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1. Introduction

The spatial analysis of disease incidence is a fundamental tool in public health monitoring
(Lawson et al., 1999). Suppose that a geographic study area is divided into administrative
areas, with known populations at risk and observed cases of disease within a certain period
of time. An interesting question is the possible existence of spatial anomalies in the study
area: are there localized regions within the map for which the relative concentration of cases
among the population at risk is significantly higher than would be expected if the cases were
distributed at random? Such anomalies, known as spatial clusters, are inherently difficult to
delineate, for several reasons (Cancado et al., 2010; Lawson, 2009). Due to the stochastic nature
of the number of observed cases of disease, the uncertainty may be elevated in the disease rate
estimation for aggregated area maps, especially for small population areas. Thus the most
likely disease cluster produced by any given method for the detection and inference of spatial
clusters (like SaTScan (Kulldorff, 1999) or any other irregularly shaped scan) is subject to a
lot of variation. If it is found to be statistically significant, what could be said of the external
areas adjacent to the cluster? Do we have enough information to exclude them from a health
program of prevention?

A criterion was proposed (Goovaerts, 2006) to measure the uncertainty of each area being
part of a possible localized anomaly in the map, finding error bounds for the delineation of
spatial clusters in maps of areas with known populations and observed number of cases. A
given map with the vector of real data (the number of observed cases for each area) was
considered as just one of the possible realizations of the random variable vector with an
unknown expected number of cases. In this methodology, m Monte Carlo replications were
performed, considering that the simulated number of cases for each area is the realization of
a random variable with average equal to the observed number of cases of the original map.
Then the most likely cluster for each replicated map was detected. Finally, to each area ai

it was assigned the number of simulations that ai was included in a most likely cluster. If
an area belonged to the most likely cluster on all the m replications, it was colored as black;
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otherwise, if it never was part of a most likely cluster, then it was colored as white, with
intermediate shades of gray in-between. A Bayesian variant along these lines, to detect and
represent spatial clusters, was also proposed recently Neill (2011).

Another approach to represent the uncertainty in the delineation of spatial clusters appeared
recently (Oliveira et al., 2011), employing a ranking based scheme known as intensity function.
That procedure uses the circular spatial scan statistic (Kulldorff, 1999) to find the circularly
shaped most likely cluster for each replicated map. The corresponding m likelihood values
(obtained by means of the m Monte Carlo replications) are ranked. For each area ai , the
maximum likelihood value, obtained among the most likely clusters containing the area ai, is
determined. Finally, the intensity function associated to each areaŠs ranking of its respective
likelihood value among the m obtained values is constructed. The latest procedure generally
produce less biased results when compared with the two previous schemes.

However, the circular spatial scan has several limitations, which were discussed in the
literature (Duczmal et al., 2006; Kulldorff et al., 2006). Particularly, the circular window is not
suitable to make the correct delineation of irregularly shaped clusters because it either chooses
a proper subset of the true cluster (underestimation) or chooses a large circle containing the
cluster as a proper subset (overestimation). One important consequence is the reduction
of the power of detection (Duczmal et al., 2006). In order to overcome this limitation,
many algorithms were recently proposed to detect irregularly shaped clusters, replacing the
circularly shaped window scheme for any strategy of finding irregularly shaped solutions.
Usually, the only limitation in shape for those clusters is a connectivity requirement. In this
work, we will analyze the utilization of irregularly shaped algorithms for the application of
the intensity function (Oliveira et al., 2011), compared to the use of the simple circular scan,
which was employed as the standard method. Due to the regular shape of the most likely
cluster found, a question was left, at least in part unanswered: do all the areas inside the
cluster have the same importance from a practitioner perspective? In this work is proposed
an application of the intensity function for irregularly shaped algorithms, thus avoiding a
potential problem inherent in the use of the circular spatial scan, which may described as the
lack of resolution inside the circular cluster. As a consequence, it may be difficult or impossible
to distinguish the relative importance of the areas inside the detected circular cluster. As
we shall see, this problem does not occur when using irregularly shaped scans. Besides, the
maximum allowed size for the most likely cluster has a large influence in the result of the
cluster search (Chen J, 2008).

