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The Everett Integral and Its  
Analytical Approximation 

Jenõ Takács  
 Department of Engineering Science, University of Oxford, Oxford  

UK 

1.Introduction 

The advancement in modern technology revolutionized our approach to the design of 

magnetic devices. The design requires concentrated effort from the designer to make the 

device more efficient. As a result, accurate modeling of magnetic materials in industrial 

application becomes a vital part of the design procedure. Amongst the number of hysteretic 

models for magnetic substances available for the user, the best known and commonly used 

is still the geometrical model suggested by Ferenc Preisach in 1935 (Preisach, 1935). 

Although various authors suggested a number of modifications for different applications, 

(Della Torre, 1999; Mayergoyz, 2003) somehow in various forms it still survives as the 

dominating hysteresis model of our time. The modified versions include the classical, static, 

dynamic, state-independent, state dependent, reversible, and vector, etc. Detailed discussion 

of the model can be found in the literature, for instance by Mayergoyz, Bertotti and Della 

Torre (Bertotti, 1998; Della Torre, 1999; Mayergoyz, 2003). 

The principal assumption of this model, is that any magnetic material is a composition of 

basic particles called hysterons with the characteristic switching up U and switching down 

V magnetic field values, with a characteristic square like hysteresis loop. Hysterons are 

elementary hysteresis loops or hysteresis operators characterized by the switching fields. 

Fig.1 Shows two hysterons displaced by Hs in the magnetic domain, schematically. 

 

Fig. 1. Schematic representation of two elementary hysteresis operators or hysterons, 
displaced by Hs to the negative and the positive direction. 
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These hysterons, in Fig 1, populate the hysteresis loop in a statistical manner, whose 

distribution density is described mathematically by the Preisach function (Ivanyi, 1997; 

Della Torre, 1999; Mayergoyz, 2003). In the classical Preisach scalar model (CPSM) this leads 

to the magnetisation expression versus time in the following form , known as Everett 

integral (Mayergoyz, 2003). 

 ( ) ( , ) ( , )
T T

M t P U V dUdV P U V dUdV


             (1)  

Here, M(t) is the sum of the magnetisation of the hysterons and T and –T are the positive 

and negative domains of the Preisach triangle, where hysterons contribute positively or 

negatively to the overall time dependent magnetisation (Kadar et al, 1989). Fig. 2 shows the 

Preisach triangle in the plane of the switching field.  

In Preisach based models the fundamental difficulty is the determination of the P(U,V) 

distribution function, which is called in general terms as “the identification problem” 

(Mayergoyz, 2003; Ivanyi, 1997) determined by the set of the symmetrical first order reversal 

loops. To solve the problem of so called “identification”, some authors suggested 

substituting the Preisach distribution function with suitable approximations. Mayergoyz 

suggested power series (Mayegoys et al., 1990), while Kadar and Della Torre used the 

bilinear product of Gaussian functions (Kadar & Della Torre, 1988) for the solution of the 

Everett integral (1). 

In spite of the large variation of modified Preisach models all variants have failed to model 

the complicated variety of hysteresis loops, such as the spin valve and anti-spin valve 

configurations (see Section 9). The only successful approach so far was, to our knowledge, 

the hyperbolic analytical approximation, in that field. 

 

Fig. 2. The Preisach triangle in the plane of switching field. 

Here ha and hb are the normalised switching fields (for normalization see Section 10) and Hc 
is the coercivity.  
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For soft materials, where the Gaussian approach failed to provide acceptable results, 
Finocchio and his co-workers suggested Lorentzian distribution (Finocchio et al., 2006). All 
approximations have their positive and negative sides and can only be used for certain type 
of materials. 

The two latest approximations will allow analytical evaluation of the Everett integral in 
closed mathematical terms. 

Takacs in his paper published in 2000 introduced the hyperbolic distribution (Takacs, 2000) 
to approximate the sigmoid- like hysteresis loops and to mathematically describe the 
different properties of various magnetic substances. At the time this model, based on 
Langevin’s theory (Bertotti, 1998), was purely phenomenological and no connection was 
assumed to the Preisach classical approach. 

The hyperbolic distribution T(x) can be described mathematically in its simplest form as 

   sech2( ) ( )T x A x a           (2) 

Here A represents the amplitude, a is the shift in position of the function and  controls the 
steepness of the curve. A typical hyperbolic and a Gaussian distribution are shown in Fig 3. 
As we can see from the graphs, the hyperbolic distribution is running very close to the 
Gaussian line in spite of having quite different mathematical properties. The close relation 
between the two models (classical Preisach and hyperbolic) was only discovered recently 
and published here for the first time. 

 
(a) (b) 

Fig. 3. Distribution functions: (a) hysteretic, (b) Gaussian. 

Bertotti pointed out (for details see (Bertotti, 1998)), that in most cases, the Everett integral in 
(1), particularly for symmetrical loops, can be replaced finally with a function of a single 
running variable, representing the excitation field H. In this argument we always assumed, 
point symmetry in the system, therefore 

 ( ) ( )c cT H H T H H           (3) 

There is particular interest in functions, where the distribution can be formed as the product 
of two terms in the form of  
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( , ) ( ) ( ) ( ) ( )c a b c cT H H T h T h T H H T H H   

    (4) 

where ha and hb are the switching fields (see Fig. 2) 

Using the hyperbolic distribution, shown in (2) substituted into (1), the Everett double 

integral will take the following form: 

 ( ) ( , ) ( , ) ( , ) ( , )c c c c c c

T T

M t T H H H H dHdH T H H H H dHdH 


        (5) 

 

where 
 if  

 if  

1 ( , )
( , )

1 ( , )
c

c
c

H H T
H H

H H T


 
  

.  (6)

 

When sech sech2 2( , ) [ ( )] [ ( )]c c cT H H A H H H H     (7) 
 

