
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

B. Umesh Rai
Indian Institute of Science, Bangalore

India

1. Introduction

S-functions are short for system-functions. They are used for extending the capabilities of
Simulink®. S-functions allows us to add our own algorithms to Simulink models. The process
of creating S-function blocks is quite simple. Simulink provides a S-function API which can
be used to write a S-function routine observing a set of laid down rules. The compiled routine
is enclosed inside a Simulink block, which can be subsequently customised by masking. A
library of customised S-function blocks are created for an application specific task. This library
can be subsequently distributed to work in MATLAB® environment.

1.1 How is S-function useful?

S-function can also be described as a computer language description of the Simulink block.
S-function is written in any one of the popular languages viz C, C++, Fortran or Ada besides
MATLAB’s own M programming language and compiled as MEX files, where MEX stands
for MATLAB Executable. S-functions use a special calling syntax called the S-function API that
interacts with the Simulink engine. This interaction is very similar to the interaction that takes
place between the engine and built-in Simulink blocks.

In MATLAB S-functions, the S-function routines are implemented as MATLAB functions. In C
MEX S-functions, they are implemented as C functions. All the S-function routines available
to MATLAB S-functions exist for C MEX S-functions as well. However, Simulink provides a
larger set of S-function routines for C MEX S-functions.

S-function routines can be written for continuous, discrete or hybrid systems. A set of
S-function blocks created by us can be placed in a tool box or library and distributed for
working in MATLAB environment. S-functions allow creation of customised blocks for
Simulink. By following a set of rules, any block algorithms can be implemented in an
S-function. It can also be deployed for using an existing C code into a simulation. After
compiling the S-function, the run time file has to be placed in an S-function block. User
interface can then be customised by using masking. An advantage of using S-functions is
that a general purpose block can be built that can be used many times in a model, varying
parameters with each instance of the block.

The most common usage of S-functions is for creating a set of custom Simulink blocks for an
application. Existing C code in the application is easily encapsulated into S-function block
and used as a separate Simulink block. This is used alongside the other blocks of Simulink.

S-Function Library for Bond Graph Modeling

5

www.intechopen.com

2 Will-be-set-by-IN-TECH

If the system model has been already modeled as a set of mathematical equations, it becomes
easy to convert each equation into a S-function block, and and develop the system model in
Simulink.

1.2 Vectors in S-function

In a Simulink block, a vector of input, u, are processed by a vector of states, x to output a
vector of output, y (Fig. 1) (Mathworks, 2011). The state vector may consist of continuous
states, discrete states, or a combination of both.

u
(input)

x
(states)

y
(output)

Fig. 1. Generalised Simulink block

In S-functions written in the MATLAB programming language, the MATLAB S-function,
Simulink partitions the state vector into two spaces. The first part of the state vector is
occupied by the continuous state, and the discrete states occupy the second part. But in the
other programming language written S-function, MEX-file S-functions, there are two separate
state vectors for the continuous and discrete states.

2. Steps in simulation

Routines have to be written in S-function to carry out the simulation steps required by the
Simulink engine. To cross-reference the routine required for the simulation step, two different
approaches are used. For an MATLAB S-function, Simulink passes a flag parameter to
the S-function. The flag indicates the current simulation stage. Routines in M-code calls
the appropriate functions for each flag value. For a C MEX S-function, Simulink calls the
S-function routines directly. This is done by following a naming convention for the routines.

2.1 Steps in S-function block simulation

Simulink engine first calls the S-function Routine to perform initialisation of all S-functions
block in the model. Later, the engine makes repeated calls during simulation loop to each
S-function block in the model, directing it to perform tasks such as computing its outputs,
updating its discrete states, or computing its derivatives. Finally, the engine invokes a call to
each S-function Routine for a termination task (Fig. 2). The tasks required at various stages,
include:

• Initialization: Simulink initializes the S-function as a first step. The tasks are:

– Initialising the SimStruct, a structure that contains information about the S-function.

– Setting the number and size of input and output ports.

– Setting the block sample times.

– And allocating storage areas and the sizes array.

• Calculation of next sample hit - for a variable step integration routine, this stage calculates
the time of the next variable hit, that is, it calculates the next stepsize in the variable step.

• Calculation of outputs in the major time step. After this call is complete, all the output
ports of the blocks are valid for the current time step.

98 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 3

• Update discrete states in the major time step. In this call, all blocks should perform
once-per-time-step activities such as updating discrete states for next time around the
simulation loop.

• Integration: This applies to models with continuous states and/or nonsampled zero
crossings. If S-function has continuous states, Simulink calculates the derivative of the
continuous state at minor time steps. Simulink computes the states for S-function. If
S-function (C MEX only) has nonsampled zero crossings, then Simulink will call the output
and zero crossings portion of S-function at minor time steps, so that it can locate the zero
crossings.

