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1. Introduction 

Polymer transformation processes are based on a detailed knowledge of material behaviour 
under extreme conditions that are very far from the usual conditions normally available in 
the scientific literature. In industrial processing, for instance, materials are subjected to high 
pressure, high shear (and/or elongational) rates and high thermal gradients. These 
conditions lead often to non-equilibrium conformational states, which turn out to be very 
hard to describe using classical approaches. Moreover, it is easy to understand that the 
analysis of the relationships between the processing conditions and the morphology 
developed is a crucial point for the characterisation of plastic materials. If the material under 
investigation is a semicrystalline polymer, the analysis becomes still more complex by 
crystallisation phenomena, that need to be properly described and quantified. Furthermore, 
the lack of significant information regarding the influence of processing conditions on 
crystallization kinetics restricts the possibilities of modelling and simulating the industrial 
material transformation processes, indicating that the development of a model, capable of 
describing polymer behaviour under drastic solidification conditions is a very complex task. 

However, new innovative approaches can lead to a relevant answer to these scientific and 

technological tasks, as shown by some recent developments in polymer solidification 

analysis (Ding & Spruiell, 1996, Eder and Janeschitz-Kriegl, 1997, Brucato et al., 2002) under 

realistic processing conditions. These approaches are based on model experiments, 

emulating some processing condition and trying to identify and isolate the state variable(s) 

governing the process. 

So far, due to the experimental difficulties, the study of polymer structure development 
under processing conditions has been mainly performed using conventional techniques 
such as dilatometry (Leute et al., 1976, Zoller, 1979, He & Zoller, 1994) and differential 
scanning calorimetry (Duoillard et al., 1993, Fann et al., 1998, Liangbin et al., 2000). 
Investigations made using these techniques normally involve experiments under isothermal 
conditions. However experiments under non isothermal conditions have been limited to 
cooling rates several orders of magnitude lower than those experienced in industrial 
processes, which often lead to quite different structures and properties. Finally, in the last 
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years, experiments revealing the crystallinity evolution by measures of crossing light 
scattering, have been conducted at intermediate cooling rate (Strobl, 1997, Piccarolo, 1992). 

For the sake of completeness, it should be conceded that the complexity of the investigation 
concerning polymer solidification under processing conditions is even greater if the wide 
latitude of morphologies achievable is considered, especially when dealing with 
semicrystalline polymers. This would have to take into account also the complexity 
introduced by the presence of the crystallization process (Eder & Janeschitz-Kriegl, 1997). 

Generally speaking, polymer crystallization under processing conditions cannot be 
considered an “equilibrium” phenomenon, since it is not possible to separate the 
thermodynamics effects on the processes from the kinetic ones. Furthermore, crystallization 
of polymeric materials is always limited by molecular mobility, and very often leads to 
metastable phases, as recently shown by Strobl (Strobl, 1997). Further evidences of the 
formation of metastable phases under drastic conditions (high cooling rates and/or high 
deformation rates) have been widely reported for iPP (Piccarolo, 1992, Piccarolo et al., 
1992a). Choi and White (Choi & White, 2000) described structure development of melt spun 
iPP thin filaments, obtaining conditions under which different crystalline forms of iPP were 
obtained as a function of cooling rate and spinline stresses. On the basis of their 
experimental results together with many others available in literature, the authors have 
constructed a diagram, which indicates the crystalline states formed at different cooling 
rates in isotropic quiescent conditions. Continuous Cooling Transformation curves (CCT) 
have been reported on that diagram. According to the authors, at low cooling rates and high 
stresses, the monoclinic a-structure was formed, whereas at high cooling rates and low 
stresses a large pseudo-hexagonal/smectic (“mesophase”) region was evident. 

The formation of metastable phases normally takes place in a cooling rate range not 
achievable using the conventional techniques mentioned above; nevertheless it is worth 
reminding that the behaviour of a given semi-crystalline polymer is greatly influenced by 
the relative amount of the constitutive phases. From this general background the lack of 
literature data in this particular field of investigation should not be surprising, due to the 
complexity of the subject involved. The major task to tackle is, probably, to identify the 
rationale behind the multiform behaviour observed in polymer solidification, with the aim 
of finding the basic functional relationships governing the whole phenomenon. Therefore a 
possible approach, along this general framework, consists of designing and setting-up 
model experiments that could help to isolate and study the influence of some experimental 
variables on the final properties of the polymer, including its morphology. Thus a 
systematic investigation on polymer solidification under processing conditions should start 
on the separate study of the influence of flow, pressure and temperature on crystallization.  

Due to experimental difficulties, there are only a few reports on the role of pressure in 
polymer crystallization, especially concerning its influence on  the mechanical and physical 
properties. Moreover, the majority of studies made at high pressure have concentrated only 
on one polymer, polyethylene, dealing with the formation of extended chain crystals, as 
shown by Wunderlich and coworkers (Wunderlich & Arakaw, 1964, Geil et al., 1964, 
Tchizmakov, 1976, Wunderlich, 1973, 1976, 1980, Wunderlich & Davison, 1969, Kovarskii, 
1994). The pressure associated with such investigations tends to be extremely high (typically 
500 MPa) with respect to the pressures normally used in industrial processes. Furthermore, 
the experimental conditions normally investigated were quasi-isothermal. This implies that 

www.intechopen.com



Solidification of Polypropylene Under Processing Conditions –  
Relevance of Cooling Rate, Pressure and Molecular Parameters 

 

431 

the obtained results may not be applied to conventional polymer processing, involving very 
high thermal gradients. 

The purpose of this chapter is to provide a general experimental route for studying the 
crystallization behaviour of isotactic polypropylene under high cooling rates and pressure.  

In this respect, two complementary devices were used. The first involves a special 
equipment that has been developed, and widely tested, to quench polymeric samples at 
atmospheric pressure in a wide range of cooling rates (from 0.1 up to ca 2000 °C/s) under 
quiescent conditions and with the use of which it has been possible to collect much 
information about the influence of cooling rate on the final properties. The second was an 
innovative equipment specifically designed to evaluate the combined effect of typical 
injection moulding pressures (up to 40 MPa) and temperature gradients (up to a maximum 
of ca 100 °C/s), with the aid of a modified injection moulding machine. The results show 
that the influence of pressure on polymer crystallization is not as obvious as one may 
expect. An increase of cooling rate generally determines a transition from crystalline to non-
crystalline (or pseudo-crystalline) structures. As for the influence of pressure, in iPP an 
increase in pressure results into a decrease of crystallinity, owing to kinetic factors, such 
decreased mobility related to the increased Tg. 

In the last part of the chapter, a discussion on the influence of molecular parameters on the 
crystallization kinetics of iPP under processing conditions is presented. As a matter of fact, the 
crystalline structure of iPP quenched from the melt is affected not only by cooling rate, or 
generally by processing conditions, but also by molecular parameters like molecular mass 
(Mw) and molecular mass distribution (Mwd). Different configurations (isotacticity and head-
to-tail sequences) or addition of small monomeric units and nucleating agents can also 
influence the final structure (De Rosa et al., 2005, Foresta et al., 2001, Sakurai et al., 2005, 
Nagasawa et al., 2005, Raab et al., 2004, Marigo et al., 2004, Elmoumni, 2005, Chen et al., 2005). 

Influence of molecular weight on polymer crystallization is controversial. Stem length 
indeed interferes with entanglement density, thus determining a rate controlled segregation 
regime of topological constraints in non crystalline regions. Very low molecular weight tails 
of the distribution are shown to positively affect crystallization kinetics although their 
thermodynamic action should not favour perfection of crystallites (Strobl, 1997). 

It is known from the literature that crystallization kinetics of semicrystalline polymers is 
influenced by the presence of contaminants. The main effect of the addition of a nucleating 
agent is an increase of the final crystallinity level together with a higher final density and a 
finer and homogeneous crystal size distribution. This typical effect of enhancement of the 
overall crystallization kinetics allows one to infer that crystallization kinetics are nucleation-
controlled, being the nucleation step the rate determining one whilst the growth rate 
remains almost unaffected (Nagasawa, 2005, Raab, 2004). 