By substituting (7) and (6) into (5) we obtain (Kadar et al., 1987 and 1988) 

 ( ) ( , ) ( , )c c c c

T T

M t T H H dHdH T H H dHdH


             (8) 

A Preisach elementary operator, populating the Preisach plane with the hyperbolic character 

is shown in Fig. 4. We can now solve Everett’s integral in (8), by using hyperbolic 

distribution in (2), leading to the following expressions for the ascending and descending 

magnetization correspondingly: 

  m[ ( )] ( )u cM A tanh H H F H             (9) 

  m[ ( )] ( )d cM A tanh H H F H            (10) 

Here A represents the maximum amplitude of the magnetization, Hc is the coercivity, Hm is 

the maximum excitation,  is the differential permeability at H = Hc or the angle of the 

tangent of the hysteresis loop at the point where it crosses the field axis. The F integration 

constant can be calculated from the condition, that at the first return point, where Mu and Md 

must be equal, for all minor and major loops (Della Torre, 1999; Mayergoyz at al.,1990), 

therefore per definition: 

 m m( ) [tanh ( ) tanh ( )]
2

m c c

A
F H H H H H               (11) 

The capital letters represent the physical quantities and the corresponding lower case letters 

will refer to the normalized units. The normalization used in this chapter is not related 

necessarily to the maximum value. It is the free choice of the user; the base can be any 

convenient number, which helps to carry out the mathematical operations. A long detailed 

description of the free normalization process can be found in Section 10.  
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Fig. 4. Preisach elementary operator (hysteron) with hyperbolic character. 

After normalization the ascending mu and the descending md branches of the hysteresis loop 

can be written as: 

  0[ ( )]u cm a tanh h h f                 (12) 

  0[ ( )]d cm a tanh h h f           (13) 

respectively, where 

 0 m m((tanh[ ( )] (tanh[ ( )])
2

c c

a
f h h h h      is the normalized form of F(Hm)  (14) 

Here, all lower case letters represent the appropriate normalized quantities. In this study, 

where-ever possible, the normalized form is going to be used. 

2. Fundamentals of the hyperbolic model 

The hyperbolic model analytical approach is based on the practical assumption, that in 

general, there are at least, three parallel processes, including very soft irons, dominating the 

overall magnetization process; i.e. the reversible and irreversible domain wall movement 

(DWM), the reversible and irreversible domain rotation (DR) and the domain wall 

annihilation and nucleation (DWAN) processes (Varga at al., 2008). Although these 

processes are interlinked, they can be mathematically formulated separately and combined, 

by using Maxwell’s superposition principle. They individually dominate the low, middle 

and near saturated region of magnetization and are supposed to have also have sigmoid 

shapes. This model is already used successfully in number of applications (Takacs at al, 

2008; Nemcsics at al., 2011; Jedlicska at al., 2010) and some aspects are already well 

documented in the literature (Takacs, 2003). 
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When numerous processes are running simultaneously, it is difficult to describe the overall 
magnetization with one function, resulting from the integration of one Everett integral, but the 
combination of all the concurrent processes brings the model nearer to the experimental results 
(Takacs, 2006; 2008). The magnetization processes of magnetic materials, particularly for 
ultrasoft substances and the role of the domain rotation (DR) and domain wall movement 
(DWM) in the process has been the subject of recent experimental and theoretical studies. 
Fitting the experimentally obtained curves with analytical expressions of the hyperbolic 
model, provided a useful tool for obtaining the mixed second derivative of the curves, 
eliminating the deviation, between the model and the experimental data. The diagram of 
mixed second derivatives, as conceived by Pike (Pike et al., 1999) can be obtained for both the 
set of first order reversal curves (FORC diagram) and for the set of biased first magnetization 
curves (BFMC diagram), respectively. These FORC and BFMC diagrams of any magnetic 
system can be measured and modelled irrespective of their magnetic softness/hardness. It was 
assumed that all processes have hyperbolic (sigmoid) character, but they differ in the model 
parameters including the (near) reversible part as suggested by Della Torre (Della Torre, 1999; 
Jiles et al. 1983). All these components can be formulated mathematically as: 

 
0 m

1

[ ( )]
n

u k uk k
k

m a f f h


          (15) 

 
0 m

1

[ ( )]
n

d k dk k
k

m a f f h


           (16) 

 
, tanh[ ( )uk dk k ckf h h            (17) 

Where n is the total number of processes present and k is the running variable. Normally n 
is running between 1 and 3.  

Fig. 5 demonstrates a typical application of the hysteresis model. Fig. 5 a. shows the major 
hysteresis loop of a toroid made of NO Fe-Si and Fig.5 b depicts the three constituent 
components. For fitting the measured loop (broken line), in Fig. 5 a, we used equations (15), 
(16) and (17), with the following normalised and physical parameter values. 

  
          (a) (b) 

Fig. 5. Measured and calculated major hysteresis loop of NO Fe-Si toroid, measured broken 
line, calculated solid line. The components are drawn in different colours. 
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a1 = 3.18, a2 = 1.45, a3 = 1.09, 

1 = 2.75, 2 = 0.56, 3 = 0.134 

hc = 0.675, hc2 = 0.57, hc3 = 0.2, hm = 7.35  
Corresponding to: A1 = 0,842 T, A2 = 0.384 T, A3 = 0.288 T 
Hc1 = 67.5 A/m, Hc2 = 57 A/m, Hc3 = 20 A/m, Hm = 57 A/m 

with free (arbitrary) normalization ( see Section 10) of 1 h = 100 A/m for the field and  
1 m = 0.53 T for the magnetization. 

The normalization factors can be read from the two coordinate systems (normalized in the 
middle and outside one measured). For detailed explanation for the normalisation process 
see Section 10. 

