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1. Introduction 

This chapter inspired treat caused by phytoplasmas diseases in food production, and 
increased need for sensitive and accurate detection of these microorganisms. Early and 
sensitive detection and diagnosis of phytoplasmas is of paramount importance for effective 
prevention strategies and it is prerequisite for study of the diseases epidemiology and 
devising of pathogen management.  

Phytoplasmas are prokaryotes lacking cell walls that are currently classified in the class 
Mollicutes (2). To the class Mollicutes (cell wall-less prokaryotes) belonging both pathogenic 
groups: mycoplasma-like organisms (MLOs) and mycoplasmas. However, in contrast to 
mycoplasmas, which cause an array of disorders in animals and humans, the 
phytopathogenic MLOs resisted all attempts to culture them in vitro in cell free media (89). 
Following the application of molecular technologies the enigmatic status of MLOs amongst 
the prokaryotes was resolved and led to the new trivial name of “phytoplasma”, and 
eventually to the designation of a new taxon named ‘Candidatus phytoplasma’ (73). 

Diseases associated with phytoplasma presence occur worldwide in many crops, although 
individual phytoplasmas may be limited in their host range or distribution. There are more 
than 300 distinct plant diseases attributed to phytoplasmas, affecting hundreds of plant 
genera (70). Many of the economically important diseases are those of woody plants, 
including coconut lethal yellowing, peach X-disease, grapevine yellows, and apple 
proliferation. Following their discovery, phytoplasmas have been difficult to detect due to 
their low concentration especially in woody hosts and their erratic distribution in the sieve 
tubes of the infected plants (15). First detection technique which indicated presence of some 
intercellular disorder was based on graft transmission of the pathogen to healthy indicator 
plants. The establishment of electron microscopy (EM) based techniques represents an 
alternative approach to the traditional indexing procedure for phytoplasmas. EM 
observation (17, 33) and less frequently scanning EM (59) were the only diagnostic 
techniques until staining with DNA-specific dyes such as DAPI (148) was developed. Lately, 
protocols for the production of enriched phytoplasma-specific antigens have been 
developed, thus introducing serological-based detection techniques for the study of these 
pathogens in plants or insect vectors (65).  

Phytoplasma detection is now routinely done by different nucleic acid techniques based on 
polymerase chain reaction (PCR) (144, 12, 52, 165). The procedures developed in the last 20 
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years are now used routinely and are adequate for detecting phytoplasma infection in plant 
propagation material and identifying insect vectors, thus helping in preventing the spread 
of the diseases and their economical impact.  

Therefore, aim of this chapter is to provide an overview of the PCR-based techniques for 
detection, identification and characterisation of this plant-pathogenic Mollicutes (cell wall-
less prokaryotes).  

1.1 Relevant features of phytoplasmas 

Phytoplasmas, previosly known as 'Mycoplasma-like organisms' or MLOs, are wall-less 
bacteria obligate parasites of plant phloem tissue, and of several insect species (Fig. 1). 
Phytoplasma-type diseases of plants for long time were believed to be caused by viruses 
considering their infective spreading, symptomatology, and transmission by insects (84, 85, 
86, 119, 90). Etiology of these pathogens was explored accidentally by group of Japanese 
sciences (45). They demonstrated that the causes agent of the yellows-type diseases are wall-
less prokaryotes related to bacteria, pleomorphic incredibly resembling to mycoplasmas.  

Phytoplasmas have diverged from gram-positive bacteria, and belong to the ‘Candidatus 
Phytoplasma’ genus within the Class Mollicutes (73). Through evolution the genomes of 
phytoplasmas became greatly reduced in size and they also lack several biosynthetic 
pathways for the synthesis of compounds necessary for their survival, and they must obtain 
those substances from plants and insects in which they are parasites (11) thus they can't be 
cultured in vitro in cell-free media.  

  
Fig. 1. Electron microscopy: of cross sections: A) of the vector leafhopper muscle cells 
around the midgut; B) sieve tubes of phytoplasmas infecting plants. 
http://www.jic.ac.uk/staff/saskia-hogenhout/insect.htm 
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Not all plant species infected with phytoplasmas have disease symptoms, but infected 
plants normally show symptoms such as virescence, phyllody, yellowing, witches’ broom, 
leaf rool and generalized decline (19). The most common symptoms of the infected plants 
are yellowing caused by the breakdown of chlorophyll and carotenoids, whose biosynthesis 
is also inhibited (21). Induced expression of sucrose synthase and alcohol dehydrogenase I 
genes in phytoplasma-infected grapevine plants grown in the field was also recently 
demonstrated (72).  

Phytoplasmas are mainly spread by insects of the families Cicadellidae (leafhoppers), 
Fulgoridae (planthoppers), and Psyllidae, which feed on the phloem tissues of infected plants 
acquiring the phytoplasmas and transmitting them to the next plant they feed on (136, 2). 
They enter the insect’s body through the stylet and then move through the intestine and 
been absorbed into the haemolymph. From here they proceeded to colonize the salivary 
glands, a process that can take up to some weeks (5, 80). Another pathway of phytoplasma 
survival and transmission is vegetative propagating plant material. As it mentioned 
phytoplasma invading phloem tissue and it is mostly find that in woody plants they 
disappear from aerial parts of trees during the winter and survive in the root system to re-
colonize the stem and branches in spring (149, 150, 58).  