Initialise Model (SimStruct, Port width etc.)

Calculate time of Next Sample
hit (for Variable Sample time)

Calculate Outputs
(in Major Time step)

Update Discrete states
(in Major Time step)

Integration
(Minor Time Step)

Calculate Derivatives

Calculate Outputs

Calculate Derivatives

Zero
Crossings

At termination perform any required tasks

S
im

u
la
ti
on

L
o
op

Fig. 2. S-function simulation cycle

2.2 Flags in MATLAB S-function

An MATLAB file that defines an S-Function block must provide information about the model.
Simulink needs this information during simulation. The MATLAB S-function has to be of the

99S-Function Library for Bond Graph Modeling

www.intechopen.com

4 Will-be-set-by-IN-TECH

following form:
[sys, x0, str, ts] = f (t, x, u, f lag, p1, p2, ...)

where f is the name of the S-function. Simulink passes t, the current time, x, state vector, u,
input vector, integer flag in argument to S-function. In an MATLAB S-function flags are used
for indicating the current simulation stage. S-function code calls the appropriate functions for
each flag value. Table 1 lists the simulation stages, the corresponding S-function routines, and
the associated flag value for MATLAB S-functions.

Simulation Stage S-Function Routine Flag

Initialization mdlInitializeSizes flag = 0

Calculation of derivatives of
continous state variables

mdlDerivatives flag = 1

Update discrete states,
sample times

mdlUpdate flag = 2

Calculation of outputs mdlOutputs flag = 3

Calculation of next sample
hit (Only when discrete-time
sample time specified)

mdlGetTimeOfNextVarHit flag = 4

End of simulation tasks mdlTerminate flag = 9

Table 1. M-File flags

An MATLAB S-function returns an output vector having the following elements:

• sys - the values returned depend on the flag value (for flag = 3, sys contains the S-function
outputs).

• x0 - the initial state values at flag = 0 (otherwise ignored).

• str - reserved for future use.

• ts - two-column matrix containing sample time and offset.

2.3 C MEX S-function callback methods

As with MATLAB S-functions, Simulink interacts with a C MEX-file S-function by invoking
callback methods that the S-function implements. C MEX-file S-functions have the same
structure and perform the same functions as MATLAB S-functions. In addition, C MEX
S-functions provide more functionality than MATLAB S-functions. C MEX-files can access
and modify the data structure that Simulink uses internally to store information about the
S-function. This gives it an ability to handle matrix signals and multiple data types.

C MEX-file that defines an S-Function block provides information about the model to Simulink
during the simulation. Unlike MATLAB S-functions, no explicit flag parameter is associated
with C MEX S-function routine. But the routines have to follow the naming convention.
Simulink then automatically calls each S-function routine at the appropriate time during
its interaction with the S-function. It defines specific tasks which include defining initial
conditions and block characteristics, and computing derivatives, discrete states, and outputs.

100 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 5

Simulink defines in a general way the task of each callback and their sequence (Fig.3)
(Mathworks, 2011). The green box in Fig.3 are the compulsorily present routines and the
blue box are the optional routines. The S-function is free to perform any task according to the
functionality it implements. For example, Simulink specifies that the S-function’s mdlOutput
method must compute that block’s outputs at the current simulation time. It does not specify
what those outputs must be. The callback-based API allows to create S-functions, and hence
custom blocks, of any desired functionality. The contents of the routines can be as complex
and any logic can reside in the S-function routines as long as the routines conform to their
required formats.

mdlInitializeSizes

mdlSetInputPortWidth /
mdlSetOutputPortWidth

mdlSetInputPortSampleTime /
mdlSetOutputPortSampleTime

mdlInitializeSampleTimes

mdlSetWorkWidths

mdlStart

mdlInitializeConditions

mdlProcessParameters

mdlGetTimeOfNextVarHit

mdlInitializeConditions

mdlOutputs (major time step)

mdlUpdate (major time step)

mdlDerivatives

mdlOutputs

mdlDerivatives

mdlOutputs

mdlZeroCrossings

mdlTerminate

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

In
it
ia
li
za
ti
o
n

S
im
u
la
ti
o
n
L
o
o
p

m
d
lC

h
ec
k
P
a
ra
m
et
er
s

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

In
te
g
ra
ti
o
n

(M
in
or

S
te
p
)

Fig. 3. Calling sequence of C MEX S-function Blocks

2.4 MEX versus MATLAB S-functions

Both the approaches of MATLAB and MEX S-functions development have some inherent
advantages due to their origin in the programming language they are coded in. The advantage
of MATLAB S-functions is speed of its development. Developing MATLAB S-functions avoids
the time consuming compile-link-execute cycle required when developing in a compiled
language like C. MATLAB S-functions also have easier access to MATLAB toolbox functions

101S-Function Library for Bond Graph Modeling

www.intechopen.com

6 Will-be-set-by-IN-TECH

and can utilize the MATLAB Editor/Debugger. MEX S-functions are more appropriate
for integrating legacy code into a Simulink model. For more complicated systems, MEX
S-functions may simulate faster than MATLAB S-functions because the MATLAB S-function
has to call the MATLAB interpreter for every callback routine.