On the other hand, the incorporation of a small content of ethylene units in the 
polypropylene chains has an influence on the regularity of the molecular structure. In fact, a 
change in tacticity induced by the shortening of isotactic sequences was observed 
(Zimmermann, 1993). Although this has a negative influence on crystallisation kinetics, an 
opposite effect should come from the enhanced mobility due to the presence of the ethylene 
sequences. As a result of these counteracting effects, a relatively narrow window of cooling 
rates exists in which an enhancement of crystallization kinetics sets in (Foresta et al., 2001). 
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A better understanding of the relation between processing and properties can be achieved if 
the absolute crystallinity during transformation can be predicted as a function of processing 
conditions. This prediction has to be supported by a crystallization kinetics model; here a 
modified two-phase non-isothermal form of the Kolmogoroff-Avrami-Evans model was 
used to describe the crystallization kinetics (Avrami, 1939, 1940, 1941, Evans, 1945, La 
Carrubba et al., 2002a, Brucato et al., 1993). The main purpose of this analysis is to underline 
the relevance of thermal history resulting from various cooling conditions on the 
crystallization kinetics of different grades of iPP containing various additives such as 
nucleating agents and small content of ethylene.  

More specifically, the discussion attempts to identify relevant material parameters 
determining quiescent non isothermal crystallization kinetics simulating polymer 
solidification under processing conditions. One has obviously to cope with commercially 
relevant grades, which implies constraints in the span they cover. Therefore limitations arise 
not only due to the intrinsic poor significance of material parameters to crystallization 
kinetics but also owing to the limitation on the grades one can recover on the market. 
Finally, one of the main issues of this part of the chapter is the appropriate comparison 
among the investigated iPP samples in order to outline, when possible, the influence on the 
crystallization kinetics of average molecular mass, molecular-mass distribution, isotacticity, 
copolymerization with small amount of ethylene units and the addition of nucleants. 

2. Description of the experimental procedure 

2.1 Rapid cooling experiment at atmospheric pressure 

A schematic drawing of the experimental set-up is shown in fig. 1 a. The sample, properly 
enveloped in a thin aluminium foil, so as to avoid leakage of material while in the molten 
state, (see fig. 1 b), and sandwiched between two identical flat metallic slabs, is heated to a 
suitable high temperature in a nitrogen fluxed environment. 

   
a     b 

Fig. 1. a. Scheme of the experimental set-up for quench experiments; b. Sample assembly 
and temperature profiles. b=1-2 mm; l=50-100 μm; d=10 μm 
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A fast response, 12.5 m thick (Omega type CO2), thermocouple buried inside one of the 

slabs allows to record the whole thermal history by a data acquisition system.  

A Cu-Be alloy was chosen for the production of the metallic slabs, owing to its high Young’s 

Modulus coupled with a high thermal conductivity (see Goodfellow Catalogue, 1996). 

After keeping the sample system at a temperature above the equilibrium melting 

temperature for a time sufficient to erase memory effects (Alfonso & Ziabicki, 1995, Ziabicki 

& Alfonso, 1994), the sample assembly was moved to the lower zone of the container where 

it was quenched by spraying a cooling fluid on both faces through two identical nozzles 

positioned symmetrically opposite to each face of the sample assembly (fig. 1a). 

The cooling rate was varied by changing the cooling fluid, its flow rate and temperature, or 

by changing the thickness of the sample assembly. However, the coolant temperature may 

not be crucial if it is sufficiently lower than the polymer solidification temperature. 

Once the sample reached the final temperature it was immediately removed from the 

sample assembly and kept at low temperature (-30°C) before further characterization. 

Three typical thermal histories (i.e. variation of temperature with time) obtained using this 

device are shown in fig. 2. Results of an extended set of experiments are reported in fig. 3 as 

recorded variation of cooling rate with sample temperature. The data in fig. 3 represent the 

range of variation of cooling rate covering five orders of magnitude (0.01-1000°C/s). This 

result is particularly significant when compared to standard DTA or DSC runs which cover 

only the lowest two decades of this cooling rate range (0.01-1°C/s). It is worth noting that 

for crystallization kinetics the high cooling rates are very informative, especially for fast 

crystallizing polymers, such as polyolefins. However, the high cooling rates severely restrict 

the possibility to detect the structural modifications taking place during solidification. The 

latter is the main constraint with respect to the real-time information provided by DTA and 

DSC measurements. 

 

Fig. 2. Typical thermal histories for spray cooled samples  
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Fig. 3. Typical experimental cooling rates variation with sample temperature 

With respect to the thermal histories in fig. 2, one will note that there is no temperature 
plateau associated with crystallization, the process occurring during cooling. This is due to 
the fact that temperature was measured on the metal slabs and not in the bulk of the 
polymer sample, albeit the latter has a negligible mass and volume relative to the size of the 
metal slabs. Furthermore, the very high heat flux to which the polymer was subjected masks 
the effect of the latent heat of crystallization. So, only the temperature-time history is 
recorded and, therefore, at the end of the cooling process one gets a thin polymeric film with 
a known thermal history. Sample structure depends on its thermal history and this 
relationship can be experimentally assessed if the "length scale" of structural features 
developed is small compared to the sample thickness and if the final structural features are 
uniform throughout the whole sample (Titomanlio et al., 1997, Titomanlio et al., 1988a, 
Titomanlio et al., 1988b). The sample homogeneity is thus crucial to the method envisaged 
since the recorded thermal history is the only available information for the determination of 
the final structure of the sample. The proposed model experiment is addressed to design a 
method for the characterization of the non-isothermal solidification behaviour 
encompassing typical cooling conditions of polymer processing. Only temperature history 
determines the structure formed as the melt solidification takes place in quiescent 
conditions. A discussion on the temperature distribution in a mono-dimensional heat 
exchange regime and the evaluation of structure distribution obtained along the thickness 
follows. 

2.1.1 Cooling mechanism 

We will consider now the effect of the applied heat flux on the temperature distribution of 

the metal in the sample assembly. Later in the next section the temperature distribution 

across the sample in contact with the metal will be examined. 

The shape of the temperature profile in a flat slab having the following characteristics, 

thickness 2b and thermal conductivity k, and conditions, initial temperature Ti, suddenly 

exposed to a cooling medium at temperature T0 and draining heat from the slab with a heat 

exchange coefficient h it is determined by the dimentionless Biot number: 

 /Biot h b k   (1a) 
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For our experimental conditions the highest value of Biot number is estimated to be 0.3. 

Although this value does not fulfil the classical requirements for a flat temperature profile 

distribution within the slab (which requires Biot < 0.1), the slab “cooling time” is practically 

unaffected by slab conductivity, therefore the so-called “regular regime” conditions still 

apply (Isachenko et al., 1987). In other words, the maximum Biot number for achieving a flat 

temperature profile is: 

 Biotmax=0.1 (1b) 

On the other hand, an estimate of the response time of the slabs assembly can be easily taken 

as the time needed for the mid plane to undergo 99% of a sudden drop of the wall 

temperature. The solution of such transient heat conduction problem gives the characteristic 

time R  as (Carslaw et al., 1986, Bird et al., 1960): 

 22 /R b   (2) 

Where  and b are thermal diffusivity and half thickness of the slab respectively. Using the 

values of = 2.6 10
-5

 m
2
/s (copper-beryllium 2% alloy – Goodfellow Catalogue, 1996) and 

b=0.001m in equation (2) gives  R s. Note that the fastest cooling rate in our 

experiments has a characteristic time A s, which is about five times R . Furthermore, 

since the real wall boundary thermal condition on the slab is not as sharp as the assumed 

stepwise drop of the wall temperature, the heat conduction inside the assembly does not 

affect the cooling history to any appreciable extent. Applying a more realistic boundary 

condition, i.e. a wall temperature depending on the heat flux, does not lead to a sudden wall 

temperature drop, and the ratio /A R   becomes larger. 