In this work novel results are presented, applying the multi-objective genetic algorithm scan
(Duarte et al., 2010; Duczmal et al., 2008; 2007), adapted for the weighted non-connectivity
penalty function (Cancado et al., 2010). Also, by allowing several different maximum sizes
for the most likely cluster, the possible anomaly could be identified with greater precision. As
will be demonstrated in the following sections, much better delineated cluster maps of the
intensity function will be generated, as compared with the previous version using the simpler
circular scan. As a consequence, the relative importance of individual regions composing
the spatial anomalies may be assessed, and several interesting phenomena related to the
geographical distribution of chronic and acute diseases may be visualized.
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2. The intensity function

In this section we define a criterion to measure the plausibility of each area being part of a
possible localized anomaly in the map. Following Oliveira et al. (2011), instead of finding the
most likely cluster in the original map with the observed number of cases for each area, we
consider maps where the number of cases are replications of a vector of random variables,
whose averages are defined based on the observed number of cases of the original map. We
formalize this procedure in the following.

The original map has ci observed cases in the area ai, i = 1, . . . , K. Now we construct a
Monte Carlo replication distributing randomly the C = ∑

K
i=1 ci cases among the K areas

a1, . . . , aK according to a multinomial distribution where the probability associated to the area
ai is ci/C. Let V = (s1, . . . , sK) the realization of the multinomial random vector where si is
the number of simulated cases in the area ai, i = 1, . . . , K, where ∑

K
i=1 si = C. The cluster

finder algorithm (in our setting we use the circular scan or we use the elliptic scan) now finds
the most likely cluster MLC1 with likelihood ratio value LLR1. The Monte Carlo procedure
above is repeated m times, generating a set of m likelihood ratio values {LLR1, . . . , LLRm}

corresponding to the most likely clusters {MLC1, . . . , MLCm}. The likelihood ratio values are
sorted in increasing order as {LLR(1), . . . , LLR(m)} for the corresponding most likely clusters
found {MLC(1), . . . , MLC(m)}. We now define the intensity f unction f : {1, . . . , m} −→ R by
f (j) = LLR(j), j = 1, . . . , m.

For each area ai, let:

q(ai) =
1
m

arg max
1≤j≤m,ai∈MLC(j)

f (j), i = 1, . . . , K

If the area ai does not belong to any of the sets MLC(1), . . . , MLC(m) then we set q(ai) = 0. The
value q(ai) represents the quantile of the highest likelihood ratio among the ranked values
of the likelihood ratios of the most likely clusters found in the m Monte Carlo replications,
which take into account the variability of the number of cases in each area. In this sense, the
value q(ai) may be interpreted as the relative importance of the area ai as part of the anomaly
of the map, where the value f (ai) represents the maximum likelihood ratio found for the
most likely clusters which contain the area ai. This concept gives more information about the
anomaly than the clear-cut division between cluster and non-cluster areas, as given by the
usual process of finding the most likely cluster in the original map. See Oliveira et al. (2011)
for further details.

3. Genetic algorithm for spatial cluster finding

3.1 Introduction

Genetic algorithms (GA’s) constitute an important class of optimization methods. Its
importance comes from the fact that the GA’s are robust algorithms, in the sense that they
are able to treat a wide variety of problems. While some optimization methods require certain
assumptions about the problem to be solved, without which these methods fail, the GA’s do
not require any assumption of continuity, convexity, differentiability and unimodality. In fact,
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the only assumption a GA requires is that the function to be optimized presents a “global
trend” that can be captured or learned by the algorithm. Of course, not making any kind
of assumption and, consequently, not using these characteristics in favor, GA’a tend to be
computationally intensive, so its usage is justified for difficult problems.

When looking for a most likely cluster, one faces a challenging otimization problem: given a
set R of n regions in a map, some of which are neighbors, find the connected subset S of R

that assumes the highest LLR value. By “connected” we mean that, starting from any region
in S there’s always a path to any other region of S formed by a chain of neighbors, all of them
inside S.