1.2 Laboratory diagnostic of phytoplasmas  

In time when phytoplasmas were discovered as plant pathogens diagnostic was difficult 
since detection was based on symptoms observation insect or dodder/graft transmission to 
host plant and electron microscopy of ultra-thin sections of the phloem tissue. Serological 
diagnostic techniques for the detection of phytoplasma began to emerge in the 1980’s with 
ELISA based methods. However, serological methods weren’t always sensitive enough to 
detect various phytoplasmas (13, 47). Finally, in the early 1990’s PCR coupled with RFLP 
analysis allowed the accurate identification of different strains and species of phytoplasma 
(127, 91, 145). Nowadays, diagnosis of phytoplasmas is routinely done by PCR and can be 
divided into three phases: total DNA extraction from symptomatic tissue or insects; PCR 
amplification of phytoplasma-specific DNA; characterization of the amplified DNA by 
sequencing, RFLP analysis or nested PCR with group-specific primers (117). 

For the DNA extraction of known phytoplasma, several protocols for isolation from infected 
plant material and insects have been developed. Control samples are drowning from plants 
commonly infected by phytoplasmas. Reference phytoplasma strain collections are 
maintained in experimentally infected periwinkle (Catharanthus roseus) which is available for 
research and classification purposes (18, 26). 

In the second stage of the testing, DNA extracted from plants or insects is amplifying by 
using the polymerase chain reaction or PCR. PCR is a standardised technique in gene 
analysis to provide sufficient genetic material for detection (153). It works through the use of 
short lengths of DNA called primers that have a known sequence. Double stranded DNA is 
melting in a heating step exposing two single strands to which the primer can anneal. For 
the final stage, study of genetic variability is performing in order to differentiate between 
gene sequences from different phytoplasma.  

In adition to sequencing, there are several strategies which allow study of genetic variability 
in PCR products: Restriction fragment length polymorphism (RFLP) (93, 162); Terminal 
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restriction fragment length polymorphism (T-RFLP) (66); Heteroduplex Mobility Assays 
(HMAs) (160); Single Strand Conformation Polymorphisms (SSCP) (126). 

Alternative diagnostic methods have been established such as real-time PCR (12, 71, 161) 
and recently developed method for rapid detection of several phytoplasma species called 
loop-mediated isothermal amplification (LAMP) (155, 68). 

2. Sampling procedure 

Quality of DNA is of key importance in molecular diagnostics, since it can affect the final 
result. On other hand, for preparations of good quality and enriched in phytoplasma DNA, 
sampling material is of essential importance. Nevertheless, the quality of DNA depends on 
which plant tissue is examined.  

2.1 Sampling of plants 

It is generally more accurate sampling in the growing season, and although it can be used in 
the dormant season, this is not appropriate for the plant health inspections under the 
certification scheme. Due to the seasonal variation the optimal time for the diagnosis of 
phytoplasmas is from June to late autumn (30). Phytoplasmas could be detected using the 
polymerase chain reaction (PCR) from leaf midribs or phloem shaves from shoots, cordons, 
trunks and roots (117). Phytoplasmas were not always detected in samples from the same 
sampling area, from one sampling period to the next, firstly due to the uneven distribution, 
seasonal movement. Having this in mind, when collecting samples the best is to take leaves 
from different part of plant if it is possible symptomatic one, total amount should be around 
20 g. If symptoms are absent phytoplasma detection by PCR can be improved by sampling 
from shoots, cordons and trunks, especially during October or early spring. In this case the 
best is to sample roots near to the plant bases though small feeding roots are the best tissue 
for extraction. Sampling of dry and rotted plant parts is not recommended since 
phytoplasmas are obligatory parasites. Palmano (2001) (134) demonstrated importance of 
proper identification of plant parts sampling; in this case the leaves have to show obvious 
symptoms but without being necrotic or completely yellow. In addition, variance in 
phytoplasma titters between infected plants of the same species has been observed by 
Berges et al. (2000) (15) and may be caused by different stages of development and age of 
plants.   

It is recommended to record sampling area and plants by GPS device taking the coordinates 
and keep samples on cold (4 °C) till laboratory delivery.  

2.2 Sampling of insects  

Collection of the insect vectors for phytoplasma PCR analyses should be done in period 
where insects carry phytoplasma, furthermore knowledge about insects host plants and 
habitats are crucial things for successful collection. 

Different traps and sampling techniques can be applied to collect and monitor phytoplasma 
vectors according to the objective of the study. The most common trapping techniques are 
sticky chromotropic traps, emergence traps, sweep net and vacuum insect collectors (107, 
40). Collected insects should be place in ethanol and/or frozen. 
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3. Preparation of DNA templates 

3.1 Samples preparation for homogenization 

Prior to start extraction from collected plant samples, leaf midribs and/or phloem shaves 
are preparing for homogenization. Homogenization in liquid nitrogen with mortar and 
pestles is the most used method although some automatic homogenizers such as Fast Prep 
(MP Biomedicals, USA) (137) and Homex 6 (Bioreba, Switzerland) (52, 131) are available as 
faster alternative for the standard method.  

3.2 DNA extraction 

Accuracy of molecular analysis for pathogen detection in plant material requires efficient 
and reproducible methods to access nucleic acids. The preparation of samples is critical and 
target DNA should be made as available as possible for applying the different molecular 
techniques. However the suitability of most of the molecular methods depends closely on 
the amount of phytoplasma cells or nucleic acid in the extract. Approximately, 1% of 
phytoplasma DNA is extracted from tissue of total DNA (20). Since the concentration of this 
phloem-inhabiting pathogens is subjected to significant variations according to season (151), 
and is very low especially in woody hosts (79, 88), the importance of obtaining phytoplasma 
DNA at a concentration and purity high enough for precise analysis is aparent.  

