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Old Obstacles on New Horizons:  
The Challenge of Implementing  

Gene X Environment Discoveries in 
Schizophrenia Research 

Conrad Iyegbe, Gemma Modinos and Margarita Rivera Sanchez 
Institute of Psychiatry, Kings College London, 

UK 

1. Introduction 

Genetics and Social Sciences are divergent disciplines for whom it is customary to compete 

to explain the greater part of Schizophrenia risk 1. These days, a convincing case can be 

made for the prospective public health value of either discipline 2,3. However the practical 

implementation of such knowledge continues to prove challenging for either field alone: 

From a genetic perspective, progress was traditionally hindered by the inconsistent nature 

of discoveries made in the pre-GWAS (Genome-wide Association Study) era. It is now held 

back by the fact that the heritability attributed to this disorder remains largely impermeable 

to GWAS and other genomic approaches. 

Socio-environmental research, on the other hand, has not progressed to the point of being 

able to pinpoint the precise origins of the high attributable risk fractions repeatedly 

encountered 2.  

However ongoing progress on two fronts is fuelling hopes that a successful marriage of the 

two fields will benefit both the rate and the integrity of new discoveries, so that clinical 

interventions can eventually be targeted to patient sub-groups on the basis of their 

combined genetic and environmental risk profile: 

i. Firstly, the credibility of Schizophrenia genetics is benefiting from a recent upswing in 
the generation of verifiable new findings. This has led to a palpable mood change 
within the psychiatric genetics community 4. 

ii. Secondly, it is anticipated that social science research will benefit from an 
unprecedented program of investment that will stimulate the emergence of newer 
methodologies designed to improve the resolution with which social risk factors are 
measured 5,6. 

There are high hopes that the formal integration of these two fields will help to invigorate 
the search for tailored clinical interventions, whether they be therapeutic or prophylactic in 
nature. Thus it seems an opportune time to consider the potential obstacles that lie ahead for 
Schizophrenia research in the newly revitalised era of translational research. We do this by 
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taking a fresh look through a retrospective lens, at the historical stumbling blocks for the 
GxE field. We discuss some of the new opportunities (horizons) at the disposal of GxE 
researchers designed to circumvent them. Some of these hail from recent advances in 
biobanking, meanwhile new bioinformatic initiatives are helping to transform electronic 
clinical databases into similarly powerful research tools.  

We also highlight the potential pitfalls of an over-regulated clinical trial environment and 

the detrimental consequences this may eventually have on the pipeline for new drugs. 

Currently there are fears that an over-burdensome European regulatory legislature is 

responsible for the recent efflux of companies away from the European clinical trial market. 

This may create an unwanted bottleneck (or worse still, a precipice) within the new and 

fully-functional formal framework designed to shepherd only the most robust GxE 

discoveries into the clinic. We begin this chapter with a brief review of some important 

concepts central to a discussion on Gene-Environment inter-dependency. 

2. The enigma surrounding heritability 

Heritability is defined as the proportion of phenotypic variance due to genetic variance. The 

concept of Schizophrenia as a heritable disorder was once considered to be controversial, 

though this is no longer the case. From a scientific perspective it is well worth knowing 

beforehand that a phenotype of potential interest is heritable enough to merit the effort of 

dissecting genetically. Thus, establishing that this is the case, is a prerequisite first step in 

genetic research. 

Formal estimates of heritability can be obtained through a number of different methods. The 

archetypal approach uses twins 7. Twin studies suggest that susceptibility to Schizophrenia 

is predominantly a genetic phenomenon that accounts for 65-80% of overall risk 7,8. But that 

upper estimate is likely to understate the true importance of the environment. Even highly 

penetrant genetic risk factors (such as a syndromic deletion on chromosome 22q11), are not 

always sufficient to elicit Schizophrenia on their own 9. This is confirmed by the fact that 

pathogenic genetic anomalies are often harboured by asymptomatic controls, as well as 

cases 10. This suggests that the underlying risk conferred is heavily mitigated by the 

environment and other background genetic modifiers of main effects. 

Heritability studies estimate that the environmental contribution to Schizophrenia is 

between 15-35% of the phenotypic variance. The issue of which science explains the greater 

part of risk is contentious; social science research bases its own claims of dominance on 

larger explained effects, and also recent calculations which suggest that the burden of cases 

occurring in the general population could be averted through social interventions 2. In truth, 

methodological biases in both fields mean attempting to delineate between the effects of 

genes and environment is a somewhat arbitrary exercise. This is because classical 

approaches to heritability estimation do not automatically factor-in the dependency which 

may occur between genes and environment. Meanwhile, one all-important confounder not 

accounted for by the social risk liability models of Kirkbride et al 2, is a family history of 

psychiatric disorder, (a proxy for genetic influence). It is important to keep in mind that 

these methodological limitations mean that a disorder caused by GxE will be attributed to 

Genes in a twin study and Environment in an epidemiological study. 
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This ambiguity probably explains why heritability estimates for Schizophrenia have 
historically been so variable; the value of each estimate is affected by parameters defined by 
the population under study, and also the degree to which characteristics such as gender, 
age, and environment exposure profile have been averaged-over 11. Therefore it comes as no 
surprise that genetic epidemiology research in Psychiatry is fast becoming preoccupied with 
redefining heritability itself 11. Some principle areas of interest emerging from such work 
include;  

- the stability of heritability over time 
- genetic determination of sensitivity to exposure  

Twin studies and other methods impose a fixed-point approximation of heritability. But this 
fails to adequately capture the inherent mobility of heritability over time. Evidence for this 
drift comes from longitudinal studies of both Substance Misuse and Depression. These 
demonstrate a tendency for heritability to increase across the developmental period between 
adolescence and adulthood 12, and also with later stages of decline 13. These studies show that 
the initiation of cannabis use is predominantly an environmental phenomenon, although 
genetic influences become increasingly important as the level of usage progresses towards 
substance abuse and drug dependency 14. In extreme scenarios within polygenic disorders, 
heritability may reach a higher level during earlier neuro-developmental stages. Such cases 
tend to result in earlier onset. For Schizophrenia, the earliest cases are known to occur during 
childhood 15. 

3. Multifactorial risk factors for Schizophrenia 

Table 1 lists some of the important exposures known to affect the risk of Schizophrenia. The 
main origins are social, socio-economic and neuro-developmental. As well as being very 
common many of these risk factors are associated with large effects. Odds ratios (ORs), reflect 
the odds of exposure to a risk factor in cases relative to controls (expressed as a fold-difference).  
 

Table 1.   Environmental Risk factors for Schizophrenia - a non-exhaustive list 

Context Environmental Risk Factor Recent Review Recent meta-analysis 

  Urban-Rural dwelling March et al, 2008 16 - 

  
Social Context - Neighbourhood 

effects - - 

Social 
Social Discrimination- 

Discrimination - Allardyce et al, 2005 17 

 Migration 
Cantor-Graae and Selten, 

2005 18 DeAlberto et al, 2010 19 

  Cannabis Use  Henquet et al, 2008 20 
Arsenault et al, 2002 21; Henquet et al, 2005 22; Moore et 

al, 2007 23 

  Childhood Trauma Morgan and Fisher, 2007 24 - 
Familial Advancing Paternal age Miller et al, 2010 25 Miller et al 2011 26 

 Seasonal birth Davies et al, 2003 27  Davies et al, 2003 27 

Neurodevelopme
ntal  

Birth defects/Obstetric 
complications - - 

  Seasonal birth - - 
 Vitamin D - - 

Economic 
Developed vs Developing 

Country - Saha et al, 2005 25  (25) 
 Socio-Economic status Cohen et al, 2008 (22) - 
      - 

    - - 
Other Gender - Aleman et al, 2003  23 (23) McGrath et al, 2004  24 (24) 

    - - 
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The typical effect range of the risk factors shown in table 1 typically range from 1.5 to 11. In 
contrast, common genetic risk factors for Schizophrenia are much smaller, typically with 
Odds ratios of between 1.1 – 1.4. See table 2 for a summary of genetic risk factors for 
Schizophrenia deriving from large-scale (genome-wide) genetic studies. 

