows for learning new object concepts as well as
new attribute and relation concepts. By learning new attribute concepts, for example, the
entity concept space is changed, thus extending beyond classical concept learning.

As with the syntactical aspects of concept representation, the semantics of entities and the
semantics of their attributes also play an important role in concept learning. When an
autonomous system for example faces the task of representing an encountered real-world
entity, its learning component has to choose the relevant attributes from all available attributes
(e.g., through sensor measurements or human input). To make an elaborate choice, the
system has to base its decision on the semantics of the considered attributes and relate
them to its general purpose. When defining a priori knowledge for an autonomous
system, an ontology-like structure organizes conceptions as interrelated symbols. Within our
object-oriented world model, attributes are used to further describe these conceptions, like a
car having four wheels or a cup being cylindric and 9 cm tall. Nevertheless, for an autonomous
system none of these conceptions has a meaning by itself. Furthermore, they do not reference
any real-world entities. Thus, all concepts in the knowledge have to be grounded in either the
real world or the human thought (for human-machine-interaction) (Harnad (1990)).

For the grounding of entity concepts, their attributes are considered. Attribute concepts in
world modeling can be divided into three groups:

• perceptual,

• effector,
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• and semantic attributes.

Perceptual attributes (like the height, color or speed of an entity) are grounded within the
sensor components providing value information for these attributes. Effector attributes
are grounded within the actuators used to manipulate real-world entities based on values
represented by these attributes (Kennedy (1998)). An effector attribute for example can be
the weight and the shape of a cup supposed to be grasped, lifted and moved. As can
be seen from this example, there is no sharp boundary between perceptual and effector
attributes (the weight could also be measured, e.g., by a scale). Which attribute is grounded
by which sensomotoric component of an autonomous system thus in general depends upon
the task currently at hand. Perceptual attributes are used for classifying and identifying of the
observed real-world entities, while effector attributes assist in manipulating these entities.

Furthermore, there are attributes in the knowledge that can be directly associated with neither
a sensor component nor an actuator component. Examples of such attributes may include
information about if and how an entity can be moved (e.g., something is fixed to a wall and
cannot be moved at all, or a door can only be rotated on its hinges), where an object is usually
located (e.g., a cup in the cup section of a cupboard), etc. These attributes constitute semantic
attributes as they are not directly stemming from either acquired knowledge or long-term
experience (like long-term observation of a specific situation in conjunction with reasoning
about it). Semantic attributes include the physical properties, behavior and capabilities
of real-world entities. These attributes are useful in modeling the human grasp of the
meaning of entities for autonomous systems, e.g., a cup as a drinking vessel, and thus
enable human-machine understanding. Furthermore, they allow the semantical enrichment
of the represented entities after mapping them to a known concept. By deriving information
not obtainable by the pure use of sensomotoric components, they serve thus as a basis for
higher-level information processing, like reasoning or planning.

After having defined a structure for entity concepts and the examined attribute semantics,
we now move on to learning new entity concepts. Concept learning for autonomous world
modeling can be structured as a task consisting of two interconnected subtasks:

• a deductive inference task on concepts in the knowledge, and

• an inductive learning task on sensor data.

The first subtask performs deductive inference on concepts already present in knowledge
in order to either add new semantic properties or even learn whole new concepts (e.g.,
generalizations) in order to gain a better understanding of the world of interest (by a more
appropriate or efficiently organized concept hierarchy). For example, a new super class
drinking vessels could be created by deductive inference based on the common properties
of the classes of cups and glasses. For extracting the semantic properties and hidden
relations, the deductive subtask compares the concepts and their attributes for similarities,
employing a variety of conceivable measures ranging from probability distribution metrics
(like Kullback-Leibler divergence (Kullback & Leibler (1951))) to methods based on vector
space models for entity concepts. After having found sufficiently similar concepts, one
possible inference is to extract the matching parts and transfer them into a new concept, which
then subsumes the deduction result within its set of inferred semantic properties, and the
necessary conditions for these properties to hold in its set of attributes.

The second subtask in concept learning constitutes an inductive inference problem: learning
new concepts from observations, which in case of the world modeling are given in the
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form of a set of representatives. A world model enhances the observed real-world entities
with semantics by mapping them to the known concepts. If a given representative cannot
be properly assigned to the concepts stored in the knowledge, no useful semantics can
be derived. Thus, the quality of the concept assignment is crucial for the overall quality
of the world model. To ensure high-quality modeling, measures based on Shannon
Entropy (Shannon (1948)) or Minimum Description Length (Rissanen (1978)) methods can
be employed to evaluate the assignment of observed representatives to concepts. If a poor
concept assignment is detected for some representatives, changes to the current set of concepts
stored in the knowledge can be performed, including the creation of additional concepts and
adaption or even deletion of the existing concepts. Created new concepts can subsequently be
enriched with semantics by the deductive subtask.