There are a great many published methods for preparing the plant tissues or other type of 
samples before molecular detection of phytoplasmas; however, they all pursue access the 
nucleic acid, avoiding the presence of inhibitory compounds that compromise the detection 
systems. Target sequences are usually purified or treated to remove DNA polymerase 
inhibitors, such as polysaccharides, phenolic compounds or humic substances from plants 
(121, 63, 164, 122).  

Depending on the material to be analyzed the extraction methods can be quite simple or 
more complex. Generally there are three main approaches for obtaining of DNA template: 
protocols including a phytoplasma enrichment step, CTAB (cetyltrimethylammonium 
bromide) buffer-extraction protocols and DNA extraction using commercial kits.  

Phytoplasma enrichment extraction protocols (1, 138, 108) including preparation of plant 
extract in the phytoplasma enrichment buffer (PGB), after one or two centrifugations the 
obtained pellet is dissolving in the CTAB buffer following chloroform and/or phenol 
extraction and precipitation in isopropanol.  

Simple laboratory protocols based on preparation of plant extract in CTAB-buffer have also 
been published by several authors (35, 46, 6, 106, 165, 120, 152) with few steps and minimal 
handling, reducing the risk of cross contamination, cost and time, with similar results to 
those of longer and more expensive protocols. 

CTAB based-protocols were also adopted for extraction of phytoplasmas DNA from 
hemipterian vectors (107, 46, 116, 50, 51).  

The use of commercial kits, either general or specifically designed for plant material or for 
insect individuals, in some cases with magnetic separation has gained acceptance for 
extraction, given the ease of use and avoidance of toxic reagents during the purification 
process. Among those: DNeasy Plant kits, Qiagen (52, 42); Genomic DNA Purification kit, 
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Fermentas (143, 77); High Pure PCR Template Preparation kit, Roche (132); Wizard Genomic 
DNA Purification kit, Promega (104); NucleoSpin PlantII kit, Macherey-Nagel (135); 
FastDNA spin kit MP, Biomedicals (10); while InviMag Plant DNA Mini kit, Invitek; and 
QuickPick Plant DNA kit, Bio Nobile are optimized for extraction with a King Fisher mL 
Thermo Science workstation (137, 24, 99, 41).  

Recently a new method (LFD) (37, 155) has been developed for rapid DNA extraction which 
processing DNA in loop-mediated isothermal amplification (LAMP) procedure for the 
detection of phytoplasmas from infected plant material. LFD method allows DNA extraction 
from leaf and wood material just in two minutes. Plant extract prepared in commercial 
buffer supplied with the LFD (Forsite Diagnostics Ltd) commercial kit is placing onto LFD 
membranes of lateral flow devices, and small sections of these membranes are then adding 
directly into the LAMP reaction mixture and incubating for 45 min at 65 °C. Moreover, 
Hodgetts et al. (2011) (68) obtained also satisfied results with LAMP using DNA prepared 
with an alkaline polyethylene glycol (PEG). This DNA extraction method (31) involves 
gently maceration of a small amount of plant tissue in the PEG buffer and then transfer of 
the macerate to the LAMP reaction.  

Nevertheless, the choice of one or another system for nucleic acid extraction relies in 
practice on the phytoplasma to be detected and the nature of the sample, the experience of 
the personnel, the number of analyses to be performed per day, and the type of technique. 
As there are no universally validated nucleic-acid extraction protocols for all kinds of 
material and phytoplasma pathogens, those available should be compared before selecting 
one method for routine.  

4. Nucleic acid amplification method 

Detection and identification of phytoplasmas is necessary for accurate disease diagnosis. 
Sensitive methods need to be implemented in order to monitor the presence and spread of 
phytoplasma infections. Hence, it is necessary to devise a rapid, effective and efficient 
mechanism for detecting and identifying these microorganisms. Molecular diagnostic 
techniques for the detection of phytoplasma introduced during the last two decades have 
proven to be more accurate and reliable than biological criteria long used for phytoplasma 
identification (95). Polymerase Chain Reaction (PCR) is the most versatile tool for detecting 
phytoplasmas in their plant and insect hosts (153). One of the most utilized protocols for 
phytoplasma detection and characterization encompasses nested-PCR and RFLP analyses.  

4.1 Nested PCR 

Nested-PCR assay, designed to increase both sensitivity and specificity, is the leading 
method for the amplification of phytoplasmas from samples in which unusually low titer, or 
inhibitors are present that may interfere the PCR efficacy (56). The use of nested-PCR has 
been reported for diagnostic purposes particularly in plants when phytoplasmas occur in 
low titer in the phloem vessels of their host-plants and their concentration may be subjected 
to seasonal fluctuation (57, 75, 100, 117). 

DNA consists of long sequences of paired bases called genes which code for a particular 
trait. Some of these gene sequences are consistent across bacteria but vary in their detailed 
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sequence. These differences can be compared and used as a diagnostic test for a particular 
phytoplasma. Phytoplasma diagnostics has been routinely based on phytoplasma-specific 
universal (generic) (Table 1) or phytoplasma group specific (Table 2) Polymerase Chain 
Reaction (PCR) primers designed on the basis of the highly conserved 16S ribosomal RNA 
(rRNA) gene sequences (1, 38, 44, 61, 77, 144, 153). Nevertheless, to detect phytoplasmas in 
DNA samples universal phytoplasma primers designed on sequences of the 16S-23S rRNA 
spacer region (SR) (153) are generally using.  