Solving this problem exactly means that we would have to look at all of the 2n subsets of R,
test which ones are connected, evaluate their LLR values and pick up the most likely one.
For maps with just a few dozens of regions this problem is already intractable. So we need
another strategy to find such optimal solution. GA’s showed to be a good alternative for the
spatial cluster finding problem (Duczmal et al., 2008; 2007).

3.2 The genetic algorithm

The natural evolution of living beings can be compared to an optimization process. In
fact, if individuals who are best adapted survive - in the sense of transmitting their genetic
information - while less adapted individuals tend to disappear, it is expected that after a
number of generations the population is composed of individuals who are generally better
adapted than those of earlier generations. This is also the idea behind a genetic algorithm.
It tries to simulate the mechanisms of random variation and selection of adaptive evolution.
The mechanisms (or genetic operators) that form the basis of a genetic algorithm are:

• crossover operator, which combines the information of two or more individuals - called
parents - generating new individuals - called children;

• mutation operator, which applies a random perturbation to the information of an
individual, generating a new one;

• selection operator, which defines the probability of an individual to transmit its genetic
information (generate children) based on its adaptation level.

In this context, an individual is a candidate-solution to the optimization problem and a
population is a set of individuals. For the spatial cluster detection problem a solution - or
individual - is a set of connected regions of the map (the candidate cluster). So, the population
is a set of lists, each list being a set of regions that form the solution.

Starting with an initial population the GA forms a sequence of generations. At each iteration it
applies the selection, crossover and mutation operators to the current population, generating
a new population. The GA used in this work was primarily described in Duczmal et al. (2007)
and its biobjective versions were used by Duczmal et al. (2008), Cancado et al. (2010) and
Duarte et al. (2010).
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3.2.1 Generating the initial population

The initial population is generated by a greedy procedure. Given a map with n regions we
generate a population of n individuals, each of which is generated from one region of the
map. So, starting with a region, the solution incorporates more regions, choosing at each step
to aggregate, among all the regions that are neighbors of some region in the actual solution, the
one that makes the LLR value to increase the most when added to the solution. The individual
grows until it reaches a maximum size set by the user.

3.2.2 The selection operator

Each solution is evaluated by means of its LLR value and this is the adaptation indicator:
higher LLR-valued individuals are more adapted. The selection operator will then give
more chances to the more adapted individuals to generate offspring. This is done through
a mechanism called binary tournment. For each tournment two individuals are chosen from
the current population, each individual having the same probability of being chosed. Then
we compare the two solutions and the one with higher LLR value is selected. This procedure
is repeated n times, thus producing a set of n selected individuals.

3.2.3 The crossover operator

Now, selected individuals have the chance to trasmit their genetic information to new
individuals by generating offspring. Crossover is applied to pairs of parents randomly chosen
from the list of selected individuals. The offspring is generated in a way that the children
inherit characteristis from both parents. In addition, it is well known that GA’s particularly
designed for a specific problem perform much better than multiple-purpose generic GA’s.
Thus, it is highly recommended that operators are designed so that they can take advantage
of the intrinsic structure of the problem. For example, in our case we would discard any
disconnected cluster candidate because it is an infeasible solution. While a generic crossover
operator could, most of the time, generate infeasible clusters, we chose to use a crossover
operator that ensures that every generated solution is feasible.

The crossover operator described by Duczmal et al. (2007) presents all these features, being
capable of efficiently generating feasible offspring having characteristics of both parents.
The operator is implemented in sucha a way that it is only possible to perform a crossover
between two parents if they share a nonempty intersection. Once this condition is verified,
the offspring is generated. Figure 1 shows an example with two parents (A and B) and
the generated offspring 1-5. Note that the offspring constitutes a “path” from one parent
to another, with child 1 being more like parent A, while child 5 is almost like parent B. In the
middle of the figure we can see parents inside the map with the two intersection regions (in
gray).