The other well-known hysteresis model, based on Lagevin function is the Jiles-Atherton 
model (Jiles, 1994). This model fundamentally considers, as its principle, the interaction 
between domains and already includes the internal demagnetisation in the form of the 
Weiss field (see Section 4); therefore it falls into the category of dynamic models. Its five 
parameters however are often difficult to associate with parameters used in practical 
magnetism. While in the hyperbolic model the number of parameters is the choice of the 
user and can vary between three and nine (depending on the accuracy required), in the J-A 
model this number is fixed. In complex cases the set parameters are not enough to model the 
phenomenon, therefore for a number of applications the model had to be modified for the 
specific purpose (Carpenter, 1991; Carpenter et al. 1992; Korman et al. 1994). In the iteration 
process, to obtain the model parameters, there is very little difference between the models of 
hysteresis but the hyperbolic model with its utmost simplicity provides a clear and practical 
method for the practical user. In the following a number of useful examples will illustrate 
possible applications of the model for the potential user. 

3. Symmetrical and biased major and minor loops 

Modeling of a regular shape hysteresis loop is based on the functions defined in (9) and (10). 
By using functions, mimicking the sigmoid shape of the hysteresis loop, one can formulate 
both phenomena of saturation and hysteresis. Changing hm between zero and saturation 
field values, with a slow changing ac field we can obtain a set of minor and major loops for a 

given set of a,  hc and hm (amplitude, differential susceptibility, coercivity, maximum 
magnetization) values. The substitution of these values into (15), (16) and (17) will give the 
solution of the Everett integral for every loop, minor or major in the set. At steady state, the 
first return points will sit on the theoretical or intrinsic loci, the only theoretical line, which 
belongs to both the ascending and the descending set of branches. It is un-hysteretic, but 
carries all the properties of the hysteresis loop. Due to the ever present internal 
demagnetization, it is an entirely theoretical concept. It cannot be realized experimentally, 
(internal demagnetization cannot be reduced to zero), nevertheless both f0 and m0 secondary 
functions will help in later calculations (see Part 6). By definition m0 can be formulated as: 

 0 ( ) / 2 (tanh[ ( )] tanh[ ( )])
2

u d c c

a
m m m h h h h             (18) 

For the definition of f0 see (14). 

Fig. 6a shows a set of symmetrical major and minor loops, calculated from (15), (16) and (17).  
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(a) (b) 

Fig. 6. (a) and (b) show typical symmetric and biased major and minor loops. 

In practice very often, like in power transformers, dc current is passing through the 
windings creating a constant dc field with the ac superimposed on it. This represents a shift 
in the first reverse points in the direction of the bias. The solution of the integral for the 
biased hysteresis loops is shown in (19), (20) and (21). For the detailed explanation the 
reader is referred to Ref. (Takacs, 2003). 

Let us assume the dc field represents a normalize b bias on the magnetic object. This 
increases the effect of the magnetizing field in the following way: 

  00tanh[ ( )]u cm a h h b f         (19) 

  00tanh[ ( )]d cm a h h b f               (20) 

  {0 tanh[ ( )] tanh[ ( )]} / 2c cm a h h b h h b               (21) 

where by using laws of a line going through two point in the hyperbolic domain.  

 0 0 0 0
00 1 2

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
m m

m m m m

m x m x m x m x
f f f

m x m x m x m x

  
 

   
       (22) 

 1 { [ ( )] [ ( )]} / 2m c m cf tanh h h b tanh h h b a                 (23) 

 2 { [ ( )] [ ( )]} / 2m c m cf tanh h h b tanh h h b a                 (24) 

where b represents the bias applied, in normalized form. 

4. Experimental loci of the first return points 

The prime aim of most magnetic measurement is to find the intrinsic magnetic properties of 
the tested material. Due to the ever presence of the demagnetization field, (Fiorillo, 2004) a 
number of measuring methods have been developed to minimize its effect. The most 
commonly accepted way is to make the sample into a closed magnetic circuit, like a toroid 
or an Epstein square (Korman et al. 1994; Fiorillo, 2004). Although these two are not 
completely free from the presence of the internal demagnetization, they suffer the least from 
it. Authors went into great length to include the internal demagnetization force into the 
known models like Preisach, Stoner-Wohlfarth, Jiles (Preisach, 1935; Stoner et al. 1991; Jiles, 
1996) etc. leading to so called, dynamic versions. 
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Within the saturation loop lie the loci of the vertices (first return points) of the symmetrical 

minor loops, which is when measured, differs from that of the theoretical intrinsic line 

calculated from saturated hyteresis loop data, free from internal demagnetization (i.e. 

Classical Preisach, hyperbolic model, etc). The relationship between the two curves can be 

formulated in closed mathematical form, independent of any models. To describe the 

internal demagnetising field, we can use the concept of the effective field, analogous to the 

Weiss mean field, used by other authors also (Jiles 1998; Barkhausen, 1919; Alessandro et al. 

1990). Generally the Hd demagnetizing field vector is antiparallel to M vector and 

proportionality is assumed between HD interaction field and M magnetization. This accepted 

linear approximation is 

 eff dH H N M         (25) 

where, by using Jiles notations Nd is the internal demagnetization factor. 

The internal demagnetization factor Nd usually given in tables with unity dimension. We 

must remember that its numerical value and dimension depends on the units used. This 

dimension is only unity, when both M and HD measured in ampere per meter. When other 

unit convention is used, then Nd –s dimension is not unity and must be normalised like 

other magnetic quantities.  

In normalised form with the normalised magnetization with effective field is 

 ( ) ( )eff df h f h n m          (26) 

where f function is the analytical approximation of the integrated Preisach function. After 
substitution of (26) into the expression of the intrinsic loci we arrive to a model free 
expression of m0 of the following form: 

 0 0( )dm f h n m             (27) 

The first derivative of m0 by h of equation in (27) leads to an expression, which shows a 
character, similar to the feedback in an electrical circuit (Fiorillo, 2004; Jiles, et al.1986).  