In the experiments water sprays were used to drain heat from the slab, therefore the associated 

heat transfer coefficient depends very much on the flow rate of the cooling medium, as shown 

in figs. 4 a-b. Here the heat flux was evaluated according to the lumped temperature energy 

balance on a slab of volume V=Sx2b, having a heat capacity cp and density : 

 0 0 /      2  ( ) 2pc V dT dt h S T T h S T T     
 

  0 0/   ( ) / /l ldT dt T T T T              /l pc b h   (3) 

Where S is the slab surface, h heat transfer coefficient, T0 the coolant temperature and T the 

lumped sample temperature. By assuming that the heat exchange coefficient h is constant, 

then slope of the cooling rate versus temperature curve is also constant, while the slab 

temperature decays exponentially with time. 

Fig. 4a shows that below the maximum and using smaller nozzles, giving lower mass flow 

rates, there are two heat transfer regimes separated by the Leidenfrost temperature, i.e. by 

the onset of temperature for the production of a boiling layer nucleated by the surface of the 

slab. In fig. 4b the increase of coolant mass flow rate results in the disappearance of the 

Leidenfrost temperature and brings about an extension of the linear dependence of heat flux 

to a higher temperature range up to the maximum (Ciofalo et al., 1998). 
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a     b 

Fig. 4. Heat Flux variation with sample assembly temperature for two different (a, small 
nozzles and b, large nozzles) spray nozzles 

As long as the heat flux depends on temperature linearly, a constant heat transfer coefficient 

can be successfully used. This condition is well identified in the low driving force (low 

temperature difference) region. This result can be understood considering that the heat 

transfer of convection induced by the liquid drops impacting onto the solid surface is similar 

to that of nucleated boiling, since it promotes the renewal of the liquid layer close to the 

solid surface. Indeed the two mechanisms take place in parallel and the spray cooling 

effectiveness can be varied by changing the mass flow rate of the coolant and, at high values 

of the mass flow rate, the same value of the heat exchange coefficient is attained in a 

temperature range spanning from ambient temperature to about 150°C. This last point is 

particularly relevant for fast crystallizing polymers since high heat transfer coefficients are 

required at low temperatures to quench them effectively, as in the case of iPP. 

 

Fig. 5. Heat exchange coefficient vs. coolant mass flux for four different spray nozzles 

The relationship between the liquid convection heat transfer coefficient, h, and the mass 
flow rate is summarized in fig. 5 for all the nozzles used in this work. Within an error of 
±10% there is a square root dependence of h on mass flow rate (Ciofalo et al., 1998). 

The time constant, l , obtained from equation (3), attains a minimum value of about 0.05 s. 

A comparison of the values of 5 l and R  (98.5% of the overall temperature drop) shows 
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that the driving force (i.e. the temperature drop) is larger in the fluid than in the Cu-Be slab, 

i.e. the heat transfer is mainly controlled by the fluid heat transfer. At the same time and the 

definition of l suggests that another way to change linearly the slope of the cooling curves 

of figs. 4 a-b is by modifying the slab thickness. Moreover equations (2) and (3) show that 

the ratio /l R   is proportional to the inverse of the thickness, suggesting that one should 

use the thinnest possible slab to achieve a more uniform temperature distribution through 

the thickness. 

In principle the time constant, l , drawn from figs. 4 a-b could be used as a parameter to 

rigorously identify the overall cooling process (Ding & Spruiell, 1996). When the 

solidification temperature of the polymer falls in a range in which there is a change of the 

heat transfer regime, the heat transfer coefficient will also change with temperature while 

the use of l  becomes meaningless, as it is no longer constant. On the other hand, the value 

of l  changes slightly when the temperature range where solidification takes place is quite 

narrow (of the order of 10°C). Although an average value of l  could be used, it is preferred 

to use an equivalent parameter to identify the cooling process, which is the average cooling 

rate in the range of temperatures within which the polymer solidifies (Brucato et al., 2002, 

Piccarolo, 1992, Piccarolo et al., 1992a, Piccarolo et al., 1992b, Brucato et al., 1991a, Brucato et 

al., 1991b, Piccarolo et al. 1992, Piccarolo et al., 1996, Brucato et al., 2009). This parameter, 

indeed, imposes not only the experimental time to be constant, but also the characteristic 

range of temperatures in which a given polymer solidifies. For iPP, the average cooling rates 

at around 70°C (Piccarolo et al., 1992a, Brucato et al., 2002, Brucato et al., 2009) has been 

chosen, as the parameters characterizing the cooling effectiveness for that polymer. 

Although this is a semi-quantitative measure of cooling effectiveness, the whole thermal 

history is available to compare experimental results with predictions from non isothermal 

kinetic models (Piccarolo et al., 1992a, Brucato et al., 1991a). Furthermore, if the kinetic 

constant vs. temperature relationship is mapped to the temperature vs. time profile, it is 

clear that an underestimate of the effective cooling rate is obtained only at low cooling rates. 

With an exponential temperature decay most of the solidification takes place around the 

maximum of the kinetic constant, i.e. in the chosen temperature interval. 

2.1.2 Temperature distribution in the polymer sample 

The solution of equation (3), introducing the dimensionless temperature of the Cu-Be slab 

Cu  with boundary conditions T=Ti for t=0 and constant heat exchange coefficient h, is: 

  exp /Cu lt     (4) 

where Ti and T0 are the initial and final temperatures respectively. 

If sample thickness is very small compared to that of the slab, equation (4), representing the 
time dependence of the slab temperature (i.e. the temperature at the sample surface), 
becomes an exponential decay equation with a time constant defined by equation (3). 
Furthermore, in the case of very high cooling rates, this dependence of temperature on time 
extends to high temperatures. The smallest characteristic times are then obtained in the 
largest temperature range. 
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An estimate of the temperature profile in the polymer sample under these cooling 
conditions is, therefore, conservative and may well provide a case for achieving the 
maximum cooling rates with this technique, aiming to achieve a homogeneous thermal 
history throughout the entire sample thickness. As it has been previously pointed out, this 
condition must be satisfied in order to devise a direct relationship between structure 
obtained and the associated thermal history. 

The temperature distribution in the solid polymer sample can well be approximated by the 
Fourier equation for transient heat conduction within a medium of constant thermal 
diffusivity, i.e. 

 2 2/ /  pol poldT dt T x     (5a) 

Or, in dimensionless form, i.e. 

 2 2/ /pol pold dFo      (5b) 

Where: /x l  , dimensionless half depth; l =slab half depth; 2/Fo t l =Fuorier number; 

With boundary conditions: 

1. When 0Fo   then 0pol      (flat temperature profile before cooling); 

2. For 0  , / 0pol    0Fo  (symmetry.) 

The cooled wall boundary condition is an exponential decay of temperature according to 
experimental observation: 

3. For 1  ,    exp /pol Fo t     0Fo   ( = exponential time constant, s)            (6) 

However, Equation (5.b) neglects the heat generated by the latent heat of crystallization. An 
analytic solution of equation (5.b) with the boundary conditions given by equations (6) is 
provided in some texts (Luikov, 1980), i.e. 

  
 

   
     2

0

cos 2 cos 2 1 2
, exp exp

/ 2 sin 2 1 2cos
pol n

n

Pd n
Fo Pd Fo Fo

n nPd

  
 

  





            
    

  (7) 

With 2Pd l /   , Predvotitelev number (dimensionless time constant) and / 2n n    . 

A similar analytic solution is also provided in other texts (Carslaw & Jaeger, 1986), but 

(probably due to a misprint) any attempt to use the reported solution has failed. 