3. S-function examples

The ease of writing an S-function is demonstrated here by taking a simple example. Both
MATLAB file and C Mex approaches will be demonstrated. A block ’timestwo’ is implemented
in S-function. This simple block has no states. Functionally, the block takes an input scalar
signal, doubles it and outputs to a connected device (Fig.4).

timestwo

Sine Source S-function Scope Sink

Fig. 4. timestwo S-function in model

3.1 MATLAB S-function implementation of timestwo

The S-function will be defined with four input arguments from Simulink. They are, the current
time t, state x, input u, and flag flag. The output vector contains the variable listed in Sec.2.2.
For the simple example chosen, two routines will be sufficient. A routine for initialisation and
another for calculating the output. Below is the MATLAB code for the timestwo.m S-function:

function [sys,x0,str,ts] = timestwo(t,x,u,flag)

% Dispatch the flag. The switch function controls the calls to

% S-function routines at each simulation stage.

switch flag,

% Initialization

case 0

[sys,x0,str,ts] = mdlInitializeSizes;

% Calculate outputs

case 3

sys = mdlOutputs(t,x,u);

% Unused flags

case { 1, 2, 4, 9 }

sys = [];

% Error handling

otherwise

102 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 7

error([’Unhandled flag = ’,num2str(flag)]);

end;

% End of function timestwo.

The routines that are called by timestwo.m are mdlInitializeSizes and mdlOutputs. The routine
mdlInitializeSizes passes on the block information to the size structure. The information on
number of outputs, inputs, continuous and discrete states, sample times and whether direct
feed through is present, is passed on to the structure variable. The output variables, x0, str
and ts are also set to the desired values. The second routine mdlOutputs just doubles the input
scalar.

%==

% Function mdlInitializeSizes initializes the states, sample

% times, state ordering strings (str), and sizes structure.

%==

function [sys,x0,str,ts] = mdlInitializeSizes

% Call function simsizes to create the sizes structure.

sizes = simsizes;

% Load the sizes structure with the initialization information.

sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs=1;

sizes.NumInputs=1;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1;

% Load the sys vector with the sizes information.

sys = simsizes(sizes);

%

x0 = []; % No continuous states

%

str = []; % No state ordering

%

ts = [-1 0]; % Inherited sample time

% End of mdlInitializeSizes.

%==

% Function mdlOutputs performs the calculations.

103S-Function Library for Bond Graph Modeling

www.intechopen.com

8 Will-be-set-by-IN-TECH

%==

function sys = mdlOutputs(t,x,u)

sys = 2*u;

% End of mdlOutputs.

The timestwo MATLAB S-function can now be used in the Simulink model, by first dragging
an S-Function block from the User-Defined Functions block library into the model. Then
entering the name timestwo in the S-function name field of the S-Function block’s Block
Parameters dialog box (Fig. 5).

Fig. 5. timestwo S-function in Simulink model file

3.2 C MEX S-function implementation of timestwo

C MEX S-function will contain the callback methods mdlInitializeSizes,
mdlInitializeSampleTimes, mdlOutputs and mdlTerminate. The simulation steps will
have setting of intial condition by the first two blocks, the simulation loop in the third block
and final termination by the last block (Fig.6). The code is reproduced below:

Start

mdlInitializeSizes

mdlInitializeSampleTimes

mdlOutputs

mdlTerminate

Fig. 6. C MEX S-function timestwo Blocks

104 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 9

#define S_FUNCTION_NAME timestwo /* Defines and Includes */

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S) {

ssSetNumSFcnParams(S, 0);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch reported by the Simulink engine*/

}

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes(S, 1);

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid) {

int_T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

real_T *y = ssGetOutputPortRealSignal(S,0);

int_T width = ssGetOutputPortWidth(S,0);

for (i=0; i<width; i++) {

*y++ = 2.0 *(*uPtrs[i]);

}

}

static void mdlTerminate(SimStruct *S){}

#ifdef MATLAB_MEX_FILE/*Is this file being compiled as a MEX-file?*/

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

3.3 Explanation of C MEX timestwo code

We start by two define statements, and give the name to our S-function and tell the Simulink
engine that the code is written in Level 2 format. Later we include the header file simstruc.h,

105S-Function Library for Bond Graph Modeling

www.intechopen.com

10 Will-be-set-by-IN-TECH

which is a header file that defines a data structure, called the SimStruct, that the Simulink
engine uses to maintain information about the S-function. A more complex S-function will
include more header files.