6. Experimental set-up

The described theoretical analysis, as well as the complete system architecture for the world
modeling has been tested in the three experimental set-ups:

• The German Science Foundation (DFG) project Collaborative Research Center (SFB) 588
“Humanoid Robots – Learning and Cooperating Multimodal Robots”, see DFG SFB 588
(2001-2012);

• The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB)
project “Network Enabled Surveillance and Tracking” (NEST), see Moßgraber et al. (2010);

• The Fraunhofer IOSB project “Wide Maritime Area Airborne Surveillance”, see WiMAAS
(2008-2011).

The main goal of the SFB 588 project is to create household assisting anthropomorphic robots
(the three developed generations of such robots are presented in Fig. 12) with the following
features:

• Autonomous operation;

• Humanoid shape;

• Multimodality;

• Cooperation;

• Learning capabilities;

(a) ARMAR-I (b) ARMAR-II (c) ARMAR-III

Fig. 12. The three generations of the humanoid robot ARMAR (DFG SFB 588 (2001-2012)).

In fact, self-sufficient humanoid robots represent androids that are one of the ultimate goals
of engineering and natural sciences. The multimodality implies that the communication

154 Innovative Information Systems Modelling Techniques



World Modeling for Autonomous Systems 19

(a) Object detection in video
streams

(b) World model of observed
persons in indoor surveillance

(c) World model of observed vessels
in maritime surveillance

Fig. 13. Applications of world modeling surveillance systems.

is intuitive for humans and machines, using speech, gestures, mimics, and haptics. The
cooperation between humanoid robots and humans with support of intentions and context
recognition techniques and safety regulations allows for collaborative activities. At the top of
the robot’s cognition abilities is the capability to learn. During the interactive explorations
the new entities, concepts and even motions can be learned with an aid from a human.
Due to complexity of the given tasks, such humanoid robots need a comprehensive state of
knowledge on their environment. The required mechanisms and principles for the knowledge
processing and management are implemented within the object-oriented world modeling
system developed within the SFB 588 project (see Belkin (2009), Kühn et al. (2010), Belkin
(2010), Baum et al. (2010), Gheţa et al. (2010)).

In the NEST research project, the proposed world modeling system has been employed as
a virtual information hub between the evaluation and analysis services of an intelligent
video-assisted security and monitoring system. In the context of indoor surveillance,
detection of moving persons was performed in the video streams, see Fig. 13(a). Observations
from several cameras are fused into a consistent representation and the resulting world model
can be visualized, see Fig. 13(b). In the WiMAAS-project, the focus was on observing the
maritime vessel behavior. Detections of vessels are coming from several different sources, e.g.,
navigational radar or signals from the automatic identification system (AIS). The resulting
world model is visualized in Fig. 13(c). Based on the content of the world model, several
methods for behavior analysis of the moving vessels can be applied.

7. Conclusion

This chapter outlines the state of the art of world modeling for autonomous systems and
introduces several novel methods. First, we overview the world modeling problem, introduce
the nomenclature and discuss the common concepts and methods used in the problem area.
Then the global structure of the information workflow is specified along with the definition
of the modeling domains. Next, each step of the information workflow is discussed in
detail: the fusion of the incoming information from the sensors, the real-time autonomous
modeling of the surrounding environment, the prior knowledge employment and the learning
of new concepts. We also describe modern methods of the information fusion, including
the information representation techniques, the information life cycle within the autonomous
system, the Bayesian framework for information association and fusion and the Kalman
filter. The dynamic modeling is discussed by presenting methods for modeling attributes
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and entities, followed by the definition of the numerical estimate of the information content
in the model. A separate section is dedicated to the learning of new concepts and the prior
knowledge extension. Finally, the three experimental set-ups are described.

There are still many open questions in the area of world modeling. For example, there is
no appropriate probabilistic framework for joint Degree-of-Belief distributions, many issues
regarding the consistency checks or concepts learning are unsolved. In spite of many stated
problems, first steps for creation of a universal world modeling for autonomous systems are
carried out and the modeling system will evolve with the time, becoming more complex and
intelligent.
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Gheţa, I., Heizmann, M., Belkin, A. & Beyerer, J. (2010). World modeling for autonomous
systems, Proceedings of the KI 2010: Advances in Artificial Intelligence, Springer Lecture
Notes in Computer Science, pp. 176–183.
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