 

Table 2.    Genetic Risk factors for Schizophrenia 

Chromosome Gene/Region Symbol Full Gene Name 
GWAS Significance 

threshold 
Reference 

 1 

1q21.1 

deletion 
 

  Too rare to compute 28-36 

 1q21.1 BCL9 B-cell CLL/lymphoma 9 Strongly suggestive 37 

 1p21.3 

MIR137 (intron 3 of 

miRNA transcript)   Significant 4 

  1q24    Significant 38 

  1q32.2 PLXNA2 plexin A2 Strongly suggestive 39 

 2 2p16.1 VRK2 vaccinia related kinase 2 Significant 40,41 

  

2p16.3 

deletion 
NRXN1 

neurexin 1 Too rare to compute 28,31-35,42-44 

  2p22.2 
SULT6B1 

sulfotransferase family, cytosolic, 6B, 

member 1 Strongly suggestive 45 

  2q32.1 ZNF804A zinc finger protein 804A Strongly suggestive 46-48 

  2q32.3 

PCGEM1(non-coding 

RNA transcript) (prostate-specific transcript 1 Significant 4 

 
2q33.3-q34 

ERBB4 
v-erb-a erythroblastic leukemia viral 

oncogene homolog 4 (avian) Strongly suggestive 49 

  
2q34-q35 

ACSL3-KCNE4 
acyl-CoA synthetase long-chain family 

member 3 Significant 50 

  2q37 
CENTG2/AGAP1 

ArfGAP with GTPase domain, ankyrin 

repeat and PH domain 1 Strongly suggestive 49 

  2q37.1 

UGT1A1-HJURP 

(intergenic) Holliday junction recognition protein Significant 50 

  2q37.3 

AK573765-TWIST2 

(intergenic) twist homolog 2 (Drosophila) Significant 50 

  2q37.3 
LRRFIP1 

leucine rich repeat (in FLII) interacting 

protein 1 Significant 50 

  3p21.1  PBRM1 Polybromo 1 Strongly suggestive 51 

3 3q21-q23 RELN reelin Strongly suggestive 52 

 3q21-q23 RBP1 retinol binding protein 1, cellular Strongly suggestive 53 

  3q39 deletion 
 

  Too rare to compute 

28,32,34,35,43,

54 

5 5q14.1 CMYA5 cardiomyopathy associated 5 Strongly suggestive 55 

 6 6p21 
ZKSCAN4 

zinc finger with KRAB and SCAN 

domains 4 Significant 56 

  6p21.3 NOTCH4 notch 4  Strongly suggestive 45,57 

  6p22.1 MHC region   Significant 49,57,58 

 6p22.1 NKAPL NFKB activating protein-like Significant 56 

  6p22.1 
PGBD1 

piggyBac transposable element derived 

1 Significant 56,57 

  6q21-qter 

LOC645434-NMBR 

(intergenic) neuromedin B receptor Significant 50 

  6q23.2 AHI1 Abelson helper integration site 1 Strongly suggestive 59 
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Chromosome Gene/Region Symbol Full Gene Name 
GWAS Significance 

threshold 
Reference 

7 
7q11.23-q21.3 PCLO piccolo (presynaptic cytomatrix protein) Strongly suggestive 60 

7q36.3 
duplication 

VIPR2 
vasoactive intestinal peptide receptor 2 Too rare to compute 28,32,53,61,62 

 8 8p12    Significant 38 

 8p21-p12 NRG1 neuregulin 1 Strongly suggestive 49 

 8q21 MMP16 matrix metallopeptidase 16 Significant 4 

 8p23.2 CSMD1 CUB and Sushi multiple domains 1 Significant 4 

11 11q24.2   
NRGN 

neurogranin (protein kinase C substrate, 
RC3)  Significant  41,57 

12 12p13.3   
CACNA1C 

calcium channel, voltage-dependent, L 
type, alpha 1C subunit Suggestive  63 

15 
15q13.2 
deletion 

 
  Too rare to compute 28,32,34 

16 
16p11.2 

duplication 
 

  Too rare to compute 28,32,35 

 
16p13.11 

duplication 
 

  Too rare to compute 28,30,31,34 

17 17q12 deletion    Too rare to compute 32,34 

18 18q21.1 TCF4 transcription factor 4 Significant 41,57 

22 
22q11.21 
deletion 

 
  Too rare to compute 

28,31,32,34,36,

54 

X 

Xp22.3 & 
Yp13.3 

IL3RA 
interleukin 3 receptor, alpha (low 

affinity) Strongly suggestive 64 
Xp22.32 & 

Yp11.3 
CSF2RA 

colony stimulating factor 2 receptor, 
alpha Strongly suggestive 64 

 

Table 2. CNVs (Copy Number Variants) are sub-microscopic deletions and duplications 

of DNA (typically greater than 100kb in size). SNP (Single Nucleotide Polymorphism) 

refers to a single subnit (base) change in the DNA sequence. CACNA1C, ZNF804A, 

NRGN, MHC and PBRM1, all overlap with Bipolar Disorder. *Genome-wide  

significant = P<5x10-8; Strong significance is defined as a P value of between 5x10-4  

and 5x10-8. **Notes the pre-existence of this gene as a commonly-researched candidate 

in Schizophrenia research prior to GWAS. Note within table 2 the high occurence  

of findings validated by more than one study. This is particularly obvious for CNVs, 

but is also evident for SNP variants, including those not reaching overall  

significance. 

The effects of Environmental risk factors are on a par with those of the structural variants 9, 

catalogued in Table 2, but the latter occur much too infrequently to explain the fact that 

Schizophrenia is common mental disorder, affecting 1% of the global population. In fact, the 

molecular modalities identified so far for Schizophrenia (namely copy number and common 

variation) currently account for no more than 3% of the total phenotypic variance of 

Schizophrenia 65.  

The discrepancy between theoretical and observed heritability estimates has led many to 

speculate on possible reasons why the ‘missing’ component is so elusive 66. The possibilities 

span a wide array of plausible theories, most of which are based on the premise that the 

additive component of heritability is probably exaggerated. eg 67.  
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4. The fundamental models of gene-environment dependency 

Nowadays, it is possible to examine the theory that heritability has been overstated, by 

testing the significance of the difference in heritability between exposure and non-exposure 

twin models 11. This is an appropriate way to empirically test the dependency between 

genes and environment. 

The risk factors shown in table 1, while very common, are mitigated by the genetic make-up 

of the individual, such that the overall effect on risk is relatively small. At a population level 

this means that only a small proportion of those encountering these exposures will ever go 

on to develop clinical symptoms. This example of inter-dependency is known as Gene-

Environment interaction. Cumulatively it may have a large impact on psychosis risk at the 

population level.  

4.1 G-E correlation (rGE) 

Analytically, GxE is difficult to distinguish from gene-environment correlation (rGE), a 

phenomena whereby exposure to exogenous risk factors is encoded within the DNA of the 

individual. rGE represents the social manifestation of one’s genetic heritage, and its 

influence on subsequent lifestyle choices. If not properly accounted for, rGE can quietly 

confound the apparent interaction between genes and the environment.  

There are many behavioural examples of this phenomenon in the psychiatric literature 

(reviewed in 68). For instance, genes can have an indirect influence on adolescent substance 

misuse, through a mechanism in which genes drive the selection of friends who facilitate 

this behaviour. In this example, peer-group choice can be redefined as a lifestyle trait with a 

strong genetic component 69. An equally compelling case can be made for rGE in 

Depression, as there is an indication that genetic susceptibility to Depression may also 

partly reflect a person’s tendency to experience stressful experiences, such as interpersonal 

and romantic difficulties 70. 