 

0

0

01

eff

d
eff

dm

dhdm

dmdh n
dh




         (28) 

Expression (28) describes the relationship between the inherent ( in ) and the effective ( eff ) 
susceptibility (Fiorillo, 2004; Jiles, 1998). Here the inherent susceptibility is a material 
property, while the effective one is measured and depends on the geometry of the sample 
and the air gap included in the magnetic circuit, used in the measuring setup. 

For most magnetic substances the value of Nd is small in the order of -10-5 when given in 

unity dimension (Jiles, 1998). Expansion of (28) into its geometric progression (Tranter, 

1971), truncated at three terms (n = 3) will yield the following expression: 

www.intechopen.com



 
Advanced Magnetic Materials 

 

212 

 
20 0 0 0(1 ( ) ...)d d

eff eff eff

dm dm dm dm
n n

dh dh dh dh
            (29) 

The first term in equation (29) depends on the intrinsic (Nd = 0, see Part 6) material 

parameters only.  

Following the integration of expression in (29) by heff will lead us to the measured loci m0. 

(We assume nd is small and effdh dh ). When the integration, carried out by using 

generalized integration by parts (Tranter, 1971) we arrive at the following expression. 

  201 01
0 01( ) (1 ( ) ...)d d

dm dm
m h m n n

dh dh
        (30) 

Here m01,  for nd = 0  is representing the intrinsic or theoretical loci of the vertices (the same 
theoretical concept is used at the free energy calculation in Section 6). With the appropriately 
selected nd in most practical cases the first two or three terms gives good enough accuracy in 
calculation. Fig. 7 depicts a measured, intrinsic and a calculated curve using (30). Fig.8 shows 
one measured minor loop and its equivalent, modelled with expression in (30).  

We can conclude from (30) that the losses due to the internal demagnetization are 
proportional to the Preisach function in first approximation.  

Based on experimental evidence, ND (not normalised) can be approximated as  

 0
c

D
s

H
N

B
          (31) 

where Bs is the saturation induction. 

  

Fig. 7. Measured (broken line), modelled (dotted line) and intrinsic (solid line) loci for NO Fe-Si  
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Fig. 8. Calculated NO Fe-Si minor hysteresis loop for Nd = 0 (solid line) and Nd = – 0.151 
(dotted line), fitted to the measured loop (broken line) with internal demagnetization. 

5. Hysteresis loss and stored energy 

In ac applications one of the vital properties of the magnetic material is its electrical loss. 

This represents the energy dissipated by the device as heat. The hysteresis loss is shown to 

be proportional to the area enclosed inside the hysteresis loop (Steinmetz, 1891). As an 

indicator, it is the measure of the loss per unit volume over one cycle of the periodic 

excitation (Steinmetz, 1892). While the other losses (eddy current, excess etc.) depend on the 

geometry of the sample, frequency, conductivity and other parameters, (Bertotti, 1998) the 

hysteresis loss is related primarily to the area enclosed by the hysteresis loop. We intend to 

formulate this enclosed area, therefore show an analytical way to calculate the hysteresis 

loss in magnetic substances.  

The total area T (not to be taken as the Preisach triangle or Tesla) inside the hysteresis loop 

is represented by the difference between the integrals of the mu and md functions in (12) and 

(13) by h, between the limits of  hm maximum field excitations, in the following way:  

  (  (0 0tanh[ ( )] ) tanh[ ( )] )
hm hm

c c

hm hm

T a h h f dh a h h f dh 
 

            (32) 

The final result of this integration is shown in equation (33) for n number of components. 

 0 0
0

{2 [ln cosh ( ) ln cosh ( )] 2 }
n

k
k m k k m k k m

kk

a
T h h h h f h 


              (33) 

It is customary after Steinmetz, to plot the losses proportional to the area as the function of 
the maximum magnetization. Fig.9 shows the losses versus hm. The graph depicts also the  
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Fig. 9. The T area, (proportional to the hysteresis loss) versus hm and its Steinmetz’ 
approximation. 

Khm1.6 curve, or Steinmetz’s approximation. It shows that for soft steel, with coercivity 
around 70 A/m, the Steinmetz approximation is within a few per cent to the theoretical 
value, up to near saturation for the materials constant K = 1.25, which is very close to 1.1 
value, predicted by the model. 

For permanent magnet manufacturers one of the most important parameters is the 
maximum energy product. It is a measure of the total energy that can be produced by the 
magnet, or the maximum amount of work, that the magnet can do outside the volume of the 
magnet. When it is related to its volume, we come to the energy product density, which by 
nature is independent of the geometry of the magnet; therefore it is entirely a material 
parameter.  

For a permanent magnet the integral of the field - induction product for the whole space 
must be zero as there is no external energy introduced to the closed system (Jiles, 1998). The 
system is in an equilibrium state. The total energy can be divided in to the energy inside the 

volume of the magnet  and the energy outside. It is self-explanatory therefore, from (34) 
that the two energies inside and outside of the magnet must be equal. 