The callback routine mdlInitializeSizes tells the Simulink engine that the function has no
parameters, has one input and output port. It also declares that only one sample time
will be specified later in mdlInitializeSampleTimes. Simulink is also informed that the code
is exception free code. This declaration speeds up the execution time. The next callback
routine mdlInitializeSampleTimes declares the sample time to be inherited i.e the block executes
whenever the driving block executes.

The callback routine mdlOutputs calculates outputs at each time step. The input and output
port signals is accessed through a vector of pointers. The width of the output port which
is defined to be dynamically set is then read and the program loops for the width while
calculating the output signal to be two times the input signal. The final callback mandatory
routine mdlTerminate performs the end of the simulation task, which in the present case is a
NIL set. following this routine the mandatory trailer code for compiler is present. Its absence
will lead to compile errors.

The C MEX S-function has to be now compiled. Simulink gives a choice of C compiler to be
used. We can use either the built in MEX compiler or any other C compiler already loaded in
the system. The following command at the command line

mex -setup

allows us to locate all the compilers available in the system and the option to use one for
compiling and linking in the MATLAB environment. Later the command

mex timestwo.c

compiles and links the timestwo.c file to create a dynamically loadable executable for the
Simulink software to use. The resulting executable is referred to as a MEX S-function. The
MEX file extension varies from platform to platform. For example, on a 32-bit Microsoft
Windows system, the MEX file extension is .mexw32. The compiled run time file is then put
into the S-function block similer to MATLAB S-function file (Fig. 5).

4. Bond graph modeling

4.1 Analogous behaviour of physical systems

The bond graph approach to physical system modeling was conceptualized by Hank Paynter
on April 24, 1959 (Paynter & Briggs, 1961), inspired by the earlier work of Gabriel Kron (Kron,
1962). Bond graph language is a port based graphical approach for modeling energy exchange
between subsystems. This technique was further developed by Karnopp and Rosenberg
(Karnopp et al., 1990; 2006; Karnopp & Rosenberg, 1968; Rosenberg & Karnopp, 1983). Several
books, special issues and articles on bond graph technique have popularised it for growing
usage (Borutzky, 2009; Borutzky et al., 2004; Breedveld, 1984; 1991; 2004; Breedveld et al.,
1991; Cellier et al., 1995; Dauphin-Tanguy, 2000; Gawthrop, 1995; Gawthrop & Smith, 1996;
Mukherjee & Karmakar, 2000; Thoma, 1990; Thoma & Perelson, 1976).

106 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 11

Energy f e q p
domain flow effort Generalised Generalised

momentum displacement

Electromagnetic i, [A] v, [V] q, [C] λ, [V-s]
current voltage charge linked flux

Mechanical V, [m/s] F, [N] x, [m] p, [N-s]
translation Velocity Force Displacement Momentum

Angular ω, [rad/s] T, [N m] θ, [rad] pω , [N-m-s]
translation Velocity Torque Angle Momentum

Hydraulic ϕ, [m3/s] P, [N/m2] V, [m3] Γ, [N-s/m2]
Volume Pressure Volume Momentum of
flow flow tube

Thermal T, [K] FS, [J/K/s] S, [J/K]
Temperature Entopy flow Entropy

Chemical µ, [mol/s] FN , [J/mol] N, [mol]
Molar flow Chemical Number of

potential moles

Table 2. Flow and effort variables in different domains

Behaviour of a physical system is constrained, either implicitly or explicitly by laws of physics
viz. mass and energy conservation, laws of momentum and positive entropy production.
Furthermore, various physical domains are each characterized by a particular quantity that
is conserved. Each of these domains have analogous ideal behaviour with respect to energy
(Table 2). This analogy led to the concept of energy port, the building block of bond graph
modeling language. Here, the interaction between physical systems is through energy port
and is always bidirectional. There will be an input signal and a consequent output signal
(’back effect’) and their product will signify the ’power that is transacted’. From a computational
point of view, the effort could be computed by ’Port 1’, while the flow is computed in ’Port 2’.
It could be the other way around as well. Apriori the computational direction of signal is not
known, except the fact that they are in opposite direction (Fig.7).

4.2 Bond graph elements

Bond graphs are labelled, directed graphs. The vertices of a bond graph denote subsystems,
system components or elements, while the edges, called power bonds or bonds for short,
represent energy flows between them. The nodes of a bond graph have power ports where
energy can enter or exit. As energy can flow back and forth between power ports of different
nodes, a half arrow is added to each bond indicating a reference direction of the energy flow.
The amount of power, P(t), at each given time, t, is given by the product of the two conjugate
variables, which are called effort, e, and flow, f, respectively.