The evidence used to discuss G-E dependency in the context of Schizophrenia is drawn 

almost exclusively from the cannabis literature, as it is one of the most commonly 

investigated risk factors in GxE research. Its popularity probably reflects the relative ease 

with which data on this exposure may be obtained and verified, with good sensitivity and 

specificity. This makes it comparatively easy to derive a fairly accurate profile of exposure 

using retrospective assessments 71,72. 

While there is little in the way of direct experimental evidence to support the occurrence 

of rGE in Schizophrenia, it would be surprising if Schizophrenia were shown to be 

completely devoid of the phenomenon, given its demonstration in other areas of 

behavioural research 68. Only one study has purported to show evidence of the rGE 

mechanism in Schizophrenia 73. Meanwhile the evidence that contradicts this finding has 

withstood the many different experimental designs applied to re-address the same 

question eg. 21,74,75. The most recent of these used a case-control design 75, and also 

included a comparison of lifetime cannabis consumption between the siblings of cases 

(who have a higher genetic propensity for Schizophrenia) and healthy controls. It found 

www.intechopen.com



Old Obstacles on New Horizons:  
The Challenge of Implementing Gene X Environment Discoveries in Schizophrenia Research 

 

83 

no difference between these two groups and thus does not find support a role for 

Schizophrenia genes in the initiation of cannabis use. 

4.2 G-E interaction (GxE) 

Interaction is a more solidly supported mechanism of G-E dependency in Schizophrenia, 

whose influence clearly extends to cannabis use. For example, early studies have suggested 

that familial (presumably genetic) influences on SZ risk also augment the psychotogenetic 

effects of this drug 76. Another study finds that the same level of familial liability is reached 

among cases of cannabis-induced psychosis, as that found among Schizophrenia patients; a 

strong indication that the enhanced responsiveness to cannabis in these hospitalised users is 

enabled by Schizophrenia genes 77. Cannabis use can thus be said to advance the genetic risk 

of Schizophrenia onset. The same can be said of urbanicity 78 and prenatal exposure to 

infection 79, but seemingly not of obstetric complications 80.  

One drawback of the familial liability study design is that genetic and environmental effects 

cannot so easily be discerned within the construct of ‘familiality’, which is inferred as being 

predominantly genetic in origin, but which also incorporates an element of shared 

environmental risk. The adoption study design therefore, is a convenient way to disentangle 

the components of this construct, by allowing the genetic component to be assessed in 

isolation of shared environmental influences. 

The adoption study design has been widely used for this purpose in Schizophrenia research. 

A recent exemplar for the approach investigated psychosis in 13,000 entrants on the Swedish 

National Adoption Register. Using an empirical approach, the study confirmed the 

relevance of early life parental employment status, parental separation and housing status to 

underlying Schizophrenia risk. Importantly this occurred both dependently and 

independently of underlying genetic liability. The synergism between genes and 

environment was many times greater than either additive or multiplicative risk thresholds, 

indicating a strong interaction. The findings were later validated in 26,000 individuals 

derived from the general population 81.  

5. Candidate gene studies of gene-environment interaction  

Currently, Gene-Environment interaction is one of a few areas of genetic research in which 

the candidate-gene design has had the upper hand over the more systematic approach 

represented by Genome-wide Association studies (GWAS). A favoured approach uses 

biological plausibility to guide the formulation of coherent hypotheses 82. This strategy has 

several high profile discoveries to its credit. Table 3 Lists the GxE studies performed to date 

in psychosis and summarises the individual outcome of each. Heterogeneity among 

hypotheses and methodological approaches precludes a more formal assessment of current 

experimental evidence (ie. by meta-analysis). 

Universal acknowledgement of the GxE concept in Schizphrenia alone 78-81,83-86 tends to 

suggest that its pervasiveness across psychiatry should be on a par with the rest of nature. 

However the paradox of GxE in Psychiatry is that though generally acknowledged, the 

interactions themselves are proving difficult to individually identify. 
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Table 3. Studies investigating interactions between candidate susceptibility genes         
        and candidate environmental pathogens in relation to psychosis.  

Author Sample size Candidate G Candidate E 
Outcome 
Variable 

Results Statistics 

Zammit et al 
2011 

2630 HC 
general 
population 

COMT 
Val(158)Met 

Cannabis 

Self-reported 
psychotic 
experiences at age 
16 

No interaction 
p=0.304-0.981 
OR=0.83-1.10 

vanWinkel et 
al 2011 

810 SZ, 
740 siblings, 
419 HC 

152 SNPs in 
42 candidate 
genes 
 

Cannabis Psychotic disorder 
Interaction with AKT1 
rs2494732 only in cases 

p=0.007 

Ho et al 2011 235 SZ 
12 tag SNPs 
in CB1/CNR 
gene 

Cannabis 
Brain Volume and 
Neurocognition in 
SZ 

- Brain Volume: 
 rs12720071-G-allele 
carriers with marijuana 
misuse had the smallest 
meanparietal WM 
volumes. 
rs7766029-C/C 
associated with small 
temporal and parietal 
WMvolumes.  
rs9450898-
C/Cassociated with 
small frontal and 
parietalWMvolumes. 
- Neurocognition:  
CNR1 rs12720071-G-
allele carriers with 
marijuana misuse had 
the worst problem 
solving test 
performance. 

 
p<0.05 
 
 
 
p≤0.05 
 
 
p≤0.05 
 
 
 
mean z=−1.78 

Decoster et al 
2011 

585 SZ 
BDNF 
Val(66)Met 

Cannabis 
Psychotic disorder 
(Age of onset) 

- No BDNFx Cannabis 
interaction. 
- Significant BDNFx 
Cannabis x Sex 
interaction (females). 

p=0.420; 2(1)=0.65 
 
 
p=0.023; 2(1)=5.15 

Kantrowitz et 
al 2009 

92 SZ (33 
Caucasian, 46 
African-
American) 

COMT 
Val(158)Met 

Cannabis 
Adolescent 
cannabis use 

No association cannabis 
use-COMT genotypes 
(African-
American/Caucasians) 
 

p=0.23/0.49; 2(2)=2.9/1.4 
 

Henquet et al 
2009 

31 psychotic 
disorder, 25 
HC 

COMT 
Val(158)Met 

Cannabis (ESM) 

Psychotic 
symptoms 
(hallucinations, 
delusions) in daily 
life (ESM) 

Cannabis increased 
hallucinations in 
Val/Val carriers with 
high levels of 
psychometric psychosis 
liability. 

p<0.001; =0.78 

Zammit et al 
2007 

750 SZ, 
688 HC 

CNR1, 
CHRNA7, 
COMT 
Val(158)Met 

Cannabis, 
Tobacco 

Psychotic disorder 
No interaction with 
CNR1 or COMT 
genotypes. 

 
p>0.05; OR=0.83-0.98 

Henquet et al 
2006 

30 psychotic 
disorder, 
12 relatives, 
32 HC 

COMT 
Val(158)Met 

Cannabis 
D-9-THC-induced 
psychotic 
experiences 

Condition x Val/Val x 
Psychometric psychosis 
interaction. 

p=0.003; 2(1)=8.86 

Caspi et al 
2005 

803 HC 
general 
population 

COMT 
Val(158)Met 

Cannabis 
Schizophreniform 
disorder 

Cannabis x Val/Val x 
Schizophreniform 
disorder interaction. 

p=0.025; OR=10.9 

Alemany et al 
2011 

533 HC 
general 
population 

BDNF 
Val(66)Met 

Childhood 
abuse and 
neglect 

Positive and 
negative psychotic-
like experiences 

BDNF (Met/-) x 
childhood abuse x 
positive psychotic-like 
experiences interaction. 

p=0.004; =0.27, SE=0.10 
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Author Sample size Candidate G Candidate E 
Outcome 
Variable 

Results Statistics 

Husted et al 
2010 

98 broadly 
defined SZ, 
79 narrowly 
defined SZ, 
86 siblings 

NOS1AP 
Childhood 
trauma 

SZ 

Narrowly defined SZ 
more likely to have a 
history of early trauma 
than their unaffected 
family members (similar 
results after controlling  
for NOS1AP).  