Nested-PCR is performing by preliminary amplification using a universal primers pair 
followed by second amplification using a second universal primer pair. By using a universal 
primer pair followed by PCR using a group specific primer pair, nested-PCR is capable of 
detection of dual or multiple phytoplasmas present in the infected tissues in case of mixed 
infection (92). Until the reliability of universal primers detecting phytoplasmas is 
determined, it is advisable to use at least 2 different primer pairs to test a sample (eg P1/P7 
(44) and R16F2/R16R2 (91); 6F/7R (146) and fU5/rU3 (102). Unfortunately, some of the 
primers can induce dimers or unspecific bands. They also have sequence homology in the 
16S-spacer region to chloroplasts and plastids increasing the risk of false positives (64). 
Therefore, more specific universal phytoplasma primers are currently being developed (66, 
112) and it may be that these will be more suitable for diagnostics from samples.  
 

Primer set Location PCR product 
length 

Reaction References 

P1 
P7 

16S/23SR 
 

1800 bp  
 

Direct PCR 
 

(44) 
(153) 

R16F2 
R16R2 
R16F2n 
R6R2 

16S/IS 
 
16S/IS 

1245 bp 
 
1240 bp 

Nested PCR 
 
Nested PCR 

(91) 
  
(55) 

F1 
B6 

16S 1050 bp semi-nested 
PCR 

(38) 
(133) 

6F 
7R 

16S/23 
 

1700 bp Direct PCR 
 

(146) 

fU3 
fU5 

16S 880 bp Nested PCR (102) 

SecAfor 1 
SecArev 3 

secA gene 840 bp Direct PCR (67) 

SecAfor 2 
SecArev 3 

sec A gene 480 bp semi-nested 
PCR 

(67)  
 

Table 1. PCR universal  primers commonly used for the detection of phytoplasma 

Phytoplasma group-specific primers have also been designed on ribosomal protein gene, 
SecA, SecY genes (coding for the translocase protein) (28, 98), vmp1 gene (stolbur 
phytoplasma membrane protein) (28), imp gene (coding immunodominant membrane 
protein (112, 36), non-ribosomal gene aceF (115) and tuf gen (encoding the translation 
elongation factor Tu) (Table 2) (56, 67, 109, 147, 87,).  
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Primer set Specificity Location Expected size of PCR product References 

fTufAy 
rTufAy 

16SrI tuf gene
 

940 bp 
 

(147) 

AysecYF1 
AysecYR1 

16SrI secY gene 1400 bp
 

(98) 

rp(I)F1A 
rp(I)R1A 

16SrI Ribosomal 
protein

1200 bp (96) 

rp(II)F1 
rp(II)R1 

16SrII Ribosomal 
protein  

1200 bp (112) 

rp(III)F1 
rp(III)R1 

16SrIII Ribosomal 
protein

1200 bp (112) 

LY 16Sf 
LY16Sr 

16SrIV 16S 1400 bp (62) 

LYC24F 
LYC24R 

16SrIV nonribosomal 1000 bp (60) 

rp(V)F1A 
rp(V)R1A 

16SrV Ribosomal 
protein

1200 bp (97) 

rp(VI)F2 
rp(VI)R2 

16SrVI Ribosomal 
protein 

1000 bp (112) 

rp(VIII)F2 
rp(VIII)R2 

16SrVII, 
16SrVIII 

Ribosomal 
protein 

1000 bp (112) 

rp(IX)F2 
rp(IX)R2 

16SrIX Ribosomal 
protein

800 bp (112) 

rpStolIF 
rpStolIR 

16SrXII-A Ribosomal 
protein 

1372 bp (112) 

rpAP15f 
rp/AP15r 

16SrX-A Ribosomal 
protein 

1000 bp (114) 

AP13/AP10 
AP14/AP15 

16SrX-A nonribosomal 776 bp (27) 

f01 
r01 

16SrX 16S 1100 bp (102) 

AceFf1/AceFr1 
AceFf2/AceFr2 

16SrX aceF 500 bp (115) 

FD9R 
FD9F 

16SrV secY 1300 (35) 

FD9F3b 
FD9R2 

16SrV secY 1300 bp (29) 
(6) 

STOL11R1 
STOL11F2 

16SrXII secY 990 bp (35) 

STOL11R2 
STOL11F3 

16SrXII secY 720 bp (29) 

fStol 
rStol 

16SrXII-A 16S/SR 570 bp (106) 

fAY 
rEY 

16S 16SrV 300 bp (1) 

Table 2. Several group specific primers used for phytoplasma detection 
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The search for phytoplasma-specific primers has led to evaluation of primers based on these 
regions appears to offer more variation than that of the 16S gene. Nevertheless, design of 
primers based on various conserved sequences such as 16S rRNA gene, ribosomal protein 
gene operon, tuf and SecY genes was the major breakthrough in detection, identification, 
and classification of phytoplasmas (57, 147, 109, 161, 111, 112).  

Primers previously designed for specific amplification of DNA from stolbur phytoplasma 
were recently found to prime amplification of DNA from other phytoplasmas (39, 77); 
therefore, it may be advisable to supplement use of phytoplasma-specific primers with 
RFLP analysis of amplified DNA sequences.  

The choice of primer sets for phytoplasma diagnosis by nested PCR mostly depends on the 
phytoplasma we are looking for. Nested-PCR with a combination of different universal 
primers (Table 1) can improve the diagnosis of unknown phytoplasmas present with low 
titter in the symptomatic host. Universal ribosomal primers followed with nested with 
group-specific primers (Table 2) are extremely useful when the phytoplasma to be 
diagnosed belongs to a well-defined taxonomic group (117). 