Prediction of temperature profiles for an iPP slab (Brangrup & Immergut, 1989, van 

Krevelen, 1972) cooled with an exponential decay from Ti=230°C to T0=5°C, are summarized 

for the case of two sample thicknesses (0.2 and 0.1 mm) in figs. 6 and 7 respectively. The 

smallest time constant, 0.05l s  , corresponding to the fastest experiment performed, is 

considered. While diagrams a) of figs. 6 and 7 show the calculated temperature distribution 

across the thickness (only half sample is considered), diagrams b) shows the calculated 

dependence of cooling rate on temperature at different sample depth along the thickness 
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direction. One can observe that for a sample thickness of 0.1 mm (fig. 7) the temperature 

distribution is almost flat across thickness. Significant deviations on the cooling rate versus 

temperature dependence are observed only at temperatures significantly higher than the 

range of solidification for most polymers. 

  
a     b 

Fig. 6. iPP film (half thickness=100μm) cooled from 230 to 5°C with an exponential decay 

with time for characteristic time l=0.05s. a) calculated temperature distribution across the 
thickness; b) calculated cooling rate vs. temperature at different sample depth 

   
a     b 

Fig. 7. iPP film (half thickness=50μm) cooled from 230 to 5°C with an exponential decay 

with time for characteristic time l=0.05s. a) calculated temperature distribution across the 
thickness; b) calculated cooling rate vs. temperature at different sample depth 

Although this result may appear to be in contradiction with the constraint expressed by 

equation (1b), the analysis of the regimes involved in transient heat conduction, reported in 

advanced textbooks (Isachenko et al., 1987), provides a consistent explanation. When a solid 

is suddenly exposed to a coolant kept at a constant temperature T0, the temperature profile 

could experience two regimes: an initial one corresponding to dissimilar temperature 

profiles, and a second one, called "regular", whereby the temperature profiles are almost 

parallel to each other and self similar at different times. Depending on the Biot number the 

second regime may also not take place and the condition Biot<10 determines the onset of the 

second regime controlling the transient heat conduction for most of the cooling time. The 

condition expressed by equation (1b) may thus be seen to be more restrictive than it is 
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necessary, determining that the flat temperature is the controlling factor for most of the time 

during cooling of the solid from Ti to T0. 

In the regular regime of transient heat conduction, the onset of almost parallel temperature 
profiles determines a condition by which at different times the slope of the profile is the 
same in different sample positions, leading to the same cooling rate at the same temperature 
and to a correct interpretation of the calculated results reported in figs. 6 and 7. The 
temperature profile may thus be seen as a perturbation propagating from the external 
surface to the interior as the calculation of figs. 6 and 7 shows. For larger sample thickness, 
as in fig. 6, although the temperature profile is not flat, the temperature distribution regime 
is regular and the cooling rate at lower temperatures is still almost constant throughout the 
sample. This is not so for cooling rates evaluated at temperatures higher than ca 80°C. On 
the other hand, for small sample thickness, as is shown in figs. 7, the heat transfer regime in 
the sample is always regular even at temperatures as high as 180°C. 

As for the influence of the latent heat on the temperature distribution, which is neglected in 

equation (5.b), one can observe that, although the heat of crystallization affects the 

temperature profile of the sample, and/or the thermal history to which it is subjected, the 

overall effect is only moderate. Indeed an estimate of the increase in sample temperature 

due to latent heat of crystallization, with the assumption that heat release takes place 

adiabatically, only produces maximum values of about 40°C, if the polymer sample 

crystallizes to the maximum allowable extent. Although this value may seem large when 

compared to the effect of temperature on the crystallization kinetics, it must be remembered 

that at low cooling rates, crystallization takes place over longer time intervals, and 

consequently does not affect appreciably the temperature of the sample since the heat is 

being released slowly. With respect to adiabatic conditions, a smaller temperature increase 

will, indeed, take place during cooling. Furthermore, the “heat sink” effect played by the 

metal slabs on the polymer film makes the temperature increase negligible. At high cooling 

rates, on the other hand, the heat is released in a shorter time interval, however in this case 

the temperature of the sample is controlled by very high heat fluxes and, consequently, the 

temperature is not affected very much either (Brucato et al., 2002, Brucato et al., 2000, La 

Carrubba, 2001). Moreover, if very drastic cooling conditions are applied, the sample only 

experiences a low degree of crystallization and, therefore, releases smaller amount of heat, 

which affects the temperature even less. 

2.2 Rapid cooling under pressure 

In order to evaluate the combined effect of typical injection molding pressures and 

temperatures, a new equipment was designed as a natural extension of the previously 

described apparatus. A standard Negri Bossi NB25 injection moulding machine was used as 

a source of molten polymer supplied at a pre determinable and maintainable pressure at 

which the polymer can be injected into a preheated mould cavity. 

A special injection mould has been designed such that samples could be cooled at a known 
cooling rate and under a known pressure (Brucato et al., 2002, Brucato et al., 2000, La 
Carrubba, 2001). This heated mould consists of a conical cavity (the sprue), which is located 
in the fixed platen of the injection molding machine, coupled to a “diaphragm”. The front of 
the cavity is sealed with a high tensile, high thermal conductivity copper-beryllium 
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“diaphragm”, which is spray cooled on the opposite side when the quench starts. A 
schematic representation of the apparatus is shown in fig. 8. The cavity is located within a 
brass block where eight cartridge heaters with a total power of 2 kW are inserted. The 
diaphragm is located in the moving platen of the machine. The whole apparatus (cavity and 
Cu-Be diaphragm) has been designed in such a way that it can be placed in and removed 
from an injection moulding machine as a normal injection mould tool. A cooling channel, 
which allows the diaphragm to be spray cooled by pressurized water (at 8 bars) on one side, 
is also located in the mobile part. A thermocouple (type E, diam.=0.05 mm) inserted inside 
the diaphragm close to the wall facing the polymer sample records the thermal history 
during cooling, whilst a pressure sensor (type Dynisco PT46) mounted in the cavity allows 
measurement of pressure during the experiment. The pressure sensor and the thermocouple 
are connected to a data acquisition system, constituted by a National Instrument card LAB-
LC coupled with an Apple–Macintosh LC computer. 

 

Fig. 8. Apparatus for solidification under pressure fitted to the modified injection molding 
machine 

The experimental methodology of recording the thermal history experienced by the surface 

of rapidly cooled samples and then analyzing the resulting sample morphology has been 

adopted. Using the above described configuration, a thin layer in contact with the 

diaphragm solidifies under a known recorded thermal history and under a constant 

recorded pressure history. Internal layers of the polymer are cooled with different cooling 

rates, which can be calculated by solving the transient heat transfer equation (7). In order to 

relate thermal history to the structure formed, the relationship between cooling rate 

evaluated at 70°C (characteristic temperatures of iPP) and depth in the sample can be 

calculated based on the conduction heat transfer problem (eq. 7), as shown in fig. 9. This is a 

sort of “transformation function” or “mapping function”, which converts the depth in the 

sample in an equivalent value of cooling rate, thus enabling the physical data to be mapped 

as a function of cooling rate rather than of the sample depth. This transformation functions 

allow the effect of pressure superimposed to that of cooling rate to be properly identified 

and quantified. Thin slices (50 to mm) microtomed across a direction parallel to the cooled 
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surface are then used for post-solidification characterization methods (Brucato et al., 2000, 

La Carrubba, 2001), being each slice characterized by a well defined cooling rate (averaged 

across slice thickness).  

 

Fig. 9. Depth-Cooling Rate “mapping function” 

3. Materials and characterization 

Several iPP grades were analysed, with the aim of encompassing a wide latitude of 

crystallization behaviour and to highlight the influence of molecular parameters on iPP 

crystallization. The main features of the different grades of iPP tested are listed in Table 1. 

 

Material name Mw Mwd Xs(*) notes 

HPB 430000 6.6 2.9  

M2 208000 3.5 4.5  

M6 391000 5.6 4.6  

M7N 379000 5.3 3.4 + Talc 1000 ppm 

M9 380000 3.8 5.0 Copolymer 0.5% ethylene 

M12 252000 5.4 13.9  

M14 293000 7.3 5.2 Copolymer 3.1% ethylene+DBS 

M16 293000 7.3 5.2 Copolymer 3.1% ethylene 

iPP1 476000 6   

iPP2 405000 26  bimodal MWD 

iPP3 489000 9.7   

iPP4 481000 6.4   

Table 1. Main Characteristics of the iPPs examined. (*)Xylene soluble weight percentage 
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Since cooling rate in the present devices is too fast for recording any macroscopic change 
during the solidification process, only the final structure of the solidified sample was 
evaluated. The final features of the samples, analyzed by suitable macroscopic probes, such 
as powder Wide Angle X-Ray Diffraction (WAXD) patterns and density measurements were 
related to thermal history.The X-ray diffraction measurements have been performed by a 
Philips vertical diffractometer equipped with a Philips PW1150 generator. The Cu-Ka Nickel 
filtered radiation was detected in the interval 6-45°, applying steps of 0.05° in the interval 
10-35° and of smaller steps of 0.2° elsewhere with a counting time of 60 s per step 
throughout. The gradient column technique was used for density measurements. 