OR=4.17; 95% CI=1.52, 
11.44 

Muntjeswerff 
et al 2011 

742 SZ, 
884 HC 

MTHFR 677 
C>T 

Winter birth SZ 
No winter period x 
MTHFR 677- T/T x SZ 
interaction. 

p=0.744; OR=0.90 

Chotai et al 
2003 

954 UPAD, 
BPAD, and 
SZ 
395 HC 

TPH, 5-

HTTLPR and 
DRD4 

Seasonality of 
birth 

Season of birth 
variations in 
UPAD, BPAD and 
SZ 

-TPH-A allele  
associated with  
one-cyclic season 
variation in women 
controls and men  
with BPAD. 
-DRD4 7-repeat 
associated with one-
cyclic season variation 
in SZ women. 
-5-HTTPLR s  
allele associated  
with one-cyclic  
season variation in  
men with UPAD. 

p=0.05 
 
 
 
p=0.01 
 
 
p=0.01 

Tochigi et al 

2002 

110 SZ, 

493 HC 

HLA-A24 and 

A26 

Seasonality of 

birth 

Association 

between HLA-A 

and birth-season in 

SZ 

No association  

between winter birth  

(December-March)  

and A24/A26 SZ 

p=0.6/0.4; 2(1)=0.4/0.7 

Narita et al 

2000 

60 SZ + HLA-

DR1, 

307 SZ no 

HLA-DR1 

HLA-DR1 
Seasonality of 

birth 

Association 

between HLA-

DR1and winter 

birth in SZ 

HLA-DR1 associated 

with winter births in 

patients. 
p=0.003; 2(1)=8.64 

Haukvik et al 

2010 

54 SZ, 

53 HC 

32 SNPs in 
BDNF, 

DTNBP1, 

GRM3 and 
NRG1 

Obstetric 

Complications 

(OCs) 

Hippocampal 

volume 

-GRM3 rs13242038 

associated with severe 

OCs on hippocampal 

volume. 

-No significant 

interaction with SZ  

pdiagnosis×OCs=0.25 

 

pdiagnosis×OCs×hemisphere=0.77 

Nicodemus et 

al 2008 

116 SZ 

spectrum 

disorders, 

134 HC 

AKT1, BDNF, 

CAPON, 

CHRNA7, 

COMT, 

DTNBP1, 

GAD1, GRM3, 

NOTCH4, 

NRG1, 

PRODH, 

RGS4, TNF-

alpha 

Obstetric 

Complications 

(OCs) 

SZ 

Interactions between 

serious OCs and: 

- AKT1 rs1130233. 

- BDNF rs2049046 and 

rs76882600.  

- DTNBP1 rs875462  

- GRM3 rs7808623 

-  No GxE interaction in 

controls. 

 

 

p=0.031; OR=3.97 

p=0.019/0.015; OR=12.45 

p=0.031; OR=9.49 

p=0.061; OR=3.39 

Kéri et al 2009 200 SZ NRG1 
Psychosocial 

stress 
Unusual thoughts 

-Two-way interaction 

between genotype and 

family interaction type.  

-T/T genotype 

associated with unusual 

thoughts during 

conflict-related 

interactions.  

-No association during 

neutral interactions.  

p<0.0001; F(2,197)=17.98 

 

p<0.0001 

 

 

p=0.5 
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Author Sample size Candidate G Candidate E 
Outcome 
Variable 

Results Statistics 

Simons et al 

2009 

579 young 

adult female 

twins 

(general 

population) 

COMT 

Val(158)Met 
BDNF 

Val(66)Met 

Stress (ESM) 

Feelings of 

paranoia in daily 

life (ESM) 

-COMT:Val/Val x 

“event stress” x 

paranoia interaction. 

No interaction with 

“social stress”. 

-BDNF: Val/Met x 

“event stress” x 

paranoia interaction. 

No interaction with 

“social stress”  

p=0.002; =0.05 

 

p=0.10; =0.02 

 

p<0.001; =0.04 

 

p=0.33; =0.05 

vanWinkel et 
al 2008 

31 psychotic 
disorder + 
cannabis, 
25 HC + 
cannabis 

COMT 
Val(158)Met 

Stress (ESM) 
Psychotic 
experiences (ESM) 

-Significant Met/Met x 
ESM stress x psychotic 
experiences interaction 
-Similar results for ESM 
delusions. 
-No interaction in 
controls. 

p=<0.001; =0.77 
 
 
p=0.01; 2=12.4 
 
p=0.20; 2=3.3 

Table 3. AKT1 = Serine-threonine protein kinase; BDNF = Brain-derived neurotrophic factor; 
CB1 = Cannabinoid receptor type 1; CAPON = Carboxyl-terminal PDZ ligand of neuronal 
nitric oxide; CHRNA7 = Neuronal acetylcholine receptor subunit alpha-7; COMT = Catechol-
O-methyltransferase; DTNBP1 = dystrobrevin-binding protein 1; ESM = Experience 
Sampling Method. GAD1 = Glutamate decarboxylase 1; GRM3  = Metabotropic glutamate 
receptor 3; HC = Healthy Controls; HLA = Human Leukocyte Antigen; MTHFR = 
Methylenetetrahydrofolatereductase; NOTCH4 = Neurogenic locus notch homolog protein 
4; NOS1AP = Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein; 
NRG1 = Neuregulin; PRODH = Prolinedehydrogenase; RGS4 = Regulator of G protein 
signaling 4; SZ = Patients with Schizophrenia; TNF-alpha = Tumor necrosis factor. 

The particulate nature of the molecular element to GxE interaction means that genetically 
pre-ordained outcomes could in theory be averted. The extent to which this is true depends 
on the effect sizes involved and whether the proposed intervention can be made in timely 
fashion. This has positive implications for public health. For example in some circumstances, 
it may be preferable to eliminate the environmental risk component altogether, rather than 
attempt the more tedious task of targeting genetic risk groups for a given intervention. 
Phenotype expression is normally suppressed as risk-inducing environmental exposures 
become scarce; this correlates with a decline in heritability and impacts on the number of 
diagnosed cases. The contextual nature of heritability can be exploited through use of the 
‘exposure only’ study design 87, which facilitates the detection of environmentally-sensitive 
genetic variation. This approach is particularly powerful at the genome-wide level. The 
success of such strategies is determined by the extent of GxE contribution to the heritability 
of a given disorder. 

A good illustration of the relationship between exposure and heritability comes from a US 
study that compared interstate influences on the heritability of teenage nicotine use. It was 
found that heavier state control of tobacco availability, through a combination of higher 
taxation, lower advertising and controlled vending machine supply, resulted in lower levels 
of detectable genetic influence on daily smoking 88. The high incidence of Schizophrenia 
could benefit from interventions in several areas of public policy. First and foremost would 
be those policies that made it more difficult to acquire cannabis, as this could reduce rates of 
Schizophrenia within genetically-prone sub-populations. 
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6. Methodological constraints in GxE research 

There are lingering doubts about the experimental validity of many GxE findings reported 

in the literature. This is in contrast to the renewed sense of optimism about genetic 

association, a method which focuses on direct gene effects rather than the consequences of 

their interactions. Genetic association studies now have GWAS to look to as a 

methodological reference point 4,38,40,41,50,56,89, and it is out of the technological infrastructure 

supporting GWAS, that two competing theories (they may not be mutually exclusive) 

regarding the genetic architecture of Schizophrenia have emerged: The Common Disease-

Common Variant and Multiple Rare Variant hypotheses 4,9,10,58. The latter of these will be 

explored in great detail through new sequencing initiatives already underway for 

Schizophrenia (for example, the UK10K study: www.uk10k.org/goals.html).  

A combination of meticulous study design, unprecedented sample sizes and good 

governance over methodological practice 90, now mean that replication is no longer the 

rarity it once was for genetic association studies (see table 3). This is in part due to the fact 

that genetic association studies are becoming more methodologically homogeneous; many 

of the rigorous methodological practices and standards routinely implemented in GWAS 

research (internally validated findings, population stratification, etc) have also been widely 

adopted by studies whose scope does not extend beyond individual candidate genes.  