PCR products are usually visualised on 1% agarose gel prepared in 1xTAE buffer, stained 
with ethidium bromide (40).  

The efficiency of nested-PCR has shown that it can reamplify the direct PCR product in 
dilution of 1: 60 000 (81). However, the system has not yet been devised to identify all the 
taxonomic groups, and this approach requires more than one PCR step, increasing the 
chances of contamination between samples, and does not provide the rapid and simple 
diagnostic tool required.  

4.1.1 Restriction fragment length polymorphism (RFLP) 

For identification of all detected phytoplasmas as well as for molecular characterisation of 
certain phytoplasmas strains Restriction Fragment Length Polymorphism, or RFLP is 
commonly used. RFLP is a technique that exploits variations in homologous DNA 
sequences. It refers to a difference between samples of homologous DNA molecules that 
come from differing locations of restriction enzyme sites, and to a related laboratory 
technique by which these segments can be illustrated.  

Phytoplasma amplified PCR products are cutting into fragments at specific sites using 
enzymes. More specific detection methods involve using phytoplasma-specific primers or 
differentiation on the basis of phylogenetic RFLP analysis of PCR amplified sequences (91, 
145). RFLP analysis of PCR amplified DNA sequences using a number of endonuclease 
restriction enzymes (93). The pattern of cut DNA is viewing using 5% polyacrilamid gel (95) 
or 2,5% to 3% agarose gel electrophoresis. Analysis of a known genomic sequence can show 
what size of fragments to expect depending upon the enzymes chosen for the cuts e.g., 
providing that 6 or more frequently cutting restriction enzymes are used in the RFLP 
analysis, specific identification of the phytoplasma may be obtained.  

Moreover this analysis is very useful for identification of new phytoplasmas, or 
phytoplasmas from a poorly studied region or crop. Because the RFLP patterns 
characteristics of each phytoplasmas are conserved, unknown phytoplasmas can be 
identified by comparing the patterns of the unknown with the available RFLP patterns for 
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known phytoplasmas without co-analyses of all reference representative phytoplasmas (94, 
162, 163, 25). In this case it is preferable to use bigger number of enzymes to achieve 
identification (38). Enzymes found valuable for these analyses include AluI, BamHI, BfaI, 
DraI, HaeIII, HhaI, HinfI, HpaI, HpaII, KpnI, MseI, RsaI, Sau3AI, TaqI and ThaI.  

Phytoplasma has not been cultured in cell-free medium, thus cannot be differentiated and 
classified by the traditional methods which are applied to culturable prokaryotes. The 
highly conserved 16S rRNA gene sequence has been widely used as the very useful primary 
molecular tool for preliminary classification of phytoplasmas. A total of 19 distinct groups, 
termed 16S rRNA groups (16Sr groups), based on actual RFLP analysis of PCR-amplified 
16S rDNA sequences or 29 groups based on RFLP with new computer-simulated RFLP in 

silico analysis have been identified (93, 162). 

4.1.2 Terminal restriction fragment length polymorphism (T-RFLP) 

A protocol based on the Terminal Restriction Fragment Length Polymorphism (T-RLFP) 
analysis of 23S rDNA sequence using a DNA sequence analysis system has been 
developed to provide the simultaneous detection and taxonomic grouping of 
phytoplasmas (66). Terminal-restriction fragment length polymorphism (T-RFLP) analysis 
is a direct DNA-profiling method that usually targets rRNA (82). This genetic 
fingerprinting method uses a fluorescently labelled oligonucleotide primer for PCR 
amplification and the digestion of the PCR products with one or more restriction 
enzymes. This generates labelled terminal restriction fragments (TRFs) of various lengths 
depending on the DNA sequence of the bacteria present and the enzyme used to cut the 
sequence. The results of T-RFLP are obtaining through TRF separation by high-resolution 
gel electrophoresis on automated DNA sequencers. The laser scanning system of the DNA 
sequencer detects the labelled primer (141) and from this signal the sequencer can record 
corresponding fragment sizes and relative abundances. Resulting data is very easy to 
analyse, being presented as figures for statistical analysis and graphically for rapid visual 
interpretation. 

The method was also designed to allow simple and easy testing of phytoplasmas and at the 
same time gave indication of their taxonomic group (9, 66). Comparing with the 
conventional nested-PCR/RFLP, method is less time-consuming and the approach is less 
expensive than sequencing. 

4.1.3 Single Strand Conformation Polymorphisms (SSCP)  

Single-strand conformation polymorphism (SSCP) analysis is a broadly used technique for 
detection of polymorphism in PCR-amplified fragments. SSCP was also assessed for the 
application in detection of the molecular variability phytoplasmas (125, 126). Amplified 
phytoplasma regions (16S rDNA, tuf gene, and dnaB gene), respectively are mixing with 
denaturing buffer after incubation, results of the SSCP are visualising on a non-denaturing 
polyacrylamide gel, optimized for each fragment length. SSCP revealed the presence of 
polymorphism undetected by routine RFLP analyses in all analyzed phytoplasma regions. 
Advantages of the SSCP in comparison with RFLP are sensitivity, time and cost 
consumption as well as suitability when large number of samples are screening for 
molecular variability.   

www.intechopen.com



 
Polymerase Chain Reaction for Phytoplasmas Detection 

 

101 

4.1.4 Heteroduplex Mobility Assay (HMA) 

Heteroduplex mobility assay (HMA) has been recently developed as fast and inexpensive 
method for determining relatedness between phytoplasmas DNA sequences. Initially, it was 
developed by Delwart et al. (1993) (43) to evaluate viral heterogeneity and for genetic typing 
of human immunodeficiency virus (HIV).  