    0

space inside outside

HB dv HB dv HB dv           (34) 

Outside of the magnet B = 0 H therefore we can write the following equation 

   2
0

inside outside

H dv HB dv      (35) 
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We can say that the energy of the field H outside the magnet is equal to the HB product 
inside the magnet integrated over the whole volume of the magnet. The geometry of a 
magnet is normally well defined, therefore it is enough to calculate the energy stored in a 
unity volume called the “energy density”. The energy density w stored in a medium 
permeated by a magnetic field can be expressed as  

   

0 0

B H

w H dB HB B dH           (36) 

Let us use Preisach function and substitute it into (34). This substitution will yield the 
following: 

 0  sech (  2[ )]w h a h h dh          (37) 

A simple but representative quantity for the energy stored, often used in practice (Jiles, 
1998), is the product of the magnetic induction and the magnetic field per unit volume. The 
larger the (HB)max product for a magnetic material the better are the magnetic properties of a 
permanent magnet. Expressing h from (13) the energy product hb (the normalised HB 
product) can be described as  

 arctanh ( 0 0
0 )dd

d c d

m fm
hb m h h m

a







             (38) 

According to an accepted custom, it is usually shown as a function of the magnetic 

induction. Fig. 10 shows a typical schematic hb curve as a function of md with its maximum 

around md = 0.4327 in normalized units. In the case of more than one magnetic component 

present in the core (usual case), the sum of the hb curves will apply. 

 

Fig. 10. Typical energy product as a function of induction. 

6. Barkhausen jump and instability 

Weiss postulated the domain structure for magnetic materials in 1907 but not until only 1919 
was the existence of the ferromagnetic domains experimentally (Barkhausen, 1919) verified. In 
that year Barkhausen put a secondary coil around the specimen, under investigation and 
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connected it to an amplifier with a loudspeaker connected to its output. By Faraday’s law the 
induced voltage in the coil is proportional to the rate of change of the induced flux. As the 
magnetic field was smoothly changed up or down at a constant rate, a series of pulses was 
heard on the loudspeaker, indicating, that a series of jumps were taking place in the 
magnetization process. That was the first verification that a magnetic substance is not 
composed of molecular size components but larger regions, called domains. The series of 
clicks indicated the movement, the size change or rotation of these domains. The continuous 
looking magnetization curve obtained experimentally is composed of a number of small 
jumps, or many small discontinuous flux changes. These jumps have an unpredictable random 
nature in space and time. The jumps represent an instant change in the microscopic magnetic 
state of the material. The system abruptly leaves a higher energy state for a lower one. 
Although it is random, its statistical average is characteristic to the material and is correlated 
with the previous magnetization or demagnetization period. These clicks are called 
Barkhausen jumps and the phenomenon is the Barkhausen effect or Barkhausen instability. 

The mathematical description of the phenomenon proved extremely difficult. After several 
unsuccessful attempts recently Bertotti developed a comprehensive model based on 
stochastic principles. Although with one assumed statistical state, a large number of real 
domain structures can be associated, the calculated results of this model are so far in good 
agreement with experimental observations. For further details and wider discussion on the 
Barkhausen effect, the reader is referred to the literature (Bertotti, 1998). 

Until now we have concentrated on the microscopic nature of the Barkhausen jump but the 
question arises whether similar jumps could occur at macroscopic level. 

Let us look at equation (28), which shows the formula with a character of a feedback 
amplifier. It is obvious that, when the Weiss coefficient is a certain value the denominator 
goes to zero and the equation shows, that instability sets in the circuit. Expression (28) is 
independently applicable to any functions; therefore it is valid for (12) and (13) as well. 

By introducing Weiss effective field, as defined in (25), into (12) and (13), they become: 

  0[ ( ) ] ( )u c u mm a tanh h h m f h          (39) 

  0[ ( ) ] ( )d c d mm a tanh h h m f h            (40) 

 0( ) ( ) / 2m u df h m m   for h = hm          (41) 

here  is the Weiss coefficient. From the equations above mu or md cannot be expressed in 

closed mathematical form. Instead we express h as the function of ,u dm  and we obtain the 

following: 

 

u m
u

u c

m f h
m

ah h







 

0( )
( )arctanh

       (42) 

 

d m
d

d c

m f h
m

ah h







 

0( )
( )arctanh

         (43) 
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We can parametric plot these two expressions mu and md as a function of h and from this 
graphical solution (Takacs, 2003), by using available computer technology, we can 
investigate graphically the behavior of mu and md due to the variation in Weiss coefficient. 

At values of < 1 The angle of intersection between the major loop and the horizontal axis 

is less than a right angle. At  = 1 the intersection is 900. At  > 1, Barkhausen jump occurs 

in the hysteresis curve, between the two magnetization values, which belong to the same 

excitation field values. Fig. 11 shows the coexistence of the states simultaneously with two 

free energy values. Here the system can freely move between the two energy states (see 

later). The system jumps into a lower energy state (Bertotti, 1998) and this energy jump 

results in a loop similar to a hysteresis loop but the loop intersection with the horizontal axis 

is governed by the magnitude of as shown in Fig. 11. On the example the jump occurs at 

the values of m =  0.70613 and h =   1.0308 as marked on Fig. 11. Starting with a 

demagnetized sample, beyond the critical value of , when the first jump occurs, the sample 

cannot be demagnetized by any ac signal. For detailed explanation of the macroscopic 

Barkhausen jump and its effect on magnetization, the reader is referred to the literature 

(Della Torre, 1999). The shape of the loop is representative of the energy state of the system. 

 

Fig. 11. Schematic hysteresis loops calculated from (42) and (43) showing the Barkhausen 

jump on macroscopic scales,  as parameter. Curves are for = 0.5, 1 and 2 in arbitrary  
units. 

In the following we are going to discuss the important relationship between system stability 

and the bistable system represented by the system with positive feedback. 