3.2.4 The mutation operator

Each individual generated by the crossover process has a probability of suffering a mutation.
Mutation consistis in introducing a random perturbation in the genetic code of the individual.
In our case, the mutation consists of adding to or removing from the cluster a randomly chosen
region, provided the cluster’s connectivity.
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Fig. 1. A splitted vision of parents A and B (left), parents A and B inside the map (middle)
and offspring (right).

3.3 The biobjective genetic algorithm

Many times one wants to find a solution that simultaneously optimizes two or more
functionals. For example, a costumer may want to buy a car which is powerful and cheap.
Of course, it is very unlikely that, say, the most powerful is also the cheaper car, because these
two criteria are conflicting. Based on these two criteria, a whole set of cars can be of interest for
this costumer: powerful (but expensive) cars and cheap (but underpowered) cars. Of course,
a costumer (again, based on just these criteria) will reject cars that cost too much and are low
powered.

Following the same reasoning, a biobjective GA was proposed (Cancado et al., 2010; Duarte
et al., 2010; Duczmal et al., 2008) to deal with the problem of spatial cluster detection. Using
the LLR as the only objective to be maximized would lead to geographically meaningless
tree-shaped solutions and it is necessary to consider some shape regularity measure, such
as geometric compactness (Duczmal et al., 2008) or topological corrections (Cancado et al.,
2010; Yiannakoulias et al., 2007). This regularity measure works as a second objective to be
maximized. As in the power/price car example, LLR and regularity are conflicting objectives,
because high values of LLR are associated to very irregular clusters, while regular solutions
tend to

Instead of an optimal solution, a biobjective maximization problem will lead, in general, to
a set of optimal solutions, called the Pareto-set. This set is composed by all solutions that
are not worse than any other solution in both objectives simulteanously. Such solution is
called nondominated solution. Because GA’s work with a population of candidate-solutions
they can find the Pareto-set in one execution with almost the same effort spent by its
mono-objective version. Figure 2 illustrates a set of solutions in the objectives space.
Nondominated solutions are indicated by black dots.

56 Public Health – Methodology, Environmental and Systems Issues

www.intechopen.com



Assessing the Outline Uncertainty of Spatial Disease Clusters 7

f
1

f 2

Fig. 2. A set of solutions in the objectives space: dominated solutions (×) and Pareto-set (•).

3.4 Inference and the attainment function

Once the most likely cluster is identified, we want to check its significace. This will allow
the practitioner to verify if the cluster can be considered a disease outbreak or if the disease
cases are randomly spreaded over the map. Since the distribution of LLR under H0 is not
known we must perform a Monte Carlo simulation. For the mono-objective case, the LLR
value is calculated for the most likely cluster in each Monte Carlo replication under H0 and
the p-value is computed comparing the value of LLR for the observed data and the empirical
distribution obtained through the Monte Carlo procedure.

For the biobjective case, we consider the attainment function (da Fonseca et al., 2001; Fonseca
et al., 2005), as also used by Cancado et al. (2010). A single run of the biobjective GA would
produce a Pareto-set, defining two distinct regions in the objectives space: points that are
dominated by the Pareto-set and points that are not dominated by it. Then, for inference
purposes we can consider, for each point of the Pareto-set obtained for the observed data, the
proportion times that the point is dominated by the Pareto-sets under H0. This is exactly the
p-value for that point.

3.5 The geometric penalty function

One of the possible penalties that takes in account the cluster geometric shape is the called
compactness geometric penalty function. This penalty function introduced in Duczmal et al.
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(2006) aims to penalize zones in the map that have very irregular shape. The compactness
geometric function k(z) of a zone z is given by the area of z divided by the area of a circle
with the same perimeter as the convex hull of z. The compactness geometric function takes
values between zero and one, the circle has the most compact shape (k(z) = 1). Compactness
depends on the shape of the zone, but not on its size. The expression for k(z) is given by:

k(z) =
4πA(z)

H(z)2 (1)

where A(z) is the area of the zone z and H(z) the perimeter of the convex hull of z. The
compactness penalyzed scan statistic is defined as maxz∈Zk(z).LLR(z).