So far, HMA was used in studies for differentiation of phytoplasmas in the aster yellows 
group and clover proliferation group (159) determination of genetic variability among 
isolates of Australian grapevine phytoplasmas (32); study of the genetic diversity of 62 
phytoplasma isolates from North America, Europe and Asia (160); for phylogenetic 
relationships among flavescence dorée strains and related phytoplasmas belonging to the 
elm yellows group (7); and to determine genomic diversity among African isolates of 
coconut lethal yellowing phytoplasmas causing Cape St. Paul wilt disease (CSPD, Ghana), 
lethal disease (LD, Tanzania), and lethal yellowing (LYM, Mozambique) (110). 

Amplified PCR products from positive phytoplasma strains are combining with the 
amplified products of reference strain mixing with annealing buffer and submitting to HMA 
analyses (110, 160) following visualization of HMA products on polyacrylamide gel. 
Heteroduplexes migrate more slowly than a homoduplex in polyacrylamide gel 
electrophoresis. The extent of the retardation has been shown to be proportional to the 
degree of divergence between the two DNA sequences. It was noticed, that presence of an 
unpaired base influence the mobility of a heteroduplex more than a mismatched 
nucleotide (158, 157). Performing HMA, Marihno et al (2008) (110) succeeded to identified 
three groups of phytoplasmas associated with various coconut lethal yellowing diseases. 
Moreover, this grouping was consistent with the genetic diversity described in the 
coconut yellowing-associated phytoplasmas detected after cloning, sequencing, and 
phylogenetic analyses.  

Further optimisations of this approach could facilitate phylogenetic study and diagnosis of 
many other phytoplasmas and development of a comprehensive PCR-based classification 
system. Considering simplicity and rapidness of the method, HMA could be used for initial 
screening among a large number of isolates and rapid identification of phytoplasmas as well 
as other organisms.   

4.2 Immuno-capture PCR 

Immuno-capture PCR assay, in which the phytoplasma of interest is first selectively 
captured by specific antibody adsorbed on microtiter plates, and then the phytoplasma 
DNA is released and amplified using specific or universal primers, can be an alternative 
method to increase detection sensitivity (139, 64). This method is aimed at avoiding the 
lengthy extraction procedures to prepare target DNAs. Nonetheless, this method is not 
suitable for detection of fruit tree and grapevine phytoplasmas. 

4.3 Real-time PCR 

Since the most universal as well as specific diagnostic protocols rely on nested PCR which, 
although extremely sensitive, is also time-consuming and posses risk in terms of carry-over 
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contamination between the two rounds of amplification, real-time PCR has recently 
replaced the traditional PCR in efforts to increase the speed and sensitivity of detection for 
mass screening. 

The main principle of real-time PCR is based on fluorescent chemistries for labelling of the 
amplicons. During a real-time PCR run, accumulation of newly generated amplicons is 
monitored by each cycle by fluorescent detection methods, and so there is no need for post-
PCR manipulation such as electrophoresis, which is required at the end of regular PCR. 
Moreover, the amount of fluorescent, monitored at each cycle is proportional to the log of 
concentration of the PCR target, and for this reason real-time PCR is also powerful 
technique for quantification of specific DNA. There are several labelling techniques, most of 
which specially bind to a target sequence on the amplicon, while others aspecifically stain 
double-stranded (ds) DNA amplicons. In addition, numbers of protocols have been 
developed for real-time PCR universal and specific detection phytoplasma.  

For preliminary screening, 16S rDNA gene were adapted for the universal diagnosis of 
phytoplasmas using direct real-time PCR amplification (30, 48, 71) (Table 3) and all of them 
exploited a TaqMan probe for detection. TaqMan probes are labelled at the 5’end with 
reporter dye and at the 3’ end with a quenching molecule; during each PCR cycle in the 
presence of the specific target DNA, the TaqMan probe, bound to its target sequence, which 
is then degraded by the 5’-3’ exonuclease activity of the Taq polymerase as it extend the 
primer. The fluorescence moiety of the probe is therefore freed from its quencher-labelled 
portion and the fluorescence is detected by the optical system of the apparatus. The 
sensitivity of the 16S rDNA-based primer/probe system can be used to detect phytoplasmas 
belonging to several ribosomal subgroups and they showed sensitivity similar to that of 
conventional nested-PCR.  

Group specific phytoplasma primers and probes for real-time PCR system have been 
designed to overcome problem with the time-consuming methods for phytoplasma strains 
identification and to further enhance the specificity of detection. Several laboratories have 
proposed rapid, specific and sensitive diagnostic protocols for detection of quarantine and 
economically important phytoplasmas of fruit trees and grapevine such as flavescance dorée 
(FD) and bois noir (BN) phytoplasmas infecting grapevine (22, 48, 8, 53, 71, 14); ‘Ca. 
Phytoplasma mali’ (apple proliferation, AP), ‘Ca. Phytoplasma pyri’ (pear decline, PD), ‘Ca. 
Phytoplasma pruni’ (European stone fruit yellows, ESFY) important pathogens of fruit trees 
(12, 76, 48, 156, 3,4,  113, 23, 128, 41). Most of the primer/probe systems are targeting 16S 
rDNA gene though some others genes or even randomly cloned DNA fragments to which 
no specific function is assigned have been used (Table 3). For fluorescent detection SYBR 
Green I has been applied for the diagnosis of AP, PD, ESFY and FD, all quarantine 
phytoplasmas of fruit trees and grapevine in Europe. Real-time PCR assays were also 
developed using TaqMan minor groove binding (MGB) probe to detect AP in plant material 
(12, 3) as well as for FD, BN and other phytoplasmas less frequently infecting grapevines 
(71, 128). MGB (minor groove binding) probe has an MGB ligand and non-fluorescent 
quencher conjugated to the 3’ end, plus a fluorescent reporter dye at the 5’ end. The MGB 
ligand allows the use of shorter and more specific probes by increasing the stability of the 
probe-target bond. This property allows the use of shorter probes, with higher specificity 
than conventional TaqMan ones and the discrimination of even single nucleotide 
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mismatched (83, 128). Furthermore, applying the same protocols, phytoplasmas DNA could 
be also detected in insect samples (113, 76, 48, 71) what is also decisive in the search for 
other potential vectors. 
 