4. Results 

4.1 Crystallization of iPP at atmospheric pressure 

The results of the correlation for iPP3 between the structural features of quenched samples, 
assessed through the macroscopic probes cited above (WAXD and density), and thermal 
history, identified by the relevant cooling rate in the range of temperatures where the polymer 
solidifies (70°C for iPP), are shown in figs. 10a and b for density and WAXD patterns 
dependence on cooling rate, respectively. Such results point out the features of the proposed 
method of characterization already reported by the authors (Piccarolo, 1992, Brucato et al., 
1993), with respect to change of structure and density with cooling rate. A broad range of 
density were identified as well as extreme structural features in the WAXD patterns. The 
WAXD patterns reported in fig. 10b show that at low cooling rates only the stable a 

monoclinic phase is observed with small amounts of the phase, as identified by the reflection 

at 2=16.1°. The crystalline order, determined by the width of the peaks, continuously 
decreases on increasing cooling rate up to a point where only two broad diffraction peaks are 
observed, showing the presence of the so called mesomorphic phase of iPP (Corradini et al., 
1986, Guerra et al., 1990). At intermediate cooling rates, the coexistence of the two phases is 
revealed, over a narrow range of cooling rates, by the superposition of the two broad peaks of 
the mesomorphic phase and the faint residues of the peaks related to the a monoclinic phase. 

   
a     b 

Fig. 10. a. Density dependence on cooling rate (measured at 70°C) of iPP3. Open symbols: 
rapid cooling experiments; filled symbols: standard constant cooling rate experiments (DSC) 
b. Dependence of WAXD powder patterns of iPP3 on cooling rate (measured at 70 °C)    
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Furthermore, changes of the WAXD patterns agree with the density measurements, making 
the two methods consistent and comparable. Although a qualitative cross check can be 
made for the data in fig. 10b, a quantitative comparison can only be obtained by WAXD 
deconvolution (Martorana et al., 1997). This last has been extensively used to determine the 
phase content and its dependence on cooling rate. This dependence of phase content on 
cooling rate, in turn, has been used for the determination of non-isothermal crystallization 
kinetics. The model adopted was based on the crystallization kinetics of two phases 
competing for the transformation from melt to solid (Brucato et al., 1998, Piccarolo et al., 
1992a, Brucato et al., 1993). The reason for two parallel crystallization mechanisms stems 
from the WAXD patterns dependence on the cooling rate. In the case of iPP, for example, the 
patterns show that the stable phase disappears while the mesomorphic phase content 
increases with increasing cooling rate. 

The density versus cooling rate curve of fig. 10.a shows three zones characterized by 
different features related to the WAXD based phase content dependence on cooling rate 
reported in fig. 11: 

i. At low cooling rates where only stable phases are formed, the density decreases to a small 

extent with the log of the cooling rate. Below ca 5°C/s a slight decrease of density is 

observed, related to the formation of small amount of  phase formed (Piccarolo, 1991). 

ii. At the highest cooling rates, a low-density plateau is observed related to the 

mesomorphic phase set-in, since a limiting packing condition has been approached. The 

nature of the mesomorphic phase is not well known, the most acknowledged 

hypothesis being a packing very similar to the -monoclinic phase but with a low range 

order (Corradini et al., 1986). The most significant feature of this phase, indeed, is that it 

transforms to the stable -monoclinic phase upon ageing, which is relevant for the post 

processing behaviour of iPP. Previous studies point out that the kinetics of this 

transformation to be measurable only above 80°C (Struik, 1978). More recent annealing 

experiments, discussed elsewhere (Gerardi et al., 1997) show that such transformation 

can take place at much lower temperatures and can cause significant density changes.  

iii. In an intermediate cooling rate range the material density shows a very high sensitivity 

to changes in cooling rate. In this zone the stable phase content decreases while that of 

the mesomorphic phase increases as the cooling rate is increased. This transition is 

strongly dependent on the material characteristics, e.g. nucleating agents and molecular 

weight (Sondegaard et al., 1997). Solidification under these intermediate cooling rates 

shows the effect of the competition between the a monoclinic and the mesomorphic 

phases in the transformation from melt to solid. The slope of the density curve in this 

region is a measure of the sensitivity of the crystallization kinetics towards the cooling 

rate for a given polymer.  

To sum up, although the mapping of the structural features provides a general 

understanding of the relationship between the thermal history and the associated structure 

formed during a quenching experiment, the density dependence on cooling rate provides an 

immediate, quantitative information on the non isothermal crystallization behaviour of the 

polymer. In this respect the identification of the narrow range of cooling rates at which the 

transition from a monoclinic to mesomorphic phase takes place provides quantitative 

information on the material non-isothermal crystallization kinetics. 

www.intechopen.com



Solidification of Polypropylene Under Processing Conditions –  
Relevance of Cooling Rate, Pressure and Molecular Parameters 

 

445 

 

Fig. 11. WAXD deconvolution of iPP3. Phase content vs. cooling rate (measured at 70 °C) 

A model-based interpretation of such transitional cooling rates performed on the 

crystallization kinetics parameters has been published recently (La Carrubba et al., 2002a). 

4.2 Crystallization of iPP under pressure 

The results of the density measurements made on iPP4 samples solidified under pressure 

are reported in figs. 12.a and b. Four different pressure conditions have been explored: 0.1 

MPa, 8 MPa, 24 MPa, 40 MPa using two different diaphragm size 3.5 mm and 8 mm thick, 

(see fig. 8). In fig. 12.a is shown the density depth profile for the 3.5 mm thick diaphragm, 

and in fig. 12.b the density depth profile for the 8 mm thick diaphragm. Samples obtained 

with the 3.5 mm thick diaphragm were subjected to an experimental surface cooling rate 

(measured at 70°C -Brucato et al., 2002) of about 100°C/s. Samples solidified using the 8 mm 

thick diaphragm experienced a surface cooling rate of about 20°C/s. It is worth noting that 

the surface cooling rate depends on the coolant heat transfer and on the diaphragm thermal 

inertia. Changing the diaphragm thickness is, indeed, a simple and reliable way to tune the 

surface cooling rate (La Carrubba, 2001). 

   
a    b 

Fig. 12. iPP4 Density depth profile for different solidification pressures from 0.1 to 40 MPa: 
a. diaphragm 3.5 mm thick; b. diaphragm 8 mm thick 

The curves in fig. 12a and b show that for both experiments and at all pressures, density 
increases from the surface to the bulk of the sample. This behavior can be related to the 
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expected increase in crystallinity since the internal layers are cooled at progressively lower 
rates. In fig. 12a and b it is shown that the highest level of the density increase takes place in 
the vicinity of the surface, and that this is independent of the applied pressure. 

Both figs. 12a and b show also somewhat unexpected results, in so far as a density decrease 
with pressure occurs at all depths in the sample. The reduction of density due to pressure is 
minimum at the sample surface and grows with depth. Furthermore, the majority of the 
density change is observed by varying the pressure from 0.1 to 8 MPa, which is quite low 
especially if compared with the typical pressure values used in injection moulding. This 
experimental result may be relevant for modeling the shrinkage and the internal stress 
distribution in injection molded products. Particularly important is the fact that this effect is 
more pronounced in the bulk of the sample. 

Fig. 13 is obtained by plotting the density data in figs. 12a and b against the cooling rate 
calculated at 70°C by using a transient heat conduction model (equation (7). The value of the 
calculated cooling rate was averaged across every slice (50µm thick). The use of the transient 
model was also validated by overlapping the data referred to a surface cooling rate of 100 
and 20 °C/s. In fig. 13 it is also shown that at constant cooling rate the final density 
decreases with pressure. The same trend is obtained with respect to cooling rate, indicating 
that the density drop above 10-20 °C/s is independent of the solidification pressure. Finally, 
fig. 13 shows that the decrease of density with pressure vanishes with increasing cooling 
rate, implying that the influence of pressure is more pronounced in the bulk of the sample. 
This is a very important information in process simulation. 