P(t) = e(t) · f (t) (1)

There can be five groups of physical behaviour by elements handling energy:

1. Storing of energy.

2. Supply on demand.

107S-Function Library for Bond Graph Modeling

www.intechopen.com

12 Will-be-set-by-IN-TECH

Port 1 Port 2

effort

flow

or

Port 1 Port 2

effort

flow

(Direction of arrow signifies

the ’Computational’ direction)

Fig. 7. Computational direction of flow and effort between ports

3. Reversible transformation (including inter-domain transfers).

4. Irreversible transformation (positive entropy production).

5. Distribution to connected ports.

These five behaviour are represented by nine basic elements.

• Two types of storage elements, effort or Capacitive- storage and flow or Inductive - storage.

• Two types of sources, Source - effort and Source - flow.

• Two types of Reversible transformators, non-mixing, reciprocal Transformer or TF-type
transducer and mixing anti- reciprocal Gyrator or GY-type transducer.

• Irreversible transducer is an energy Dissipater or can be also classified as entropy producing
R-type transducer.

• Distributor junction are also in dual form, 0-junction and 1-junction. The 0-junction
represents a generalised domain independent Kirchoff current law and similarly a
1-junction represents a generalised domain independent Kirchoff voltage law.

The elements can also be segregated based on their port structure:

• Five one-port elements: C, L(orI), R, Se, S f .

• Two two-port elements: TF, GY.

• Two n-port junctions: 0-junction, 1-junction.

4.3 Constitutive relations

A constitutive relation with a constant parameter characterises each element. For sources, the
imposed variable is independent of the conjugate variable, and for the rest of elements, the
relationship is algebraic between its conjugate variables. The storage elements are classified
as memory elements. The preferred constitutive equation is integration with respect to time.

108 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 13

If differentiation with respect to time is used, the information on initial condition or history is
lost. If sensors are included in the bond graph modeling and used for determining the factor
of the algebraic relationship between the conjugate variable, we rename the bond as modulated
bond with prefix M for the modulated element name.

Element Effort causal Flow causal

Resistor, R

e

f
R : R

e

f
R : R

f =
e

R
e = f · R

Capacitor, C

e

f
C : C

e

f
C : C

f = C
de

dt
e =

∫

f

C
· dt

Inductor, I

e

f
I : L

e

f
I : L

f =
∫

e

L
· dt e = L

d f

dt

Source, Se/ f
Se : V

e
S f : I

f

e = V f = I

Table 3. One-port elements

Element Effort causal Flow causal

Transformer, TF

e1

f1

TF
e2

f2

◦◦
M e1

f1

TF
e2

f2

◦◦
M

modulating parameter = M e2 = M · e1; f1 = M · f2 e1 =
e2

M
; f2 =

f1

M

Gyrator, GY

e1

f1

GY
e2

f2

◦◦
M e1

f1

GY
e2

f2

◦◦
M

modulating parameter = M f1 =
e2

M
; f2 =

e1

M
e1 = M · f2; e2 = M · f1

Table 4. Two-port elements

5. Computational causality

Each bond connects two power ports of different primitive elements and carries two power
variables as can be seen in Fig.7. One of the two power variables may be determined by one
of the two sub-models, while the other is determined by the other model. A short stroke,
called causal stroke, perpendicular to the bond is placed at one of its ends of the bond. This
indicates the computational direction of the effort variable. Consequently the other open end is
the decider of the flow variable. The nine basic elements with their constitutive relationships
that are dependent on their causal stroke are shown in Table 3,4 and 5

109S-Function Library for Bond Graph Modeling

www.intechopen.com

14 Will-be-set-by-IN-TECH

Element Symbol Governing Law

0-junction

0Se : Vs
es

fs

e
r1

fr1

r1
: R

e l

f l

I : l

er2

fr2

R : r2

o

o

o

Effort Law
General equation
m
∑

i=1
fi = 0

and e1 = e2 = e3 = ... = em

For bond graph model at left
fs − fr1 − fl − fr2 − ... = 0
and el = er1 = er2 = ... = es

The element having causal bar
toward the junction decides the
effort for all bonds associated
with the junction.

1-junction

1Se : Vs
es

fs

e
r1

fr1

r1
: R

e l

f l

I : l

er2

fr2

R : r2

o

o

o

Flow Law
General equation
m
∑

i=1
ei = 0

and f1 = f2 = f3 = ... = fm

For bond graph model at left
Vs − er1 − el − er2 − ... = 0
and fs = fr1 = fr2 = ... = fl

The element having causal bar
away from the junction decides
the flow for all bonds associated
with the junction.