Let us consider a system, where the m moment can freely move around under the influence 
of H external excitation (for the theoretical or intrinsic concept see Part 4) field. Then the 
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energy E of mi moment without any hindrance from the interaction between the moments 
can be written as: 

 0 i
i

E H m             (44) 

According to Weiss’ theory however the interaction between domains introduces an 
additional field as we see in Section 4 equ. (25), opposing the external magnetizing field. 
This internal field has an additional energy contribution in the following form: 

 0
,2

D
add i j

i j

N
E m m    = 2

0
2

DN
M         (45) 

The energy resulting from effective field ( see Section 4) of a magnetic moment can be 
written as: 

 2
0 0

2
D

i i eff

N
E m H M         (46) 

Based on the law of statistical mechanics and resulting from averaging process, the partition 
function of the system defined as: 

 
1 1

exp( ( )) exp( ( ))i i i
b b

Q E m E m
k T k T

              (47) 

By substituting Equ. 46 into (47) and using known mathematical relations we come to the 
following formulation: 

 20 02exp( )cosh
2

D i
i eff

b b

N m
Q M H

k T k T

 
         (48) 

Per definition the total free energy of N number of moments in a unity volume can be 
written as: 

 0 0ln ln(2 cosh )
2

N N
D i

b i i b eff
bi i

N m
A k Q m M k T H

k T

 
           (49) 

After summation and some simplification we come to the following form 

 0 0ln(2 cosh ( )
2 2
D i D

i b
b

N m N
A m M k TN H M

k T

 
          (50) 

Dividing (50) by kbTcND where Tc is the Curie temperature defined as: 

 0

2
m D

c
b

mM N
T

k


            (51) 

and Mm is the maximum magnetization and with the material constant of b0 representative 
of the magnetic properties of the sample under test 
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2

0
0

2
D m

b c

N M
b

k T N


            (52) 

The normalized form of the Gibbs free energy for the up and down going branch of the 

hysteresis loop will be given in form of Equ.53 and 54 respectively 

 , 0ln[2 cos( )]u free d u ua h n m b m           (53) 

 , 0ln[2 cos( )]d free d d da h n m b m              (54) 

In Fig. 12 the free energy changes are shown for the up and down going branch of the 

hysteresis loop as the function of maximum magnetization, the parameter is the coercivity in 

arbitrary units. 

Figs. 12 a and b clearly show the identical energy states, which belong to two different 

magnetization conditions, where the system can move freely between the two energy states. 

The system then moves to the lower energy state satisfying the laws of thermodynamics.  

 

  
(a) (b) 

Fig. 12. Gibbs free energy as the function of maximum magnetization. The parameter is the 
coercivity, in arbitrary units. 

 

 
                                   (a)                                   (b) 

Fig. 13. The free energy flow for major and minor hysteresis loops (a) Figure (b) shows the 
corresponding major and minor loops. 
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These are representing the points where the Barkhausen macroscopic instability can occur, 

when a positive value creates a positive feedback. 

We have to note, that during this calculation the effect of the temperature was neglected. We 

have assumed that the sample, under investigation, was kept around normal room 

temperature, well below the critical Curie point (see above). For further studies of the 

subject and for the impact of the temperature on the magnetization process, we refer the 

reader to the literature (Takacs, 2005; Bertotti, 1998). We did not feel that the temperature 

dependence fits into the framework of this study. 

7. Eddy current loss 

The hysteretic loss is by no means the only one that a magnetic substance suffers from, 

during magnetization. Most magnetic materials, in practical applications, (power 

transformers, relays etc.), are subjected to ac magnetization or the combination of both ac 

and dc fields. Fields, if they are not changing extremely slowly in time (quasi-static or rate 

independent) will alter the shape of the hysteresis loop due to the countering effect of the 

induced field in the magnetic medium, reducing the effectiveness of the applied external 

excitation. This phenomenon separates the rate independent or static hysteresis from the 

rate dependent hysteresis behavior. The magnetization process becomes a function of time 

and space. The mathematical treatment of the phenomenon is not easy, due to the fact that 

this phenomenon is strongly dependent on the shape of the sample and more other factors 

contribute to the loss. Eddy current losses depend on the conductivity of the magnetic 

substance and the size and shape of the magnetic circuit i.e. transformer. The analysis is 

further complicated by the inhomogeneity of the magnetic material used in practical 

applications. The theoretical treatment of these losses is difficult primarily because at no 

time can the sample be regarded as an infinite continuum, with homogeneous magnetic 

properties even when we neglect of the effect of the shape and the un-reproducible 

conductivity, which depends also on the previous treatment of the magnetic substance. The 

application of Maxwell’s equations, for calculating the losses, therefore is difficult. Shockley, 

Williams and Kittel (Williams et al 1950; Cullity, 1972) were the first to look at this rather 

complex problem theoretically. The best approach to losses was made recently by Bertotti 

(Bertotti, 1998) on statistical principles. He introduced the concept of separation of losses 

and gave a theoretical verification to the dependence of the shape of the hysteresis loop on 

the various loss contributory factors. He expressed the separated losses in the following 

form. 

 h ed exW W W W           (55) 

Here W, the energy loss per cycle is given by the sum of Wh hysteresis, Wed eddy current and 
the Wex excess losses. Here the Wh hysteresis loss is proportional to the area enclosed by the 
static hysteresis loop (Steinmetz law, see section 5), the Wed is the function of the first time 
derivative of the magnetization and Wex covers all the other losses not included in the first 
two categories. Our intention is not to cover the whole problem of losses, only to apply a 
hyperbolic solution to the Everett integral to demonstrate the effect of Wed on the shape of 
the hysteresis loop. This will give an approximate idea for the practical user on the relative 
magnitude of the eddy current effect. The following calculation relates to one unit cube of 
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the magnetic sample and other effects will be disregarded. We assume that the eddy current 
effect is the dominating factor in the magnetic losses. All other losses are included in Wh and 
Wex category, which are not regarded as part of this Section. 

Let us use the Weiss effective field, to express the effect of the eddy current as specified in 
(27). We can write the magnetization as 

 

 

m m

[ ( ) ]

( ) ( )
{tanh[ ( ) ] tanh[ ( ) ]}

2

u
u c

u m u m
c c

dm
m a tanh h h

dt
dm h dm ha

h h h h
dt dt

 

   

   

    
     (56) 
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( ) ( )
{tanh[ ( ) ] tanh[ ( ) ]}

2
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d m d m
c c

dm
m a tanh h h

dt
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h h h h
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 

   

   

    
      (57) 

where  represents the eddy current loss factor and the additional field is proportional to 
the first time derivative of the magnetization. 