 

Fig. 13. iPP4 Density versus cooling rate evaluated at 70°C for different solidification 
pressures from 0.1 to 40 MPa 

A similar pressure dependence of the density has also been observed by He and Zoller (He 
and Zoller, 1994) using a standard dilatometer and measuring the specific volume of this 
sample during crystallization from the melt. A constant slow cooling rate (2.5 °C/min) 
under constant pressure was used, bringing the sample back to a fixed pressure at the end of 
the test. It is worth noting that the majority of experiments have provided information on 
specific volume under pressure, whereas in our work we have measured the density at 
ambient pressure after solidification under pressure. He and Zoller observed an increase of 
specific volume with increasing crystallization pressure in the case of iPP, i.e. the specific 
volume in the solid phase at the end of the solidification curve is slightly higher than the one 
measured at the beginning of the melting curve. This behavior demonstrates that during 
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solidification under pressure some structural transformations take place giving final lower 
density values. Although He and Zoller have attempted to explain the reduction in density 

with the formation of the  phase, which is less dense than the  phase, the samples in our 
study did not show any evidence of the presence of the  phase (La Carrubba et al., 2000). 
The experiments performed by He and Zoller are in agreement with our results, which show 
that the final density (measured at atmospheric pressure) of samples solidified under 
pressure is, in fact, lower than that of the samples solidified at atmospheric pressure. We 
have repeated the PVT measurements on iPP and have published the results in a recent 
paper (La Carrubba et al., 2002b), where a comparison between specific volumes of samples 
crystallized at different pressures and/or cooling rates has revealed a decrease in density 
with increasing cooling rate and pressure. Thereafter, WAXD experiments were performed 
on slices cut in the transverse direction with respect to the direction of the heat flux. All 
experiments were performed by the synchrotron radiation source of the DESY center in 
Hamburg. A very long accumulation time (5 frames of 1 minute) was applied in order to 
achieve statistically significant results and a good reproducibility.  

A qualitative analysis of the diffraction patterns has lead to the conclusion that the alpha 

phase content decreases on increasing cooling rate, for all the adopted pressures used 

(Brucato et al., 2000, La Carrubba et al., 2002a, La Carrubba et al., 2000). The data have 

shown that increase in pressure decreases the alpha phase content. This is better shown by 

WAXD data after a deconvolution procedure that has already been discussed elsewhere 

(Martorana et al., 1997). The program employed (implemented on MATLAB) uses a best-

fitting procedure to calculate the positions and the intensity and of the alpha phase 

including mesomorphic phase peaks and that of the amorphous halo. 

In fig. 14 are shown plots of the phase content of the samples against pressure at four 

different values of cooling rates, ranging from 1.5 to 80 °C/s. A decrease of alpha phase is 

noticed, which is in agreement with the data from density and micro hardness 

measurements, showing that the change in the alpha phase content with pressure is highest 

within the first 10 MPa. By examining the data in fig. 14 one notes that the decrease of the 

alpha phase with pressure tends to vanish when the cooling rate increases, particularly for 

cooling rates above 20°C/s. Additionally, the reduction of the alpha phase is mostly 

balanced by an increase of the mesomorphic phase content while the amorphous phase 

seems to be only slightly affected by pressure. 

This last point is also very relevant, in so far it shows that as the main effect of pressure is to 
replace the alpha phase by the mesomorphic phase, leaving almost unaffected the 
amorphous content. It has been already shown, in fact, that the main effect of increasing the 
cooling rate at ambient pressure is the substitution of the alpha phase with the mesomorphic 
one (Piccarolo, 1992, La Carrubba et al., 2002a). In other words, the qualitative effect of 
pressure (at a constant cooling rate) on the final structure appears to be the same as an 
increase of cooling rate alone at a constant pressure (La Carrubba et al., 2000). This results is 
also illustrated in fig. 15, reporting the phase fraction, as calculated from the WAXD 
deconvolution of the samples, crystallized at atmospheric pressure using the rapid 
quenching apparatus. One can easily see how the decrease of the alpha phase with 
increasing cooling rate is accompanied by an increase of the mesomorphic phase (fig. 14). 
This observation is a further confirmation of the possibility to adopt a master curve 
approach to describe the bahaviour of iPP under pressure and high cooling rates. 
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Fig. 14. Phase content of iPP4 from WAXD deconvolution as a function of pressure 

 

Fig. 15. WAXD deconvolution of iPP4 at 0.1 MPa, showing the phase relative content 

4.3 Crystallization kinetics model 

When dealing with crystallization of iPP, the numerous crystalline modifications of this 

material must be accounted for, since  or crystals may form upon solidification from 

the melt. The resulting complex frame can be simplified based on some experimental 

evidences, supported by several references (Foresta et al., 2001, Nagasawa et al., 2005, Raab 

et al., 2004, Marigo et al., 2004). As for the  phase, it basically shows up only if specific  

nucleants are added, therefore for commercial non-b-nucleated iPP’s it does not form; traces 

of  form crystals are often present, but always in minor amount and in a narrow window of 

operating conditions (i.e. cooling rates), hence its presence is neglected without affecting the 

reliability of the results. 

Alpha 

Amorphous 
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Under the aforementioned hypotheses, as two different crystalline phases are formed ( and 

mesomorphic), at least two kinetic processes take place simultaneously. The simplest model 

is a parallel of two kinetic processes non-interacting and competing for the available molten 

material. The kinetic equation adopted here for both processes is the non-isothermal 

formulation by Nakamura et al. (Nakamura et al., 1973, Nakamura et al., 1972) of the 

Kolmogoroff Avrami and Evans model (Avrami, 1939, 1940, 1941, Evans, 1945). 

The model is based on the following equation: 

    / 1 expX t X E t       (8) 

Where  X t  and X  are the crystallized volume fraction at time t and in equilibrium 

conditions, respectively. For simplicity and for the sake of generalization X  is here 

assumed to be a material constant, although it has been reported its dependence upon the 

crystallization history (crystal size distribution and degree of perfection, Ziabicki, 1976). 

 E t  is the expectancy of crystallized volume fraction if no impingement would occur. A 

different formulation of the model can be easily obtained by differentiation of equation (8): 

  
.

/ (1 )d dt E t    (9) 

Where: 

  /X t X   (10) 

Since in the case of interest two crystalline phases develop, the simplest extension of the 

present model is to assume that those phases grow independently in parallel, competing 

each other for the residual fraction of available melt. Under this hypothesis the rate 

equation, for the general case of m crystalline phases developing simultaneously, becomes: 

  
.

/ (1 )i i ii
d dt E t           for i= 1…m (11) 

The following function, suggested by several authors (Ziabicki, 1976, La Carrubba et al., 

2002a), can be adopted for the expression of the time derivative of the expectancy, leading to 

a rate equation proportional to the fraction of untransformed material times the current 

value of the kinetic constant, in which nucleation and growth rates have been lumped 

together (nucleation and growth are therefore isokinetic): 

    
1

0

/ (1 ) ln 2

int

i i i i ii
d dt n K T ds K T 


 

   
  

           i= 1…m (12) 

The form adopted in equation (12) for the time derivative of the expectancy reduces to the 

classical Avrami form, with a dimensionality index ni for the ith phase, if an isothermal 

experiment is considered. As for the dependence of the rate constant Ki on temperature, the 

simplest expression that one can consider is a Gaussian shaped curve: 
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    2 2
0, max,exp 4ln 2i i i iK T K T T D      

           i= 1…m (13) 

where iD , max,iT and  0,iK are the half width, the temperature where the maximum of Ki is 

attained and the maximum value of Ki itself, respectively (Ziabicki, 1976). 

The governing equations with reference to two phases (alpha and mesomorphic phase) are: 

      
1

0

/ 1 ln 2

nt

md dt n K T ds K T



      


 
    

  
  (14) 

      
1

0

/ 1 ln 2

mnt

m m m m md dt n K T ds K T  


 
    

  
  (15) 

Where  and m indices stand for the alpha monoclinic and the mesomorphic phases 
respectively. This system of two coupled ordinary differential equations can be integrated 
with the appropriate initial conditions (a=m=0 for t=0). The integration leads to 
crystallinity development with time under any temperature history. 