In contrast, the diversity of methodologies and standards used in GxE research has 

remained stubbornly heterogeneous to date; the multitude of study designs used to follow-

up new discoveries, has seen only varying levels of success 91. Longitudinal studies sit very 

high within the complex methodological hierarchy of epidemiological designs, but even 

they are failing to provide the swift resolutions hoped for, to ongoing research questions of 

high importance (eg. Caspi vs Zammit) 92,93. 

Several recurring factors limit the success rate of replication attempts in GxE research. These 
include: 

- Measurement error 
- The distribution of genotypes and exposure 
- The effect size 
- Sample size  

The next section is dedicated to exploring each of these aspects in greater detail. 

6.1 Measurement error 

Arguably the most replicated GxE finding in Psychiatry belongs to the field of Depression, 
and involves the short allele of the Serotonin transporter gene (5HTTLPR) and Stressful Life 
Events (SLE), which interactively augment the risk of Depression 94. Reviews that have 
delved into the matter of how consistently the finding can be reproduced, have noted that 
there is an inverse relationship between sample sizes and the associated likelihood of 
replication. This appears to be due to the larger degree of measurement error (associated 
with exposure) inherent to large studies 95. Small studies, which have fewer resources, shun 
large-scale recruitment, but place greater importance instead on maximising the accuracy 
with which environmental exposures are measured.  
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Studies in which the SLE represents a single specific source of adversity, tend to extend the 

interaction trend, (even if they do not strictly reach the criteria of a ’replication’ study) 91. 

This reaffirms the statistical importance of maintaining measurement error at low levels 96,97. 

Opportunistic replication studies, typically performed using cohorts not primarily intended 

to address the original research question, tend to be more detrimental to replication efforts, 

as even variables with the same name can reflect either subtly, or grossly different 

constructs. 

6.2 The distribution of genotypes and exposure 

The issue of replication is further complicated by the fact that, depending on the frequency 
of the exposure, the same GxE construct may range from having: 

i. no effect when the exposure is low, 
ii. statistical interaction when the exposure is moderate, or  
iii. a main effect when the exposure is high 91.  

As genotypic frequency has a similar influence on interaction detection, it is only 

recommendable to attempt the reproduction of an interaction in samples where exposure 

and allelic frequencies compare with the original study. Additionally, power to detect 

interactions is optimal only when both minor allele frequencies and exposure rates are at the 

50% level. Idealised distributions such as these are unlikely to occur under normal 

recruitment conditions, although they can be ensured by the use of selective sampling 98. 

Deviation away from these two statistical optima may, along with other methodological 

deficiencies, compromise the overall power of a GxE study.  

6.3 Effect sizes 

Biological interactions need not give any statistical clues to their existence. This is 

demonstrated by the example of Phenylketonuria (PKU), (a syndrome that gives rise to 

neurodevelopmental and psychiatric symptomatologies). PKU results from a combination of 

allelic deficiency in the gene encoding the phenylalanine hydroxylase enzyme, and dietary 

exposure to phenylalanine. In this case, any statistical trace of this biological interaction is 

obfuscated by the ubiquitous nature of phenylalanine in the human diet. 

A typical GxE analysis requires large samples to facilitate the detection of targeted effects. A 

wider debate surrounds how these interactions should be scaled. In order to determine the 
presence of an interaction, a product term is added to the regression model. In linear regression, the 
regression coefficient of the product term defines interaction as departure from additivity, whereas an 
interaction using logistic regression indicates a departure from multiplicativity 99. An additive 

model is thought to best approximate the concept of biological interaction 100, though this 

view is heavily contentious. Meanwhile multiplicative effects, though more difficult to 

interpret, generally allude to larger effects on risk, and so are still predictively useful. 

Biological validity remains a panacea for all GxE research, as the concept of a purely 
biological interaction is easy to understand and design interventions around (assuming the 
consequences of the interaction is large enough to merit this course of action). In contrast, 
inferring a mechanistic relationship out of a statistical effect, relies on conditions and 
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assumptions 101 that may not necessarily hold true for Schizophrenia 85. A statistical 
interaction may still have great predictive value nonetheless.  

The difference between these two definitions (of Biological versus Statistical Interaction) 
can be problematic, as there remains plenty of scope for conflict between the two. In 
some cases discrepancies between the two may be artefactual. For example, the 
logarithmic transformation inherent to the multiplicative model can cause bona fide 
interactions to disappear, or else induce them spuriously 86, (an important caveat of this 
strategy). 

These issues have fuelled a debate about the more appropriate way to scale interaction 
effects eg.85,86. Some of the rhetoric surrounding this issue is seemingly prejudicial to the 
question of whether GxE research can make a positive contribution towards Schizophrenia’s 
translational goals 85. A key step to obtaining a definitive answer to this question will be the 
introduction of more systematic approaches to GxE discovery. The model for the type of 
approach needed is epitomised by GWAS 102,103. In the future this will be further 
complemented by the genome sequencing projects now underway in Schizophrenia 104 (also 
see details of the UK MRC’s cross-disorder sequencing initiative, the UK10K study; 
http://www.uk10k.org/). 

6.4 Sample size 

The tendency to overstate initial effect sizes results in a phenomenon known as ‘winners’ 
curse’ 105.  

Sample sizes in a replication study must accordingly be adjusted (upwards) to compensate 
for this associated loss of power. This is a practice embraced by the genetic association field 
of late, due to a combination of good governance 90 and a ‘trickle down’ of good research 
etiquette from GWAS, through to mainstream (candidate gene) genetic research. 

A similar level of rigour is lacking from GxE research. This is worrying on two counts. 
Firstly, because from the outset, the power of an interaction analysis is typically lower than 
it is for a study of main effects 106, and secondly, the GxE field has tended to avoid facing 
such issues head on. This is typified by a reluctance among researchers to divulge vital 
information regarding statistical power in many instances 84. Such faux pas are propagated 
by the willingness of reviewers to accept such work, without enforcing appropriate 
disclosure of this information. 

7. 10 years of GxE research in psychiatry – A post-assessment review 

A recent critical appraisal shines a spotlight on the immediate shortcomings of GxE 
research in the psychiatric field 84. Its findings are still being digested by the psychiatric 
research community 107. A main accusation again centres on underpowering, (described 
by its authors to have skewed a decade’s worth of research). Face value interpretation of 
their calculations suggests that average effect sizes would have to be 10 times larger than 
those normally found in GWAS, for the small sample sizes used to be even remotely 
credible 84.  

The problem of underpowering was found to have a bi-directional relationship with 
publication bias, (the tendency to only report trends that support a given hypothesis). The 
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authors’ report outlines an interesting chain of events, initiated by the instinctive preference 
among journal editors for novel findings. This distortion of the literature is sustained by 
additional biases that favour the publication of corroborating evidence, at which point 
statistical considerations such as power and study design are less rigorously enforced 84. 
Leniency in areas such as sample size and study design has long been self-evident in GxE 
research 91,95 but can, for the first time, be quantified; studies which have failed to replicate 
an existing discovery are, on average, 6 times larger than studies that did manage to 
replicate. This suggests that the sample-size threshold required for a negative finding to be 
published is 6x higher than that of a positive study 84.  

One non-intuitive factor that such appraisals have failed to acknowledge is that samples 
characterised by a low n may also be those most immune from measurement error 91. For the 
5HTTLPR x SLE interaction alone, low measurement error has been qualitatively shown to 
be the single most important determinant of a successful replication 91,95. Simulations of 
measurement error by Wong et al help to qualify this point 96. They suggest that an increase 
in correlation with true values of ‘E’ from .4 to .7 can equate to as much as a 20-fold gain in 
sample size. It is apparent therefore, that any review of the field must take into account the 
fact that the problem of a small sample can, to an extent, be overcome by maximising the 
precision of environmental measures. These days purposefully-designed tools (eg. 
http://www.hsph.harvard.edu/faculty/peter-kraft/software/ or the ESPRESSO power 
calculator at http://www.p3gobservatory.org/powercalculator.htm ) allow one to factor-in 
the variable precision of exposure measurement to estimations of power. 