Table 5. Junction elements

5.1 S-function implementation for C bond

We will now use the C MEX S-function code to develop a continuous state Simulink block.
An One-port element which stores energy is chosen for illustration. Effort causal Capacitor C
element in Table 3 is one such element. The code, which is an extension of code at Sec. 3.2
(added routines for continuous state) is given below:

#define S_FUNCTION_NAME C_complex_bond

#define S_FUNCTION_LEVEL 2

#define NUM_INPUTS 1 /* Input Port 0 */

#define IN_PORT_0_NAME u0

#define INPUT_0_WIDTH DYNAMICALLY_SIZED

#define INPUT_0_FEEDTHROUGH 0

#define NUM_OUTPUTS 1 /* Output Port 0 */

#define OUT_PORT_0_NAME y0

#define OUTPUT_0_WIDTH DYNAMICALLY_SIZED

#define NPARAMS 2 /* Parameter Capacitance */

#define PARAMETER_0_NAME C /* Capacitance Value*/

#define PARAMETER_1_NAME bias /* Initial Charge */

110 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 15

#define SAMPLE_TIME_0 CONTINUOUS_SAMPLE_TIME

#define NUM_CONT_STATES 2

#define CONT_STATES_IC [0]

#include "simstruc.h"

#define PARAM_DEF0(S) ssGetSFcnParam(S, 0)

#define PARAM_DEF1(S) ssGetSFcnParam(S, 1)

static void mdlInitializeSizes(SimStruct *S) {

ssSetNumSFcnParams(S, NPARAMS);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, NUM_CONT_STATES);

if (!ssSetNumInputPorts(S, NUM_INPUTS)) return;

ssSetInputPortWidth(S, 0, INPUT_0_WIDTH);

ssSetInputPortComplexSignal(S, 0, COMPLEX_INHERITED);

ssSetInputPortDirectFeedThrough(S, 0, INPUT_0_FEEDTHROUGH);

ssSetInputPortRequiredContiguous(S, 0, 1); /*direct input signal

access*/

if (!ssSetNumOutputPorts(S,NUM_OUTPUTS)) return;

ssSetOutputPortWidth(S, 0, OUTPUT_0_WIDTH);

ssSetOutputPortComplexSignal(S, 0, COMPLEX_INHERITED);

ssSetNumSampleTimes(S, 1);

}

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, SAMPLE_TIME_0);

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlInitializeConditions(SimStruct *S) {

real_T *xC = ssGetContStates(S);

xC[0] = 0;

xC[1] = 0;

}

static void mdlOutputs(SimStruct *S, int_T tid) {

boolean_T yIsComplex = ssGetOutputPortComplexSignal(S, 0) ==

COMPLEX_YES;

111S-Function Library for Bond Graph Modeling

www.intechopen.com

16 Will-be-set-by-IN-TECH

real_T *y0 = ssGetOutputPortRealSignal(S,0);

const real_T *xC = ssGetContStates(S);

const real_T *C = mxGetData(PARAM_DEF0(S));

const real_T *B = mxGetData(PARAM_DEF1(S));

y0[0] = *B + xC[0] / (*C);

if(yIsComplex){ /* Process imag part */

y0[1] = *B + xC[1] / (*C);

}

}

static void mdlDerivatives(SimStruct *S) {

const real_T *u0 = (const real_T*) ssGetInputPortSignal(S,0);

real_T *dx = ssGetdX(S);

dx[0]=u0[0] ;

dx[1]=u0[1] ;

}

static void mdlTerminate(SimStruct *S) {}/* mdlTerminate */

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

6. Junction algorithm

In a bond graph model a set of elements is connected at the junction. One of the elements
in the set takes up the role of decider bond. Remaining bonds in the set per-se take up the
role of non-decider bonds. The junction algorithm is illustrated by taking O-junction as an
example. The 0-junction block is a common effort junction (Fig.8). The effort is decided by
a decider bond attached to it and having the causal bar towards the junction. Similarly for a
1-junction, decider bond will have its causal bar away from the junction, thus complementing
the 0-junction behaviour. In the figure, Jin’s are the input from the non-decider bonds into the
junction, and Jsum is the output of the junction.

The governing law of the 0-junction, Effort Law (or KCL), states that the flow of the decider
bond is the sum of the flows of all the non-decider bonds. In Fig.8, the decider bond of
the junction has Jsum, the sum of all Jin, as its causal (flow) variable. Value of the conjugate
variable (effort) of the decider bond, Jout is decided by the bond’s constitutive equation. The
second part he governing law of the 0-junction, states that the all the bonds connected to
the junction share a common effort. Thus the effort of the decider bond becomes the causal
variable for all the non-decider bonds. For each non-decider bond, its non-causal variable

112 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 17

Fig. 8. 0-junction

flow into the junction as individual Jin. This completes the cycle for junction. Table 6 tabulates
the algorithm for one-port elements.