 

Specificity Target gene References 

Universal 16S rDNA (30) 
Universal 16S rDNA (48) 

Universal 16S rDNA (71) 
FD 16S rDNA (48) 
FD 16S rDNA (8) 
FD Sec Y (71) 
FD 16S rDNA (22) 
BN Genomic fragment (48) 
BN 16S rDNA (8) 
BN Genomic fragment (71) 
AP Nitro reductase (48) 
AP Genomic fragment (76) 
AP 16S rDNA (12) 
AP 16S rDNA (4) 
AP 16S rDNA (23) 
AP 16S–23S rRNA (128) 
PD 16S–23S rRNA (128) 
ESFY 16S–23S rRNA (128) 
ESFY Ribosomal protein (113) 
‘Ca. P. asteris’(onion yellows) tuf (161) 
‘Ca. P. asteris’(aster yellows) 16S rDNA (8) 
‘Ca. P. asteris’(aster yellows) 16S rDNA (69) 
Beet leafhopper transmitted 
virescence virus  

16S rDNA (34) 

Table 3. Oligonucleotide primers and probes used for phytoplasma detection by real-time 
PCR  

A well-optimized reaction is essential for accurate results, which must be further analysed. 
As it is mentioned before, diagnosis of the pathogens in woody plants is often hampered by 
the presence of PCR inhibitors such as polyphenolics, polysaccharides and other molecules 
that may produce false negative results even from heavily infected samples. Additional 
problem may be also caused by amplification of other bacteria with universal phytoplasma 
primers/probe which could be present on the surface of some plants (49). Therefore, to 
avoid false positives specific probe can be included. So far, several sequence-specific 
detection tools are available: the chloroplast chaperonin 21 gene (8); cytochrome oxidase 
gene (71); the chloroplast gene for tRNA leucine (12); and the 18S rDNA gene (30, 118, 113, 
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128) addressed as targets to control the quality of total DNA extracted. SYBR Green I is one 
of the cheapest chemistry for real-time PCR detection, but the specificity of the reaction is 
extremely low, and needs to be checked. SYBR Green I dye chemistry will detect all double-
stranded DNA, including non-specific reaction products. Therefore, amplification of non 
specific DNA may occur and analyses of melting curve is usually indispensible (48, 156).  

One of the biggest advantages of real-time PCR is suitability of the method for 
quantification of nucleic acids of many plant pathogens, including phytoplasmas. In past 
competitive PCR was applied to monitor multiplication of ‘Candidatus Phytoplasma asteris’ 
in vector Macrosteles quadrinlineatus (101). Quantification was achieved following co-
amplification of phytoplasma DNA and several dilutions of an appropriate internal 
standard. This approach was complex, several steps, such as electrophoresis, image analysis 
of gel, compensating for differences in intensity due to the different sizes of the product 
from the pathogen target and the internal standard, were required before the band 
intensities could be plotted for linear regression analysis. However, nowadays absolute 
quantification of phytoplasma DNA was achieved per gram of extracted tissue (161, 23) or 
per insect vector (76). Possibility of the method to quantify amount of phytoplasma DNA in 
plant tissue and insect vectors gave opportunity to better understand biology and 
epidemiology of the pathogens, to allow examination of different multiplication rates and to 
calculate the concentration in their plant and vector host (161, 142, 23) as well as to study 
interactions of different phytoplasma species or strains present in mixed infection (100, 19). 
These results will find application in development of resistant plant varieties, a hot topic for 
economically important woody crops such as palms, fruits and grapevines. 

4.4 Loop-mediated isothermal amplification assay (LAMP) 

Methods described above require relatively expensive equipment for amplification of the 
phytoplasma DNA and/or analysis of the results. In addition, standard methods for DNA 
extraction involve buffers, such as a CTAB buffer combined with phenol ⁄ chloroform 
extraction and isopropanol precipitation (46, 165), which are time-consuming and cannot 
be performed in the field. Whilst leaf tissue is usually used as the source of DNA for 
detection of many phytoplasmas, in other cases, such as coconuts, trunk borings or roots 
are often used, and DNA is then extracted from this woody tissue either by grinding in 
liquid nitrogen, or when this is unavailable, the sawdust is left in the CTAB extraction 
buffer for 48 h before the subsequent phenol chloroform extraction and alcohol 
precipitation (129). For that reason there is increase need for development of the method 
for a more rapid diagnostic assay for phytoplasmas that can be used to produce a 
diagnosis within an hour of sampling in the field or on site in case of imported material in 
quarantine stations.  