But in its defence, the Duncan-Keller assessment (a systematic assessment of 103 studies 
over a 10-year period) extends way beyond the Serotonin transporter. Therefore the critique 
is a formulation which applies to the field as a whole. Its take home message suggests that 
replication studies in Psychiatry currently only rarely achieve what they purport to, to a 
satisfactory standard.  

This message is resounding, and also provides a convenient narrative for the poor progress 
made in bringing new findings to the clinic. At present it is largely explained by the 
shortage of high quality evidence entering the translational pipeline.  

The crystallisation of lessons learned over the past 10 years 84 should be capitalised upon to 
make this a watershed moment for the application of GxE methodology in Psychiatry. 
However the type of cultural revolution needed can only be prompted by:  

i. An all-encompassing redefinition of what constitutes methodological good practice in 
GxE research 107 (this could be achieved by developing something equivalent to the 

STREGA (STrengthening the REporting of Genetic Associations) principles, specifically 
for the GxE research. 

ii. A consensus between journal editors, reviewers and researchers that these guidelines 
should be adhered to.  

8. New horizons in GxE research 

8.1 GxEWAS: The systematically tractable meets the biologically plausible  

The archetypal approach to identifying potential GxE candidates avoids the statistical 
pitfalls of multiple testing, and is instead guided towards appropriate candidate regions 

www.intechopen.com



Old Obstacles on New Horizons:  
The Challenge of Implementing Gene X Environment Discoveries in Schizophrenia Research 

 

91 

through a combination of biological theory and functional evidence 82. Given our 
rudimentary understanding of the complexity encoded at the genomic level, it is perhaps 
not so surprising that the doctrine of ‘biological plausibility’ is often questioned. Additional 
scepticism is reserved for the notion that the molecular dissection of psychiatric phenotypes 
can be formularised 82. This is a pertinent point, given that GWAS has shown us that the 
underlying biological basis of many complex and Mendelian traits is largely abstract in 
nature. 

Advocates of the biological plausibility doctrine can rightly point to the robust experimental 
and analytical settings in which several of these discoveries have been made 93,94,108. 
However detractors often cite the peculiarly low level of GWAS support for traditional 
Schizophrenia candidate gene favourites, (all of which are ‘plausible’ in one way or 
another), 109,110 to suggest the perils of a religious fixation on biological dogma 84.  

The apparent discord between candidate-gene and GWAS findings is typical for most of 
Psychiatry, with very few exceptions 111 (convergent GWAS and candidate-gene findings 
in Schizophrenia are noted in table 2). If anything, GWAS has diverted attention towards 
less-obvious genomic points of interest, many of which lie within the non-coding 
domain.  

Thus the non-coding genome has proved to be a rich source of pathogenic variation; 
approximately 90% of all GWAS findings (across disorders) originate from there. But for 
now, the jury is still out regarding the possible contribution of first-generation candidate 
genes to the risk, pathology and outcome of Schizophrenia. The delay in implementing 
GxEWAS studies of Schizophrenia means that the relevance of historical genetic candidates 
to the GxE paradigm remains untested in modern-day genome-wide protocols. It is still 
premature therefore, to exclude a possible wider role for some of these genes in the 
aetiological or pathological course of Schizophrenia. 

GxEWAS studies are steadily becoming entrenched in the literature. A number of neuro-
developmental and neurological phenotypes have already been investigated. These 
highlight interactions ranging from the effect of coffee-drinking on Parkinson’s Disease, 
to the effect of adverse intrauterine environments on brain growth 112-114. As this 
innovative branch of genomics is yet to take off in Schizophrenia, the current crop of GxE 
findings both in table 3 and in other areas of Psychiatry, are still yet to face the same acid 
test used to put the previous generation of association candidates on trial 109,110. GxEWAS 
is currently one of many longer-term aspirations for policymakers in the Psychiatric 
Genetics community 115.  

Several alternatives to standard Case-Control analysis methods will be at the disposal of 
the community by the time this occurs. Bayesian Case-control approaches already feature 
among them 116. However the Case-only model is currently considered to be the most 
effective (in terms of power and efficiency) methodology for this branch of research 
117,118. The one proviso of the approach is that genes and exposure must be independent 
in the population from which cases are drawn 117,119. This condition can be tested 
directly, by repeating the GxE analytical procedure on controls, and appropriately 
filtering out signals (that cross the designated threshold of significance) from the case-
only study. 
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Post-genomic technological advances, namely the advent of micro-array technology, have 
led to huge increases in the scale at which genetic variation can be sampled from a genome 
by a single study. The abundance of this data can propel the formulation of post-hoc 
hypotheses based on biological plausibility. Useful resources that can help to inform the 
decision-making process include tools such as the UCSC and ENSEMBL genome browsers 
(http://genome.ucsc.edu/cgi-bin/hgGateway and http://www.ensembl.org/index.html). 
These contain a wealth of information highlighting the organisation, structure and function 
of the genome. Other specialist resources provide a dense functional annotation of regions 
that border GWAS hits (http://jjwanglab.org:8080/gwasdb/) 120.  

One area in which Schizophrenia genetic research has been slow (compared to other fields 
such as Alzheimer’s Disease), is its readiness to combine genetics with other flavours of 
system biology that can now be feasibly explored. This multi-level approach could provide 
insights about fundamental bio-mechanic processes that lie at the heart of gene-environment 
interaction. 

One potential class of mediaries are known as Quantitative Trait Loci (QTLs). These are 
regulatory variants associated with control of gene-expression (eQTLs), protein levels 
(pQTLs) and gene activation status (methQTLs). 

The ever-decreasing cost of implementing these system-based biological approaches 
continues to increase their accessibility. Meanwhile, whole-genome sequencing provides the 
means to increase both the resolution of regulatory variants across the genome, and the fuel 
for further biological hypotheses. 

A key objective within the universal objectives of personalised medicine (to which the 
field of Psychiatric Genetics is also subscribed) is to enhance both the visibility and 
efficiency with which promising new evidence is vetted and then turned into new 
diagnostics and treatments. Crucially however, neither a purely biological, nor a purely 
systematic approach, (such as GxEWAS) can secure these goals alone. This is due to two 
main reasons: 

- Exhausting the investigation of all plausible biological hypotheses using available 
genomic and enviromic data, is a slow, painstaking process that is difficult to fully 
automate. In any case we lack the fundamental insight about underlying biological 
mechanisms to assume we can become routinely successful at this.  

- Meanwhile systematic methods such as GxEWAS may be too cursory. They must in any 
case, first confront the reasons why smaller candidate-based studies of GxE so regularly 
out-perform larger ones, lest the same mistakes of candidate GxE research simply end 
up being repeated, on a yet grander scale 91. 

The many lines of derivative research resulting from GWAS in Schizophrenia collectively 
demonstrate how both systematic and biological candidate approaches can work in 
tandem 55,103,115,121,122. Thus, an emphasis on post-hoc explorations of candidate pathways, 
genes and variants may be the best bet for turning a cursory screen of the genome (such 
as GxEWAS) into something that is potentially much more substantive. This kind of 
combinatorial approach, which marries systematic and hypothesis-led discovery through 
data-mining, may one day reveal (and explain) the true pervasiveness of GxE in 
Schizophrenia.  
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8.2 Strategies for data harmonisation and how this will help 

Observations by Caspi 91, Uher and McGuffin 95, Vineis 97 and Wong 96 collectively highlight 
the challenge of balancing sample size and measurement error for optimal statistical benefit. 
It is in this respect that the Dunedin study (to which a disproportionate number of GxE 
discoveries belong) enjoys an unparalleled advantage over many of the cohorts that have 
since revisited the original 5HTTLPR finding. The study combines the higher accuracy of 
exposure measurement often found in smaller studies, with a large sample size that is so 
often elusive.  