3.6 The non-connectivity penalty function

Yiannakoulias et al. (2007) proposed a greedy algorithm to scan the set Z of all possible zones
z. A new penalty function called non-connectivity was proposed. It was based on the ratio of
the number of nodes v(z) to the number of edges e(z) of the subgraph associated with the zone
z. The non-connectivity penalty was used as a multiplier for the LLR(z). The non-connectivity
penalty function of a zone z is defined by:

nc(z) =
e(z)

[3 (v(z)− 2)]
(2)

the expression in the denominator represents the maximum number of edges of a planar
graph given its number of vertices. The most penalized zones are the ones whith tree-like
associated graphs, meaning that they have a small number of nodes compared with the
number of edges. Although there is some similarity between the non-connectivity penalty
to the geometric compactness penalty, there is an important difference: the non-connectivity
penalty does not rely on the geometric shape of the candidate cluster, which could be an
interesting feature when searching for real clusters which are highly irregularly shaped, but
present good connectivity properties.

3.7 Evaluation of the candidate solutions

Differently from the previous procedure employing the circular scan, each run of the
multiobjective genetic scan produces a set of several non-dominated solutions.

In the circular scan, the scan statistic value for the most likely cluster was assigned to each area
of the solution cluster, and later the maximum value of this quantity was obtained for all the
executions. However, in the multiobjective procedure, the scan statistic value will be assigned
for each component area of each solution cluster of the non-dominated solution set. In the
event that a given area belongs to more than one solution cluster, the largest scan statistic
value is assigned to the area. The remaining of the process is identical to the usual procedure
using the circular scan, obtaining the maximum value of this quantity for all the executions,
and building the intensity function as usual.
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4. Results and discussion

Epidemiological surveillance is essential to monitoring possible changes in the geographical
distribution pattern of both acute and chronic diseases. To illustrate the techniques presented
in this chapter, four diseases (dengue fever, tuberculosis, diabetes and hypertension) are
analyzed. Those four diseases are currently among the most serious health threats to the
Brazilian population. Our studies were concentrated in the Minas Gerais state in southeast
Brazil, with 853 municipalities and total population of 19,597,330 (2010 census). For each
disease, only the specific population at risk at each municipality was considered. Population
data was available at Instituto Brasileiro de Geografia e Estatística (www.ibge.gov.br), and
disease data was obtained through DATASUS, the Brazilian Ministry of Health’s central data
system (www.datasus.gov.br). Dengue fever data was collected by SINAN/MS system from
the Brazilian Ministry of Health (www.sinam.org.br). During the period 2007-2010, 349.005
cases were registered, and the population at risk was assumed to be the total population of
the 2010 census. Tuberculosis disease cases, using SINAN/MS data, were considered for the
2001-2010 period for the following age groups (years): 15-19, 20-39 and 40-59, making a total
of 41,824 cases for a population at risk of 12,892,744. Hypertension data was obtained through
the Hiperdia program of Brazilian Ministry of Health from January 2002 to January 2011.
Data was available to the following age groups (years): 50-59, 60-69, 70-79 and 80+, with a
total population at risk of 4,365,352 individuals and 941,710 cases. Diabetes types 1 and 2 data
were also obtained through the Hiperdia program from January 2002 to May 2011. The age
groups were: 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79 and 80+ years, with 28.039 cases.

Diabetes mellitus and hypertension are considered chronic diseases and their control and
treatment depend on the individuals behavior in relation to their lifestyle: healthy eating,
physical activity, and weight control. These diseases are responsible for high rates of hospital
expenses, so the investment in shares of health promotion and prevention is potentially very
cost effective. The importance of dengue in our study lies in the fact that it is an infectious
disease and even in regions with previous low incidence rates are subject to outbreaks. This
disease is subject to major public health campaigns in Brazil. The report on the epidemiology
of dengue published by the Secretariat of Health Surveillance in 2010 indicates Minas Gerais
state as one of the critical states in need of stricter monitoring. Hypertension and diabetes
are very common chronic diseases, and hypertension is a major public health problem in
Brazil. Tuberculosis has become relevant to this study due to its high incidence, and its
early diagnosis and effective treatment are of great importance to public health. The biggest
challenge for public health professionals has been to promote action to encourage compliance
and continuity of care, since many individuals do not join or do not follow the prescribed
treatment.