The time derivatives of the magnetizations after using well known functional relations are  

 2
2

1
(1 )u u

u

dm dm dh dh
a m

dt dh dt dta
          (58) 

 2
2

1
(1 )d d

d

dm dm dh dh
a m

dt dh dt dta
            (59) 

For triangular excitation, when T (not to be mistaken to the Preisach triangle or Tesla) is the 

duration of one period and is the repetition frequency 
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2 1
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
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    for -

2


 < t < 

2


        (60) 
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

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2


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2


        (61) 

Substitution of (58) and (59) into (56) and (57) respectively will give us the working 
expressions for the magnetization process, when the effect of eddy current is included in the 
calculation. In (56) and (57) we left out the already negligible second order terms in the 
calculations. 
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         (62) 
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 (63) 

Fig. 14 shows the change in the shape of the hysteresis loop due to eddy current for  = 0, 
0.1, 0.2, 0.3 and 0.4 loss factor, for an arbitrary hysteresis loop in arbitrary units. The losses 
are always proportional with the area enclosed by the hysteresis loop (Steinmetz law). In 
practical case therefore, the user need to know the static (dc) and the dynamic (ac) hysteresis 
loop area. The difference between the two is related to the total losses due to the ac 
magnetization. The eddy current loss is regarded as the dominant loss factor after the 
hysteretic loss.  

   

Fig. 14. Showing the effect of eddy current for  = 0, 0.1, 0.2, 0.3 and 0.4 in arbitrary units. 

For sinusoidal excitation the substitution is 

 sin
2

m

T
h h t


      (64) 

The excess losses are taken as the square root of the time derivative of the magnetization 
function. Its mathematical treatment is only possible in special cases. In most cases can only 
be handled by computerized numerical iteration.  

The increase in area of the loop is proportional to energy loss in one period due to eddy 

current in an infinitely large sample of the modeled material. The frequency dependency of 

the eddy current loss can also be calculated from (62) and (63) without taking into account 

the frequency dependent skin effect. The penetration depth depends primarily on the 

conductivity of the material under test and the frequency used. 
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8. Coercivity and remanent magnetism 

The coercive force is the magnetic field needed to reduce the magnetization level to zero. 
Generally, it is referred to as coercivity and it is one of the representative values of a 
ferromagnetic material. Its numerical value strongly depends of the pre-history of the 
sample, like mechanical treatment, temperature etc. It has a strong relationship with another 
characteristic parameter, i.e. the remanent magnetism at maximum magnetization, called 
remanence. As the field gradually reduced to zero, from positive saturation, the process, 
following the descending branch of the hysteresis loop, the magnetization recedes to this 
remanent magnetization value usually marked as Mr. 

When the field gradually is reduced to zero from the positively saturated state (h = hm), 
where f0 ~ 0, the magnetization remains at a constant value, called remanence.  

Fig. 15 depicts the measured and modelled remanence Br as the function of the maximum 
excitation Hm for NO Fe-Si. 

 

Fig. 15. Measured and calculated Br remanence versus Hm maximum field excitation. 

Take expression (13) and substitute h = 0 . Expressing hc we come to the mathematical 
relationship between coercivity (hc) and remanence (mr) in this form, for a single component. 

 
1

arctan r
c

m
h

a
        (65) 

This mathematical expression is valid for all major and minor loops. 

By equating m with 0 in (16), the remanence can be calculated as the function of the 
maximum magnetizing field in the following form: 
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The total value of remanent magnetism is the sum of the remanence of the constituent 
components. 

In Fig.16 a measured remanence curve for NO Fe-Si is shown with the modeled equivalent, 
calculated from (66). 

 

Fig. 16. Remanence versus maximum induction. 

9. Spin valve and inverse spin valve character, negative coercivity 

Magnetoresistive (MR) and Giant Magnetoresistive effects (GMR), the principles of spin 

valves, have been discovered in 1988. For many years it was only a scientific curiosity 

confined to research laboratories. The inverse spin valve, inverted variety of spin valve, 

based on similarity and not always associated with magnetism (Nemcsics et al. 2011), was 

discovered many years later. Today a large variety of sensors are based on these principles 

in vital industrial applications (Mallison, 2002).  

Spin valve devices fundamentally consist of two ferromagnetic layers separated by a thin 

diamagnetic metal layer. One of the ferromagnetic layers, the so called reference layer is 

usually configured as an artificial anti-ferromagnet and pinned by exchange biasing to an 

anti-ferromagnetic layer. The other ferromagnetic layers (free layers) can freely change their 

magnetization direction under the influence of an external magnetic field (Jedlicska et al. 

2010). Their M = f(H) response characterized by the so called wasp-waisted loop shape. Its 

character show two interlinked hysteresis loops representing the switching of individual 

layers constituting the spin valve structure. 

Fig. 17 depicts a typical characteristic spin valve, coupled double hysteresis loop. To our 

knowledge none of the hysteresis models can simulate any of these complicated structures. 

The hyperbolic model, with its flexibility and adaptability can model intricate and 

sophisticated structures, which are getting more popular in industrial applications. The 

model applications are not restricted to simple investigations of material parameters, but  

www.intechopen.com



 
The Everett Integral and Its Analytical Approximation 

 

225 

 

Fig. 17. Typical spin valve coupled hysteresis loops in arbitrary units. 

can be applied to modeling instrument characteristic behavior and for the calculation of 
characteristic parameters of instruments. 