Element
Decider Non-decider

Causal Non-causal Causal Non-causal

R,C,L
Jsum Jout Jout Jin

Se, S f Jout Jin

Table 6. One-port element variables

It can be seen that for an element connected to a junction, the causal variable can take either
of the two values, Jsum or Jout, depending on whether the connection bond is a decider or a
non-decider, respectively. Similarly the non-causal variable can have either the value of Jout

or Jin, again depending on whether the connection bond is a decider or a non-decider.

A two-port is connected to two junctions at either end. These junction could be either
0-junction or 1-junction. But as a two-port element allows only two combinations of causality
out of available four, there will be only 2 × 2 alternatives for a variable. Looking at the
two-port junction in Fig.9, if the element is decider bond for junction J1, and the junction
is 0-junction, then the flow at input port will be J1sum. And if junction is a 1-junction the effort
will be J1sum. Similarly for the output junction connected to J2. Note that the direction of
two-port half arrows is reversed in the two junctions. Thus if two-port element with flow
causal at input port is decider bond for the first junction, the junction has to necessarily be
an 0-junction, but flow casual at output port as decider bond indicates a 1-junction. The
modulus of the two-port element decides the value of the variable on the conjugate port,
while the junction decides the conjugate variable value of the port. In a similar manner for all
combination of causality and decider bond, the variables can be listed out. The algorithm is
summarised in Table 7 (Umarikar et al., 2006).

J1

e1

f1

GY
e2

f2

J2

Fig. 9. Algorthim for 2 port element

113S-Function Library for Bond Graph Modeling

www.intechopen.com

18 Will-be-set-by-IN-TECH

Port
Input Port Output Port

J1

e1

f1

TF
e2

f2

J2

Decider Non-decider Decider Non-decider
e1 f1 e1 f1 e2 f2 e2 f2

TF (flow causality) J1out J1sum J1in J1out J2sum J2out J2out J2in

TF (effort causality) J1sum J1out J1out J1in J2out J2sum J2in J2out

J1

e1

f1

GY
e2

f2

J2

GY (flow causality) J1out J1sum J1in J1out J2out J2sum J2in J2out

GY (effort causality) J1sum J1out J1out J1in J2sum J2out J2out J2in

Table 7. two-port element variables

7. Linking elements

A bond graph model on paper does not explicitly use a connector as in block diagram model,
to link one element to another element. To retain the look and feel of a paper model when
transferred to computer terminal, the connection between the elements has to be invisible. The
masking properties of the Simulink block is utilised for this purpose in the tool box. A junction
is considered as a node, to which the elements are connected. The bond graph element, as in
paper model, is placed next to its associated junction. The link to the junction is made by
entering the junction label in the mask parameter box. Shared Memory’ algorithm is then used
to implicitly connect the element.

In bond graph modeling two or more elements will be linked to a junction. Their data have to
be shared. Shared data structure is used in the toolbox. The memory locations are earmarked
for a junction by assigning it a unique label by character aggregation’ during its first run. An
S-function’s initialisation callback method is used for memory allocation as this callback is
used only once during the simulation run. The associated elements using the notation listed
out in Table 6 and Table 7, share their respective memory address, thereby their data.

The elements in the tool box are masked and have screen interfaces. For a one-port element
the following details need to be entered.

1. Name of the element.

2. Parametric value.

3. Whether decider bond or not.

4. Associated junction name.

For a two-port element the extra information of the second port is also entered. Similarly a
junction screen interface will have all entries of the elements that are linked to it, along with
their energy flow direction signs.

7.1 Propagation of data

The propagation of data from one element to the next is by reading and writing into a
common block address (Fig.10). The input element, designated as Provider, produces the data

114 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 19

through its constitutive equation and writes it on to the labelled memory address. The label,
as discussed earlier is unique to a junction. The next element in hierarchy, designated as
Consumer, in turn reads the data and by using its constitutive equations, Produces the next set
of data which is written on to the next labelled memory address. There can be many Consumer
of the data but there is only one unique Provider. An analogy to bond graph junction concept
of one decider and many non-decider can be clearly seen here. It is also seen that a Consumer
element of previous step becomes the Provider element in the next step. As the model is
hierarchical, all the elements are in turn Provider and Consumer to their respective memory
address block in one integration step. The memory location is released and freed when the
data is not needed.

write

Memory
Block

A

Data

·
·
·
·
·

read
Process

write

Bond 1

Memory
Block

B

Data

·
·
·
·
·

read
Process

write

Bond 2

Memory
Block

C

Data

·
·
·
·
·

read

Tk

1 integration step
Tk+1

Fig. 10. Propagation of data in a integral time step

7.2 S-function implementation for shared memory link

The port of the bond graph element as discussed above is the pointer to the shared memory
address. When we specify a input/output port for a bond graph element, we have to supply
three parameters to the S-function. They are:

• The bond graph element name.