Fig. 16a shows a typical K(T) curve for the two different phases, and fig. 16b outlines the 
influence of two main parameters, the product of K0*D (nearly the area under the K(T) curve 
sometimes called crystallizability, Ziabicki, 1976) and the Avrami index n. This latter is 
representative of the sensitivity of the crystallization kinetics to the cooling rate, a larger n 
leads in fact to a faster dependence of final crystallinity on cooling rate, the curves crossover 
is however always the same, i.e. about one half of the maximum attainable crystallization at 
an abscissa of K0*D. The crystallizability is a cooling rate scaling factor of crystallization 
kinetics; as a matter of fact, a larger value of K0*D leads to a shift along the abscissa of the 
curve, i.e. along the cooling rate, such that the larger the crystallizability the more 
pronounced the material tendency to crystallize. 

    
a    b 

Fig. 16. a. Kinetics constant versus temperature for a and mesomorphic phase; b. 
Crystallinity volume fraction as a function of cooling rate for various values of n (Avrami 
index) and K0*D (crystallizability). 
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Before discussing the results obtained concerning the sensitivity of the cited parameters on 

polymer composition, it is worth to point out the intrinsic limitations of the approach 

adopted related to its empirical nature. They depend on the origin of the KAE equation 

describing the nucleation and growth without diffusivity constraints and without 

accounting for the possible non isokinetic contribution of each mechanism, with a simple 

mathematical extension to the non isothermal conditions and finally without accounting for 

the complexity of crystallization in polymer melts, clearly a multistage process (Strobl, 

1997). A slightly different modelling is represented by the so-called “Schneider rate 

equations” (Schneider et al., 1988); Schneider et al underline that their approach consists in 

an application of Avrami’s (and Tobin’s) impingement model leading to a different 

mathematical and more easy-to-handle formulation, based on a set of differential equations 

instead of dealing with integral equations. In other words, although their formulation 

enhances the applicability to process modelling, the physics behind it is completely 

described by the Avrami model. Therefore the use of Schneider’s approach is more 

advisable when dealing with “non-lumped” problem, to be solved by coupling of transport 

equations. 

All things considered, an analysis of the literature studies on polymer crystallization kinetics 

shows that the isokinetics approach is the most widely adopted (see the recent review by 

Pantani et al – Pantani et al., 2005); moreover, the limitations imposed by the isokinetic 

hypothesis do not weaken the self consistency and the abundance of information here 

provided. In any case, the limits of the aforementioned approach can be overcome by 

recalling the original Kolmogoroff’s model (which accounts for the number of nuclei per 

unit volume on spherulitic growth rate) and determining the average radius of spherulites 

based on geometrical considerations (i.e. counting the number of nuclei), as shown by 

Zuidema et al. (Zuidema et al., 2001) and Pantani et al. (Pantani et al., 2002). This approach 

has however some limitations since it can be applied only to conditions where a 

recognizable spherulitic morphology is formed thus either low cooling rates or conditions 

where the spherulites are dispersed in a non crystalline matrix as in the case of 

mesomorphic iPP phase (Piccarolo, 1991). This possible refinement of the analysis is 

however far beyond the scope of the present work both due to its limitations and to the 

macroscopic approach adopted aiming to describe crystallization kinetics parameters in the 

broadest possible range of quiescent solidification conditions, i.e. under conditions 

emulating, but for the role of orientation and pressure, polymer processing. 

4.4 Density data and crystallization kinetics model parameters for various iPPs 

Figs. 17.a and b and 18.a and b show a comparison of the density dependence upon cooling 

rate for the iPP grades studied, whereas Table 2 reports the crystallization kinetics model 

parameters calculated by a best fitting procedure not only on the basis of the final 

monoclinic and mesomorphic content of the quenched samples, taken from the 

deconvolution of the WAXD patterns, but also accounting for results which provide the time 

and the temperature at the maxima of the crystallization rate (isothermal tests and DSC 

measurements) respectively. For this purpose a multiobjective optimization code was 

adopted. 
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a     b 

Fig. 17. a.Effect of nucleating agents b.Effect of molecular weight distribution onto the 
density versus cooling rate behavior. 

It should be noticed that Table 2 reports for the mesomorphic phase a range of values both 

for the Avrami index n and for X . The uncertainty in those parameters is however not 

critical for the purpose of the present work. As a matter of fact, a variability of n between 0.4 
and 0.5 reflects into very slight changes in the temperature field in which crystallization 

takes place; consequently, the influence of this parameter is of minor entity. As for X  of 

the mesomorphic phase, although its variability could turn into larger changes in the 
crystallization temperature window, its influence is confined to a cooling rate region in 
which the crystallization of the alpha phase is very little (very high cooling rates), thus not 
affecting the alpha phase kinetic parameters. 

Material monoclinic meso

 
K0, 

sec-1 

Tmax,

°C 

D, 

°C 
n X∞ 

K0*D,

°Csec-1 

K0, 

sec-1 

Tmax,

°C 

D, 

°C 
n X∞

K0*D, 

°Csec-1 

HPB 1.6 82 28 2 0.55 44.8 1.6 57 19 

0.4

- 

0.5

0.45

- 

0.55

30.4 

M2 1.4 77.3 33 3.0 0.60 46.2 0.6 40 30 18 

M12 2.5 79 30 2.0 0.51 75 3.3 42 31 94 

M7N 8.0 82 30 2 0.48 240 n.a. n.a. n.a. n.a 

M9 2.0 70 36 3.0 0.53 102 2.0 40 36 72 

M6 2.4 66 40 3.0 0.54 96 2.0 40 40 80 

M14 40 72 29 3.0 0.40 1160 1.0 40 34 34 

M16 1.8 71 33 3.0 0.50 99.4 1.0 40 34 34 

iPP1 1.6 82 28 2 0.55 44.8 1.6 57 19 30.4 

iPP2 3.5 73 34 2 0.50 255.5 1.5 40 31 60 

iPP3 2.7 70 35 2 0.57 189 0.22 40 40 8.8 

iPP4 4.5 85 27 2 0.45 121 0.27 53.5 33.8 9.12 

Table 2. Crystallization Kinetics Parameters 
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As for the Avrami index of the crystalline alpha phase, Table 2 reports values equal to 2.0 or 

3.0, due to a slight round-off with respect to the results obtained via simulation. The Avrami 

index is here intended as a mere fitting parameter, in line with most of the literature 

concerning polymer crystallization kinetics (see for instance the review of Pantani et al. – 

Pantani et al., 2002 and the review of Di Lorenzo et al. - Di Lorenzo & Silvestre, 1999), 

although its exact physical meaning should indicate the dimensionality of growth (namely 3 

or 4 for volume filling depending whether nucleation is predetermined of sporadic). In other 

words, the Avrami index points out only the sensitivity of the crystallization kinetics to the 

cooling rate, a larger n leads in fact to a faster dependence of final crystallinity on cooling 

rate, the curves crossover being always the same, i.e. about one half of the maximum 

attainable crystallization at an abscissa of K0*D. 

Table 2 shows that differences in materials do not appear to be related in a simple way to 

kinetic parameters. This may be due to the fact that the set of materials investigated in this 

work, since representative of iPP’s of industrial use, does not cover a wide range of 

fundamental molecular parameters Mw and Mwd. As a matter of fact, the limited range of 

the molecular parameters here explored probably does not comply with a complete 

enlightenment of the role played by each single factor onto the crystallization behaviour. 

Nevertheless, some information can be drawn from the table summarizing material 

kinetics behaviour. For example, the so called “crystallizability”, i.e. the product K0*D 

instead of the two separate kinetic parameters, allows one to discuss the differences in the 

non isothermal crystallization behaviour in relationship to the materials investigated in 

this work. The crystallizability, roughly corresponding to area under the kinetic constant 

curve versus temperature, has the dimension of a cooling rate, and indicates somehow the 

ability of the polymer to crystallize (Ziabicki, 1976). A comparison of crystallizability 

values gives a good insight into the influence of molecular parameters on the 

crystallization kinetics behaviour. For instance, referring to the monoclinic phase only, it 

can be observed that the smallest value of K0*D was obtained for the sample without 

additives having the highest Mw and narrowest Mwd. The highest values of 

crystallizability are however observed for nucleated iPP’s (M7N and M14). All things 

considered, it should be however underlined that differences in crystallizability below a 

factor 2-3 cannot be considered reliably assessed by the crystallization kinetics method, 

due to the intrinsic errors in the evaluation of both K and D throughout the best fitting 

procedure. If one looks at fig. 17a, reporting density as a function of cooling rate for three 

polymers having similar features (molecular mass and distribution) except for the 

presence of nucleating agents, one comes to the conclusion that the presence of nucleants 

shifts the density cut-off towards larger values of cooling rate; as a matter of fact, the 

calculated crystallizability of the iPP denominated M7N (strongly nucleated) results 

larger than the one of iPP1 and iPP4. 