4.1 Real data case studies

In what follows, we present the obtained sets of intensity function maps for dengue
fever, tuberculosis, diabetes and hypertension in Minas Gerais state (Figures 3, 4, 5 and 6,
respectively). North is up for all the maps. For each disease set we present six maps: (a)
the quantiles of population at risk, (b) the quantiles of disease rate and the intensity function
maps based on the genetic multi-objective algorithm for maximum clusters of sizes 10, 20, 30
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and 40 (c, d, e and f respectively). The population at risk was different for each disease in our
study.

As can be noted on all four disease sets, the probability that each area belongs to the "‘true"’
cluster decreases as the maximum cluster size increases from 10 to 40. For instance, in the
dengue fever set, the dark brown areas have probability of belonging to the "‘true cluster"’
greater than 94%, 88%, 83% and 76%, as the maximum cluster size increases from 10, 20, 30
and 40, respectively. It means that the intensity function maps produced with the smaller
maximum cluster sizes (10 and 20)indicate inner "‘core"’ regions within the "‘true cluster"’.
On the other hand, the intensity function maps produced with the larger maximum cluster
sizes (30 and 40)indicate "‘borderline"’ regions with respect of the "‘true cluster"’.

Another important feature is the complexity of the shapes displayed in the sequence of
intensity function maps as the maximum cluster size increases.

4.1.1 Dengue fever

In Figure 3c, the maximum size 10 inner core region of dengue fever includes the
municipalities arround the state capital Belo Horizonte urban area (population 4 million) in
the central part of the state. The maximum sizes 20 and 30 intensity function maps (Figures
3d and 3e respectively) show the anomaly spreading northward following the São Francisco
river basin, a region with elevated humidity and high mosquito incidence. Finally, the larger
maximum size 40 anomaly (Figure 3f) spreads along the highway joining the cities of Ipatinga,
Valadares and Teofilo Otoni in the eastern part of the state.

4.1.2 Tuberculosis

In Figure 4c, the maximum size 10 inner core region of tuberculosis includes the
predominantly urban area of Belo Horizonte (in the central part of the state) and two weaker
urban regions: (i) the highway joining the cities of Ipatinga, Valadares and Teofilo Otoni in
the eastern part of the state, and (ii) the areas surrounding the city of Juiz de Fora, the second
largest city of the state in the south. As the maximum cluster size increases (Figures 4d, 4e
and 4f), the tuberculosis anomaly is reinforced to include the surrounding municipalities, and
also the neighbors of the populous Montes Claros city in the northern part of the state.

4.1.3 Diabetes

In Figure 5c, the maximum size 10 inner core region of diabetes includes the southwest part
of the state and the weaker urban region of Valadares city in the east. As the maximum
cluster size increases (Figures 5d, 5e and 5f), the diabetes anomaly is reinforced to include
the surrounding municipalities.

4.1.4 Hypertension

In Figure 6c, the maximum size 10 inner core region of hypertension includes several scattered
regions in the center and mid southeast parts of the state. As the maximum cluster size
increases (Figures 6d, 6e and 6f), the hypertension anomaly is reinforced to include the
surrounding municipalities.
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Fig. 3. Population at risk quantiles (a), dengue fever rates (b), and intensity function maps
based on the genetic multi-objective algorithm for maximum clusters of sizes 10, 20, 30 and
40 (c, d, e and f respectively)
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Fig. 4. Population at risk quantiles (a), tuberculosis rates (b), and intensity function maps
based on the genetic multi-objective algorithm for maximum clusters of sizes 10, 20, 30 and
40 (c, d, e and f respectively)
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Fig. 5. Population at risk quantiles (a), diabetes rates (b), and intensity function maps based
on the genetic multi-objective algorithm for maximum clusters of sizes 10, 20, 30 and 40 (c, d,
e and f respectively)
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Fig. 6. Population at risk quantiles (a), hypertension rates (b), and intensity function maps
based on the genetic multi-objective algorithm for maximum clusters of sizes 10, 20, 30 and
40 (c, d, e and f respectively)
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5. Conclusion