A large number of replication studies do not share this same rare-but-optimal combination 
of properties 91,96,97. It is this variability which may be incapacitating to the field as a whole. 

Such problems can be addressed by applying greater epidemiological rigour to the 
collection, storage and power of genetic datasets. The rapid proliferation of biobanks in 
biomedical research is accompanied by the expectation that this will directly improve the 
quality of translational research, (and not just for Schizophrenia). Biobanks provide a means 
to satisfy the growing demand for high quality population data, thus they will be a key 
driver of genetic discovery in the future. They will also be an essential resource for 
validating discoveries made elsewhere.  

Of course genetics is just one of many important biological areas that can be served by such 
resources. This is why the rapid proliferation of biobanks is vital, even for the many non-
psychiatric traits that have, to a large degree, already profited from GWAS. This includes 
traits such as Age-related Macular Degeneration, Prostate Cancer, Coronary Heart disease 
and type 2 Diabetes 65. 

The primary functions of a biobank include: 

- Processing and storage of biological samples. 
- Collection of phenotype and other data 
- Facilitating statistical analysis. 

A recurrent concern among commentators in the GxE field is the increased scope for 
measurement error in these heterogeneously-assembled datasets 91. Additional problems 
may occur due to the fact that geneticists, epidemiologists, biologists and biostatisticians, 
often use different vocabularies 123. Extrapolating these issues to the large number of 
biobanks in existence around the globe suggests that there is a need for overall governance 
to maximise data harmonisation. A large number of international bodies have been created 
for this purpose, many with overlapping functions. For example in Europe, PHOEBE 
(Promoting Harmonisation Of Epidemiological Biobanks in Europe), ENGAGE (European 
Network of Genomic and Genetic Epidemiology) P3G (Public Population Project in 

Genomics), are three independent organisations that provide a continent-wide consensus on 
procedures ranging from collection, storage and format of biological samples and associated 
data. 

Perhaps this overlap is needed to counteract the organisational absence of other major 
institutions from this exercise. Regulatory bodies such as the European Medicines Agency 
(EMA) and The Food and Drug Administration (FDA) were at some point considered, but 
ultimately deemed too inherently conservative to oversee such a task 124. Top-down 

www.intechopen.com



 
Public Health – Methodology, Environmental and Systems Issues 

 

94

implementation of new and emerging international standards and protocols for data collection, 
sample acquisition, etc is managed by national biobanking initiatives, such as the UK Biobank. 
Policies may then be channelled down to a set of regional hubs such as the National Institute for 
Health Research’s Biomedical Research Centres (UK). It is encouraging that Schizophrenia 
research is now beginning to derive the benefits of biobank-based research 125-127. 

8.3 A note on methods for research synthesis 

Such initiatives inevitably generate an abundance of data. A critical mass of high quality 

data is usually the trigger for the synthesisation of this evidence to begin. This typically uses 

meta-analysis, whose conventional format uses the null hypothesis (a construct of 

frequentist statistical theory) as its reference point. However the rationale for this becomes 

increasingly questionable as new evidence is added to an existing literature 128,129. A 

Bayesian approach (ie. one that would allow the posterior probability of a hypothesis to be 

derived from prior knowledge, after taking into account new data), would allow any 

uncertainty about a hypothesis, to be acknowledged in an adaptive way.  

The conspicuous absence of Bayesian methods from the science of data synthesis was only 

recently lamented, by key stakeholders involved in the process of evaluating new drugs for 

the UK’s National Health Service 128. Such messages may yet help to expedite the uptake of 

these methods, although there is already evidence of their adoption in clinical trial research 
128. These methods could widen the net used to gather new evidence, by allowing the 

incorporation of data from in vivo and cellular studies into the evaluation process. Thus 

Bayesian methodologies could provide an important means of channelling a wide range of 

functional evidence into synthesised data 130, as well as providing an alternative set of rules 

for assessing the validity of a hypothesis. 

8.4 The future of clinical databases in psychiatric GxE research 

It will soon be much easier to harvest the valuable clinical data derived out of even routine 
patient contact with clinical services, given that a switch-over to electronic medical records 
(EMRs) is now underway. The integrative blueprint for the new digital clinical age would 
allow a comprehensive (clinical, molecular and environmental risk profile) to be compiled 
for each patient. The front-end portal for this is as a personal record that follows the 
individual around as they move between different mental health institutions. Back-end 
access to such data is possible (for research purposes), but necessarily anonymised. The 
information itself can be processed in a way that allows even the interrogation of 
unstructured data (eg. clinical notes) to now be formularised (eg. see 131). The huge potential 
of EMRs represents great scope for integrative research. It is anticipated that such resources 
will: 

- Continue to drive understanding of molecular aetiology, by harnessing patients for in 
silico (bioinformatically-oriented) studies. 

- Allow more efficient stratification of patients for interventions or clinical trials 
- Improve the quality of genetic counselling, which will be based on a fuller, all-

encompassing profile on which to base evaluations of risk, treatment outcomes and 
prognoses. 
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The true potential of the EMR model will become more apparent only when high-

dimensional genetic and molecular profiling becomes economically feasible and clinically 

routine. This will make it practically possible to integrate a whole manner of clinical data 

into diagnostic/prognostic genetic research. But such times are almost already upon us, 

thus we do not have far to search, to find examples of how an integrative approach may 

work in practice. One such model is that of Ashley and colleagues 132, who recently 

reported a far-reaching genomic health assessment of a patient showing a strong familial 

indication of Coronary Heart Disease and Sudden Death Syndrome. A graphical account of 

the relative genetic liability for other disorders (Coronary Artery Disease, Obesity, 

Osteoarthritis and Type 2 Diabetes) depicts the genetic relationship between these 

disorders and several conditional environmental risk exposures, (stress, smoking, exercise 

and diet).  

For Schizophrenia, a more precise account of the relationship with environmental risk 

factors could be achieved with the help of a new generation of instruments (questionnaires) 

and devices that will enable their measurement to be conducted with greater sensitivity than 

ever. Many examples of these have been devised for a large multi-centre study: The 

European network study of Gene-Environment Interaction (EUGEI) 5. Of particular 

relevance is a work package entitled ‘Functional Enviromics’, which aims to take the 

elucidation of socio-environmental risk factors for Schizophrenia to a level of resolution not 

previously reached. 

9. New horizons in pharmacogenomic research 

9.1 Background 

One consequence of GxE interaction is that any undesired outcomes can be averted through 

interventions targeted at the level of the individual, or the population, through changes in 

wider socio-economic policy. Primary avenues of social intervention for Schizophrenia 

would include redressing social inequalities 2, as well as challenging permissive attitudes to 

the use of illegal psychotogenic substances which, in tandem with other risk factors, help to 

sustain the high level of psychosis in the general population.  

Meanwhile, molecular strategies for moderating or ameliorating the detrimental 

consequences of GxE interaction, fall within an area of personalised medicine known as 

Pharmacogenomics. This discipline is concerned with devising optimal therapeutic 

treatments for genetic sub-groups of patients. A competing goal is to minimise the risk of ill 

effects resulting from such treatments. Large inter-individual variability in both drug 

response and side-effects are the main foundation for this branch of research 133. Much of 

this variability can be traced to genetic variation within key liver enzymes (the cytochrome 

P450 complex). It is the fate of all antipsychotic drugs to be channelled to this biological 

complex for breakdown (see table 4).  

Of all the enzymes known to have a role in the metabolism of antipsychotic drugs, CYP2D6 

has been the most extensively characterised. This is not a great surprise, given that the 

protein product of this gene catalyses the breakdown of up to 25% of all pharmacological 

compounds. Current knowledge about functional variation within this gene alone is enough 
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to explain inter-individual differences in drug efficacy. For example, 2% of Caucasians and 

25% of East Africans who express multiple functional CYP2D6 alleles, (ultra-rapid 

metabolisers) can be phenotypically distinguished on account of having the poorest levels of 

response to specific treatments 134,135. Unfortunately however, current assessments of the 

clinical utility of pharmacogenetic testing in Schizophrenia, suggest that a heavy reliance on 

CYP2D6 genotyping is currently not the most beneficial way to formulate pescribing 

guidelines regarding the use of antipsychotic drugs 134. A similar study of CYP2D6 (looking 

at Selective Serotonin Re-uptake Inhibitor treatments in Depression), recently came to a 

similar conclusion 136.  