Higher values of crystallizability are observed when the molecular weight distribution is 

broader (see for instance materials iPP2 and iPP3). This behaviour is clearly shown in fig. 

17b, where four polymers with Mwd ranging from 3.5 (M2) to 26 (iPP2) are reported. The 

observable shift of density cut-off towards larger cooling rate upon increasing Mwd is 

correctly accompanied by a parallel increase of crystallizability (see Table 2). 
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On the other hand, no direct and obvious correlation may be found to relate crystallizability 
to Mw. This apparent inconsistency can be reasonably explained by recalling the already 
mentioned low variability of molecular weights of the iPP grades investigated in this work, 
related to their “commercial” nature. Consequently, in the light of crystallization behaviour, 
all the iPP molecular weights listed in Table 2 have to be considered rather similar, being 
their difference in molecular weight not sufficient to develop dissimilar crystallization 
kinetics. Addition of small amounts of ethylene units in the copolymer does not influence 
significantly any of the kinetic parameters mentioned above, the small changes of the 
product K0*D mainly depending  on the differences in Mwd and not upon the ethylene 
content. No significant differences in the product K0*D may be argued between materials 
M6, M9 and M16, although the second couple is copolymerized with ethylene. Also the 
amount of ethylene used in the copolymerization process does not appear to be relevant. 
These results are confirmed by density data shown in fig. 18a. 

On the contrary, the couple of nucleated materials (M7N e M14) that basically differ from 
the others for the addition of ethylene in the latter, show a large difference in the 
crystallizability, suggesting a synergetic effect of copolymerization with the addition of a 
nucleating agent on crystallization kinetics. Although the enhancement of chain mobility, 
which increases with ethylene content, and nucleation are both factors promoting the 
crystallization kinetics, the source of the synergy is not simple to interpret. The tacticity 
index does not seam to have a significant influence on the kinetics of monoclinic alpha 
phase. Fig. 18b shows that the density cut-off of M12, with a lower tacticity, is slightly 
anticipated with respect to the one of MP6; on the other hand, crystallizability of M12 is 
somehow lower than the one of M6 (see Table 2). 

 
a     b 

Fig. 18. a.Effect of tacticity b. Effect of ethylene content onto the density cooling rate behavior 

Other kinetics parameters of the monoclinic phase are more difficult to be related to 
molecular parameters. Additionally, their physical meaning is not straightforward with the 
exception of Avrami index n. This last, in principle, represents the dimensionality of the 
growth and the kind of nucleation. Experiments, however, rarely well correlate with a value 
of n in line with the dimensionality of the crystallization process under observation. 

Furthermore, the correlation of mesomorphic phase kinetics parameters appears difficult, 
probably this can be related to the fact that mesomorphic phase determinations are affected 
by a larger uncertainty due to the broader WAXD peaks characterizing this phase.  

With this respect, some recent cooling experiments performed on a nanocalorimeter (De 
Santis et al., 2007) have shown two distinct crystallization peaks (alpha and mesomorphic 
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phase) appearing in a quite large range of cooling rates, the crystallization of the alpha 
taking place up to ca 1000 °C/s. The apparent contradiction with the results here presented 
(alpha phase disappearing above 200-300 °C/s) may be consistently solved if one considers 
that the amount of alpha phase formed at high cooling rates is of the order of a few percent, 
hence below the measure limits of WAXD (around 5%). Secondly, being the sample mass 
undergoing the DSC cooling run in the nanocalorimeter of the order of a few ng, the 
enhancement of crystallization due to the “surface effect” (high constraints due to the low 
sample size with respect to the average radius of giration) must be taken into account. 
Thirdly, the presence of a mesomorphic phase crystallization peak at room temperature 
justifies the difficulties encountered in iPP amorphization, as confirmed by the present 
results where a consistent value of the crystallization kinetic constant of the mesomorphic 
phase at room temperature is shown (see Table 2). 

Finally, if one considers that, with a few exceptions, the study was executed on a set of 
materials of industrial interest, a conclusion can be drawn about the fact that crystallization 
kinetics are mainly influenced only by the presence of nucleating agents. The influence of 
copolymerization on crystallization kinetics being relevant only if coupled with nucleation. 

5. Conclusion 

An experimental route for investigating polymer crystallization over a wide range of cooling 
rates (from 0.01 up to 1000 °C/s) and pressures (from 0.1 to 40 MPa) is illustrated, using a 
method that recalls the approach adopted in metallurgy for studying structure development 
in metals. Two typologies of experimental set-up were used; respectively an apparatus for 
fast cooling of thin films (100 to 200 mm thick) at various cooling rates under atmospheric 
pressure and a device (based on a on-purpose modified injection moulding machine) for 
quenching massive samples (about 1-2 cm3) under hydrostatic pressure fields. 

In both cases ex-situ characterization experiments were carried out to probe the resulting 
structure, using techniques like density measurements and Wide Angle X-ray Diffraction 
(WAXD) patterns. The cooling mechanism and the temperature distribution across the 
sample thickness were analysed. Results show that the final structure is determined only by 
the imposed thermal history and pressure. 

Experimental results of quiescent crystallization at ambient pressure for various grades of 
isotactic polypropylene (iPP) are reported, showing the reliability of this experimental 
approach to assess not only quantitative information but also a qualitative description of the 
crystallization behaviour. In order to thoroughly describe the crystallization kinetics as a 
function of molecular and operating parameters, the methodological path followed was the 
preparation of quenched samples of known cooling histories, calorimetric crystallization 
isotherms tests, Differential Scanning calorimetry (DSC) cooling ramps, Wide Angle X-ray 
Diffraction (WAXD) measurements and density determination. The WAXD analysis 
performed on the quenched iPP samples confirmed that during the fast cooling at least a 
crystalline structure and a mesomorphic one form. The diffractograms were analysed by a 
deconvolution procedure, in order to identify the relationship between the cooling history 
and the distribution of the crystalline phases. The whole body of results (including 
calorimetric ones) provides a wide basis for the identification of a crystallization model 
suitable to describe solidification in polymer-processing operations, based on the 
Kolmogoroff-Avrami-Evans non-isothermal approach. 
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A systematic investigation about the crystallization kinetics under cooling rates typical of 
polymer processing for several commercial isotactic polypropylene grades was carried out, 
aiming to highlight the relevance of a number of molecular parameters, including molecular 
weight and distribution, tacticity, ethylene units content and nucleating agents. 

The approach adopted, although the equations used are clearly empirical, is rather general 
and it surely represents a development with respect to phenomenological procedures 
describing relationships between structure and processing conditions. In the intention of the 
work, the kinetic parameters are the connections among such macroscopic observations. 

Furthermore, the chapter provides a large amount of consistent experimental data under 
non-isothermal conditions (cooling rate range from below 0.1 to above 1000°C/s) for a broad 
set of commercial iPP’s so far not extensively reported in literature. 

It should be however underlined that he model provides values of K(T) comparable for the 
different grades, K(T) being the reciprocal of half-crystallization isothermal time regardless 
the value of the Avrami index. The most influential factor turned out to be the presence of 
nucleating agents, which shifts toward larger value the material intrinsic “crystallizability” 
(represented by area under the “bell-shaped” crystallization kinetics constant vs. 
temperature curve). In particular, the effect of molecular weight does not appear to be very 
relevant, due to the limited range of molecular weights available in material grades of a 
“commercial” nature. On the other hand, an increase in the polydispersity index 
significantly reflects into a parallel increase in crystallizability. Finally, addition of small 
amounts of ethylene units in the copolymer does not influence the kinetic parameters. 
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