Our methodology takes into account the variability in the observed number of disease cases on
area aggregated maps to nonparametrically infer the uncertainty in the delineation of spatial
clusters. A given real data map is regarded as just one possible realization of an unknown
random variable vector with expected number of cases. The real data vector of the number of
observed cases in each area is used to construct a new vector of expected values of random
variables, considering the count of cases as the average of the random variables. This vector is
now an estimate of the unknown random variable vector with expected number of cases. Our
methodology performs m Monte Carlo replications based on this estimated vector of averages.
The most likely cluster of each replicated map is detected and the m corresponding likelihood
values obtained in the replications are ranked. For each area we determine the maximum
likelihood value among the most likely clusters containing that area. Thus, we obtain the
intensity function associated to each area’s ranking of their respective likelihood value among
the m values. The intensity of each area can be interpreted as the importance of that area in
the delineation of the possibly existing anomaly on the map, considering only the initially
given information of the observed number of cases. This procedure, based on the empirical
distribution, takes into account the intrinsic variability of the observed number of cases, which
generally is not considered directly in the existing algorithms used to detect spatial clusters.

In our case studies we could see different situations with respect to the intrinsic variability
of the existing spatial anomaly. When the most likely cluster is quite prominent, as in the
diabetes case study, the intensity function is such that almost all areas associated with the
most likely clusters found in the m replications coincides with those areas composing the
most likely cluster detected for the original observed cases. In this situation the geographic
anomaly is highly focused. However, in a different scenario, a disease map may present an
intrinsically wide variability of data. Many areas near or adjacent to the most likely cluster
have values of the intensity function close to the values corresponding to areas of the most
likely cluster. In the case study of hypertension, this intrinsic variability produces a map with
clearly unrelated areas, but with rather close probability ranking, indicating a situation of
multiplicity of clusters, i. e., the most likely cluster is clearly poorly delineated.

In this work we included two new features that extended the original ideas of the previous
paper Oliveira et al. (2011). First, instead of the circular scan, we have used an irregularly
shaped cluster finder based on a multiobjective genetic algorithm. It allowed a much better
delineation of the complex shapes found in the real data clusters. As a consequence, several
new phenomena could be distinguished in the spatial distribution of disease, which could
not be observed with the simples spatial scan. The second modification was the sequential
execution of runs with different sizes for the maximum allowed cluster to composing the
intensity function maps. With this modified procedure, instead of only one map, it was
obtained a sequence of intensity function maps: as the maximum cluster size increased, larger
anomalies of lesser intensity were displayed. This allowed the identification of "‘core"’ and
"‘borderline"’ regions, with different levels of uncertainty.

The visualization tool developed in this work may serve as a support for the decision making
process to prioritize areas of public health intervention, in a more precise manner than
provided by ordinary methods of cluster finding.

65Assessing the Outline Uncertainty of Spatial Disease Clusters

www.intechopen.com



16 Will-be-set-by-IN-TECH

6. References

Cancado, A. L. F., Duarte, A. R., Duczmal, L., Ferreira, S. J., Fonseca, C. M. & Gontijo, E. C.
D. M. (2010). Penalized likelihood and multi-objective spatial scans for the detection
and inference of irregular clusters, International Journal of Health Geographics 55(9).