 

Table 4.   Commonly used antipsychotics metabolised by CYP enzymes 

Enzyme Typical Antipsychotics Atypical Antipsychotics 

CYP2D6 Primary metabolism Primary metabolism 
  Chlorpromazine Risperidone 
  Haloperidol   
  Perphenazine Secondary Metabolism 
  Thioridazine Olanzapine 
    Quetiapine 
  Secondary Metabolism   
  Zuclopenthixol   

CYP1A2 Primary metabolism Primary metabolism 
  Chlorpromazine Clozapine 
  Perphenazine Olanzapine 
  Thioridazine   
      
  Secondary Metabolism   
  Haloperidol   
  Perphenazine   

CYP3A4 Primary metabolism Primary metabolism 
  Haloperidol Quetiapine 
    Ziprasidone 
    Secondary Metabolism 
    Clozapine 
    Olanzapine 
    Risperidone 

Table 4. (Adapted from reference 134) 

9.2 A generalisable translation framework for GxE discovery 

Poor performance of novel findings across different formulations of synthesised data 

represents an obvious barrier to clinical translation. But even if this obstacle can be 

overcome, a further series of hurdles may replace it. A clear framework now exists to 

prompt and signpost the long path between discovery and clinical application 137. 

Implementation of the framework is marshalled by the Human Genome Epidemiology 

Network (HUGENET), a global collaboration of individuals and organisations whose 

remit is to assess the impact of genomic variation on population health. According to 

HUGENET, the pathway to clinical translation can be divided into four key stages (see 

table 5). 

www.intechopen.com



Old Obstacles on New Horizons:  
The Challenge of Implementing Gene X Environment Discoveries in Schizophrenia Research 

 

97 

Table 5.   The 4 phases of clinical translation 

Translation Research Phase  Example Study Approach to overcoming phase 

Phase 1: Discovery and Clinical validity 

eg. Reliable series of 
associations between a SNP 

and drug response 
Phases I and II clinical trials; observational studies 

Phase 2: Clinical Utility to Clinical guidelines 

Does SNP improve drug 
response and what is its 

predictive accuracy? 

Phase III clinical trials; observational studies; 
evidence synthesis and guidelines development 

Phase 3: Implementation in Clinical practice 

Explore data regarding the 
uptake of the SNP test in 
clinical settings - explore 

potential barriers 

Dissemination and implementation research; Phase 
IV clinical trials 

Phase 4: Public Health Impact 
Does SNP improve clinical 
outcome in the population? 

Outcomes research; Population monitoring; Phase IV 
clinical trials 

Table 5. Table 4 shows the 4 phases of clinical translation and the critical approaches 
required to negotiate each one. Though initially designed to provide a translational model 
for pharmacogenetic research, it can also be applied in the context of GxE research.  
(Adapted from references 138,139) 

Although this framework has been developed to support emerging new pharmacogenomic 

technologies, devices and treatments, its generic nature means it provides a model that is 

also extrapolable across genetic research (including GxE). The model adopts the ACCE 

(Analytical validity, Clinical Validity, Clinical Utility) and ELSI (Ethical, legal, social issues) 

criteria to ensure a rigorously vetted transition between phases 139. The solid foundation 

provided by the framework will help to ensure that promising findings do not become ‘lost 

in translation’ 140, a problem that has characterised the last 60 years of drug development. 

This issue still continues to affect the industry acutely: It takes an average of 17 years for just 

14% of new scientific discoveries to enter day-to-day clinical practice 137, while the cost per 

successful drug exceeds $1billion, after adjusting for all the failures 141. 

9.3 Regulation and decision-making 

Regulatory governance fulfils several objectives, the most important of which is to ensure 
that patients and research subjects are protected from any undesired consequences (‘adverse 
events’) of new drugs intended for the market. GxE discoveries that make it into clinical 
evaluation phases fall under the jurisdiction of various geographical regulatory institutions 
such as the European Medicines Agency (EMA) in Europe, the Medicines and Healthcare 
products Regulatory Agency (MHRA) in the UK, and the Food and Drug Administration 
(FDA) in the US. 

Adherence to the process of regulation is essential for ensuring a smooth progression 
through the translation scheme outlined in table 5. For instance, failing to procure 
accreditation for genetic tests and therapies from decision-making bodies such as the EMA 
and the FDA tends to adversely affect the uptake of these innovations in other global 
regions. This may partly explain the poor uptake of CYP2D6 and CYP2C19 genetic tests 
observed in a recent Danish study 142.  

However, over-zealous regulation can itself create obstacles, particularly if perceived to be 
of no discernible benefit to patients 143. This has potentially been the case in Europe, where 
the much-criticised 2001 European Union Clinical Trial Directive has caused the cost of 
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running clinical trials to spiral. Other knock-on effects attributed to the legislation include a 
30% decline in the numbers of participants agreeing to take part in trials across Europe, over 
the last few years 144. As clinical trials are an integral component within any translation 
scheme, such problems threaten to create a fatal bottle-neck in the pipeline, for discoveries 
that might otherwise have made it through the process relatively unscathed. 

An overhaul of regulatory governance at national level has been proposed to circumvent 
this problem. In the UK, it is being done in conjunction with The National Institute for 
Health and Clinical Excellence (NICE), an organisation primarily responsible for assessing 
the cost-effectiveness, on behalf of the National Health Service (NHS), of providing new 
therapies and treatments. However the change of UK government means it is not even clear 
that there is a timetable for putting such proposals into practice 143. 

As just hinted at, all novel genetic disoveries (including GxE interactions) that have safely 
negotiated the rigours of the validation stages shown in table 5, must still run the gauntlet of 
proving their overall cost-effectivenesss, before they can progress beyond validity, into 
utility. But new technology and treatments can only be considered to be cost-effective if 
their health benefits can be shown to outweigh the opportunity costs of services or 
treatments that they may displace 145. When viewed in the context of the many benefits that 
personalised health care will bring, the additional expenses inherent to many new genomic 
technologies, are unlikely to present much of a barrier to widespread uptake. 

10. Conclusion 

Lessons of the past decade of GxE research in psychiatry (and more specifically, 
Schizophrenia) mean that the focus of the next should be to ensure that effort and resources 
already spent, or else earmarked for future investment, do not go wasted. In order to ensure 
this a course of greater methodological rigour should be pursued. 

It would be advantageous to complement this with the encouraging array of new specialist 
tools, methodologies and infrastructures available, some of which are highlighted in this 
article. A combination of falling economic costs and increasing accessibility make this 
proposition the most practical and logical way forward. In the category of ‘methodologies’ 
we additionally include innovations that enable the epigenomes, transcriptomes and 
proteomes of Schizophrenic patients to be characterised in high-dimension. Each of these 
domains reflects a different dynamic (and environmentally-responsive) element within a 
broader biological scheme. But each also remains curiously under-represented in 
mainstream GxE research today. This is despite evidence to suggest they may serve a 
functional purpose as biomarkers of environmentally-induced pathogenesis, susceptibility, 
illness progression and treatment outcome 146-152. Despite these documented examples, each 
discipline also faces thematic questions about how to achieve methodological best practice, 
given their various respective constraints 147,153,154. 

Thus the current outlook would suggest that no single biological domain will have a 
monopoly on the clinical insights that may yet emerge out of future studies that may link 
genes, environment and Schizophrenia. The option to harness the various biological 
domains collectively, with genetics as the focal point, is promising, but currently under-
resourced 155-157. But this type of expansive approach is additionally attractive and may 
propel us towards fulfilling the unrealised clinical ambitions of GxE research. 
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