Associated with the Magnetoresisrtive (MR) and Giant Magnetoresistive effects (GMR) is 
the phenomenon of negative coercivity in the hysteresis loop, which leads to three- looped 
hysteretic processes. This is due to the presence of the anti-ferromagnetic layer, forming part 
of the composite loop. By using (15), (16) and (17) for n = 2 and substituting negative 
numerical values for hc2 (anti-ferrous) we can model the overall character, where hcm final 
coercivity changes from hcm positive to hcm = 0 and hcm negative as shown in Fig. 18. 

 
(a) (b) 

 

 
(c) (d) 

Fig. 18. hc0 at various values of hc2 a. Positive h20  b. Small negative h20  c. Medium negative 
h20  d. Larger negative h20 
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The phenomena of hysteresis are not confined to magnetism. In other branches of the 
sciences like biology and semiconductor physics it is very common. Here, however we will 
demonstrate, what the model is capable of, not on a simple hysteresis loop, but on an 
inverse spin valve like loop, picked from the field of semiconductor surface physics. In  
Fig. 19 a RHEED specular spot intensity versus temperature diagram and its modelled curve 
is shown, which manifests itself in this complicated inverse spin like manner. 

 

Fig. 19. An inverse spin valve character example from surface physics in arbitrary units. 

10. Conclusion, process of identification, iteration, normalization and other 
practicalities 

The hysteretic approach described here, based on Preisach model has a number of 
advantages. The most relevant once are: 

a. The defining parameters can be the usual quantities used in practice: The maximum 
magnetization, coercivity, initial differential permeability (inclination). There are three 

in the simplest case (A, Hc, ). All tabulated in catalogues (Jiles, 1998) 
b. The analytical relation between magnetization and field is a “soft” function, easy for 

mathematical operations (like integration). This is opposite of the Gaussian and 
Lorentzian approximations, which result in the error function and the inverse tangent 
functions, both are “hard “ functions (Della Torre, 1999) 

c. The hyperbolic approach does not suffer from the congruency restriction and correctly 
describes the minor loops between identical limits (Takacs, 2003) 

d. The hysteron in the hyperbolic system retains its square like character, although it is 
hyperbolic in mathematical terms  

e. All parameters are analytically identifiable from the major loop (Varga et al. 2008). 

The hyperbolic model has its easy applicability in practical cases and has high accuracy as 
demonstrated on the practical examples. It has been shown, starting on biased minor loops, 
plus followed by hysteretic losses and other examples. The Barkhausen macroscopic jump 
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analytical approach has been done here for the first time, to our knowledge. An extra section 
is devoted to the internal demagnetization, which forced researchers to modify all other 
simple models, including that of CPSM. Here a model-independent mathematical approach 
is given to resolve this problem in a form, which is applicable to all simple models.  

At the start the iteration in the curve fitting exercise to model the hysteresis curve from the 
experimental data the reader needs a set of initial or starting parameters. This is the first step 
in the identification process. In the simplest case this parameter number is three, which 
grows to nine for the most complicated composite material. a0 is the amplitude of the 
maximum measured magnetization. When, more than one process is present, 

then 0k
n

a a . The ratio between the hm and the starting value of coercitivity hc is the same 

as that of the experimental data. The relation between coercivity and remanence is set by 

(63). The starting value for  can easily read from the measured data. With the appropriately 
selected initial set of data the iteration for fitting the experimental curve is converging 
whether the iteration is assisted by the computer software or purely carried out by manual 
process. 

Most researchers normalize to the maximum values of the parameters. For instance, the 

magnetization is divided with Mm to get unity value for the normalized maximum 

magnetization. This however is not always an advantage. 

Normalization is to help the user with the very often complicated mathematics and 

numerical calculations and must not be restricted to a single value like the maximum 

amplitude. Often is more convenient to choose other values or use free normalization, 

where the normalization base is only determined after the successful iteration, giving free 

hand to the user. Iteration can be based on the free transform facility, available in most 

graphic and Photo oriented software. The iteration can be carried out by using Mathematica, 

Mathlab, Origin or a number of other mathematical packages and it can be computer 

assisted or entirely manually interactive. The measured data and the calculated results 

should be saved in identical formatting such as PDF, EPS, JPEG, TIFF or others. When the 

calculated hysteresis loop or curve is reached a certain stage in similarity, it should be 

compared with the measured one, which can be stored in an appropriate formatting in 

transparent form (see Fig.20). The modeled loop should be copied then onto the measured 

data and stretched over the measured loop (conform transformation), as it is depicted in  

Fig. 21. Then one can see how much the parameter values need to be changed to make a 

closer fit to the experimental data. This iteration process will be repeated several times, until 

the experimenter is satisfied with the fit between the modeled and the experimental data 

either visually or numerically. When the iteration is finished and the experimenter is 

satisfied with the fit, the normalization for the final parameter values can be read from the 

two coordinate (measured and modeled) systems with the equivalent values on the scales 

(see Fig 21). Often the best approach is to start with manual iteration (human mind can 

make shortcuts). The final, tedious fine tuning can be left to the computer for time saving. 

Optimization packages used for optimization processes, like Genetic algorithm (GA) (Leite 

et al. 2004), Direct search (DS) (Kolda et al. 2003), Particle Swarm Optimization (PSO) 

(Marion et al. 2008), Differential Evolution (DE) (Toman et al. 2008) and others, have already 

been applied in similar iterative applications.  
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Fig. 20. Calculated (solid) loop is copied over the measured (dotted) curve in transparent 
mode. 

 

 

Fig. 21. The calculated loop is stretched over the experimental one 

The number of calculations in the proposal is directed to the practitioner, who is interested 
in quick, easily achievable accurate results. Practical suggestions are included to help the 
potential users and encourage the model penetration into general engineering and other 
practices for fast and accurate modeling of large variation of magnetic materials used in 
industry and other fields of science. 
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