Chen J, Roth RE, N. A. L. E. M. A. (2008). Geovisual analytics to enhance spatial scan statistic
interpretation: an analysis of u.s. cervical cancer mortality, International Journal of

Health Geographics 7(57).
da Fonseca, V. G., Fonseca, C. M. & Hall, A. O. (2001). Inferential performance assessment of

stochastic optimisers and the attainment function, Proceedings of the First International

Conference on Evolutionary Multi-Criterion Optimization, Lecture Notes In Computer

Science, Vol. 1993, Springer-Verlag, Berlin, pp. 213–225.
Duarte, A. R., Duczmal, L. H., Ferreira, S. J. & Cancado, A. L. F. (2010). Internal cohesion and

geometric shape of spatial clusters, Environmental and Ecological Statistics 17: 203–229.
Duczmal, L., Cancado, A. L. F. & Takahashi, R. H. C. (2008). Delineation of irregularly shaped

disease clusters through multiobjective optimization, Journal of Computational and

Graphical Statistics 17(2): 243–262.
Duczmal, L., Cancado, A. L. F., Takahashi, R. H. C. & Bessegato, L. F. (2007). A genetic

algorithm for irregularly shaped spatial scan statistics, Computational Statistics and

Data Analysis 52: 43–52. DOI:10.1016/j.csda.2007.01.016.
Duczmal, L., Kulldorff, M. & Huang, L. (2006). Evaluation of spatial scan statistics

for irregularly shaped clusters, Journal of Computational and Graphical Statistics

15(2): 428–442.
Fonseca, C. M., da Fonseca, V. G. & Paquete, L. (2005). Exploring the performance of stochastic

multiobjective optimisers with the second-order attainment function, Proceedings of

the Third International Conference on Evolutionary Multi-Criterion Optimization, Lecture

Notes In Computer Science, Vol. 3410, Springer-Verlag, Berlin, pp. 250–264.
Goovaerts, P. (2006). Geostatistical analysis of disease data: visualization and propagation

of spatial uncertainty in cancer mortality risk using poisson kriging and p-field
simulation, International Journal of Health Geographics 5(7).

Kulldorff, M. (1999). Spatial scan statistics: Models, calculations and applications, in J. Glaz
& N. Balakrishnan (eds), Scan Statistics and Applications, Springer Netherlands,
pp. 303–322.

Kulldorff, M., Huang, L., Pickle, L. & Duczmal, L. (2006). An elliptic spatial scan statistic,
Statistics in Medicine 25: 3929–3943.

Lawson, A. (2009). Bayesian Disease mapping, CRC Press.
Lawson, A., Biggeri, A. & Bohning, D. (1999). Disease mapping and risk assessment for public

health, John Wiley and Sons, New York.
Neill, D. B. (2011). Fast bayesian scan statistics for multivariate event detection and

visualization, Statistics in Medicine 30(28): 455–469.
Oliveira, F. L. P., Duczmal, L., Cancado, A. L. F. & Tavares, R. (2011). Nonparametric

intensity bounds for the delineation of spatial clusters, International Journal of Health

Geographics 1(10).
Yiannakoulias, N., Rosychuk, R. J. & Hodgson, J. (2007). Adaptations for finding irregularly

shaped disease clusters, International Journal of Health Geographics 6(28).

66 Public Health – Methodology, Environmental and Systems Issues

www.intechopen.com



Public Health - Methodology, Environmental and Systems Issues

Edited by Prof. Jay Maddock

ISBN 978-953-51-0641-8

Hard cover, 432 pages

Publisher InTech

Published online 30, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Public health can be thought of as a series of complex systems. Many things that individual living in high

income countries take for granted like the control of infectious disease, clean, potable water, low infant

mortality rates require a high functioning systems comprised of numerous actors, locations and interactions to

work. Many people only notice public health when that system fails. This book explores several systems in

public health including aspects of the food system, health care system and emerging issues including waste

minimization in nanosilver. Several chapters address global health concerns including non-communicable

disease prevention, poverty and health-longevity medicine. The book also presents several novel

methodologies for better modeling and assessment of essential public health issues.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Fernando L. P. Oliveira, André L. F. Cançado, Luiz H. Duczmal and Anderson R. Duarte (2012). Assessing the

Outline Uncertainty of Spatial Disease Clusters, Public Health - Methodology, Environmental and Systems

Issues, Prof. Jay Maddock (Ed.), ISBN: 978-953-51-0641-8, InTech, Available from:

http://www.intechopen.com/books/public-health-methodology-environmental-and-systems-issues/assessing-

the-outline-uncertainty-of-spatial-disease-clusters



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