Several attempts to produce field-based systems, e.g. using phytoplasma-specific antibodies 
and ELISA-based or lateral flow devices (LFD)-based systems, fall down because of a lack of 
sensitivity, and whilst a phytoplasma IgG antibody based system is commercially available 
for few phytoplasmas (103). Recently, Fera (Food and Environment Research Agency) 
developed isothermal amplification assays, such as the Loop-Mediated Isothermal 
Amplification (LAMP) procedure for detection of several human and plant pathogens 
including phytoplasmas (130, 140, 37, 154). In the method the cycling accumulates stem-loop 
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DNAs with several inverted repeats of the target and cauliflower-like structures with 
multiple loops, and produces up to 109 copies of the target in less than 1 h at 65°C. Further, 
LAMP products can be detected by conventional agarose gel electrophoresis; using 
spectrophotometric equipment to measure turbidity (124); in real-time using intercalating 
fluorescent dyes (105); or by visual inspection of turbidity or colour changes (123, 74).  

For the routine diagnosis colorimetric assay that uses hydroxyl napthol blue to detect the 
magnesium pyrophosphate by-product in successful LAMP amplification (54) showed the 
best suitability. The hydroxyl napthol blue can be incorporated into the LAMP reaction and 
the colour change visualized immediately after amplification has been completed, and 
amplification can subsequently be confirmed by agarose gel electrophoresis when necessary. 

Two methods for extraction of nucleic acid from plant material were adopted for LAMP 
application: LFD (37, 155) and an alkaline polyethylene glycol (PEG) DNA extraction 
method (31, 68).   

Primers for the LAMP assays were designed as described in Tomlison et al. (2010) (155) and 
Bekele et al (2011) (16) based on the 16S-23S intergenic spacer region. In addition cox gene 
primers were used to confirm that all DNA extractions supported LAMP (16). Primers for 
LAMP assays were designed against range of ribosomal group (16SrI, 16SrII, 16SrIII, 16SrIV, 
16SrV, 16SrXI, 16SrXII, 16SrXXII) (68).  

Developed protocol for LAMP-based diagnostic for a range of phytoplasmas can be 
conducted in the field and used to provide diagnosis within 1-hour of DNA extraction (68). 
According to the same author, PEG extraction method showed several advantages such is 
rapidness and requires less equipment than the LFD-based method, reducing the likelihood 
of sample contamination though the disadvantage of this method is that the DNA cannot be 
stored reliable long-term. Further efforts are doing to develop a hand held device capable of 
performing extraction, set-up and real-time detection for grapevine phytoplasmas. The 
device will make a single step homogeneous system from sampling to result, further 
reducing the risk of sample-to-sample contamination and enabling testing by non-specialists 
in the field (68).   

5. Conclussions 

In this review, molecular approaches for phytoplasma detection, identification and 
characterisation have been discussed. Before molecular techniques were developed, the 
diagnosis of phytoplasma diseases was difficult because they could not be cultured. Thus 
classical diagnostic techniques, such as observation of symptoms, were used. Ultrathin 
sections were also examined for the presence of phytoplasmas in the phloem tissue of 
suspected infected plants. Treating infected plants with antibiotics such as tetracycline to see 
if this cured the plant was another diagnostic technique employed. Diagnostic techniques 
such as ELISA test which allowed the specific detection of the phytoplasma began to emerge 
in the 1980s. In the early 1990s, PCR-based methods were developed that were far more 
sensitive than those that used ELISA, and RFLP analysis allowed the accurate identification 
of different strains and species of phytoplasma. Restriction fragments length polymorphism 
(RFLP) analysis together with the sequencing of 16Sr phytoplasma genes was the first step 
on this way enabling the construction of phylogenetic trees. Nowadays, polymerase chain 
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reaction with primers from sequencing of randomly cloned phytoplasma DNA, from 16S 
rRNA, from ribosomal protein gene sequences, from SecY and Tuf genes, and from 
membrane associated protein genes opened new paths for research on phytoplasma 
identification and classification.  

Nested PCR has been applied to overcome problems related to sensitivity of phytoplasma 
detection, although this approach is more time consuming and subject to template. 
Unfortunately, nested-PCR also meets some difficulties: unspecific bands, false positives or 
negatives caused by DNA and contamination of single or nested PCR. Therefore, 
confirmation of PCR results by using different primer pairs combinations (generic and 
group-specific) with subsequent RFLP and/or sequencing of PCR amplicons seems to be the 
way for correct phytoplasma identification in the examined samples. 

More recently, real-time PCR has replaced the traditional PCR in efforts to increase the 
speed and sensitivity of detection and improve techniques for mass screening as well as to 
bypass post-PCR manipulations. Moreover, the techniques as quantitative real-time PCR 
(QPCR) have been developed to allow assessment of the level of infection in plants and 
vectors.  

T-RFLP, SSCP and HMA analyses provide simultaneous detection and group 
characterisation of phytoplasmas.  

Isothermal amplification of nucleic acid has recently been described as an alternative to PCR 
and applied for specific detection of several phytoplasmas. This method has potential for 
testing in field or in under equipped laboratories.  

Despite the developments of all protocols which overcome most of the difficulties of 
phytoplasma diagnosis, the detection of these pathogens is still quite laborious. Therefore, 
future work is needed to develop quicker procedures to extract phytoplasma-enriched 
nucleic acids, giving accent on automation which involving silica or magnetic beads. 
Furthermore, developments for phytoplasma detection should be stressed on improvements 
of methods which enable simultaneous detection and taxonomic grouping of phytoplasmas. 
Use of high-throughput, sensitive, rapid and quantitative techniques will help to 
understand how phytoplasmas exploit their unique ecological niches. 
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