• Whether the element is a decider bond or not for the producer - consumer correspondence
to the input - output port to be decided.

• The name of the junction to which it is connected.

The complete C MEX S-function code for input junction of a bond is given below:

#define S_FUNCTION_NAME inPort

#define S_FUNCTION_LEVEL 2

#define NPARAMS 3

#define PARAMETER_0_NAME decider

#define PARAMETER_0_DTYPE boolean_T

#define PARAMETER_1_NAME element

#define PARAMETER_2_NAME junction

#include "shm_com.h"

#include "windows.h"

115S-Function Library for Bond Graph Modeling

www.intechopen.com

20 Will-be-set-by-IN-TECH

#include "mex.h"

#include <malloc.h>

#include "simstruc.h"

#define PARAM_DEF0(S) ssGetSFcnParam(S, 0)

#define PARAM_DEF1(S) ssGetSFcnParam(S, 1)

#define PARAM_DEF2(S) ssGetSFcnParam(S, 2)

#define IS_PARAM_DOUBLE(pVal)

(mxIsNumeric(pVal) && !mxIsLogical(pVal) &&\

!mxIsEmpty(pVal) && !mxIsSparse(pVal) && !mxIsComplex(pVal)\

&& mxIsDouble(pVal))

static void mdlInitializeSizes(SimStruct *S) {

ssSetNumSFcnParams(S, NPARAMS);/* Number of expected parameters*/

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetOutputPortComplexSignal(S, 0, COMPLEX_YES);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 4);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlStart(SimStruct *S) {

const boolean_T *decider = mxGetData(PARAM_DEF0(S));

void *shared_memory_loc = NULL;

void *ishared_memory_loc = NULL;

HANDLE hMapObject = NULL; // handle to real data file mapping

HANDLE ihMapObject = NULL; // handle to file mapping

char_T str[sizeof("fbnbn00")];

char_T temp[sizeof("fbnbn00")];

116 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 21

char_T istr[sizeof("fbnbn00")];

mxGetString(PARAM_DEF1(S),str,sizeof(str)); //element name

mxGetString(PARAM_DEF2(S),temp,sizeof(str)); //junction name

if(*decider){

strcpy(str,temp); //junction name

strcat(str,"sum");

} else {

strcpy(str,temp); //junction name

strcat(str,"out");

}

strcpy(istr,"j"); // prefix ’j’

strcat(istr,str);

hMapObject = CreateFileMapping(

INVALID_HANDLE_VALUE, // use paging file

NULL, // no security attributes

PAGE_READWRITE, // read/write access

0, // size: high 32-bits

sizeof(struct shared_struct), // size: low 32-bits

str); // name of map object

ssSetPWorkValue(S,0, hMapObject);

shared_memory_loc = MapViewOfFile(

hMapObject, // object to map view of

FILE_MAP_WRITE, // read/write access

0, // high offset: map from

0, // low offset: beginning

0); // default: map entire file

if (shared_memory_loc == NULL) {

CloseHandle(hMapObject);

return;

} else {

ssSetPWorkValue(S,1, shared_memory_loc);

memset(shared_memory_loc, ’\0’, sizeof(struct shared_struct));

}

ihMapObject = CreateFileMapping(

INVALID_HANDLE_VALUE, // use paging file

NULL, // no security attributes

PAGE_READWRITE, // read/write access

0, // size: high 32-bits

sizeof(struct shared_struct), // size: low 32-bits

istr); // name of map object

ssSetPWorkValue(S,2, ihMapObject);

ishared_memory_loc = MapViewOfFile(

ihMapObject, // object to map view of

FILE_MAP_WRITE, // read/write access

117S-Function Library for Bond Graph Modeling

www.intechopen.com

22 Will-be-set-by-IN-TECH

0, // high offset: map from

0, // low offset: beginning

0); // default: map entire file

if (ishared_memory_loc == NULL) {

CloseHandle(ihMapObject);

return;

} else {

ssSetPWorkValue(S,3, ishared_memory_loc);

memset(ishared_memory_loc, ’\0’, sizeof(struct shared_struct));

}

}

static void mdlOutputs(SimStruct *S, int_T tid) {

boolean_T yIsComplex=ssGetOutputPortComplexSignal(S, 0)

==COMPLEX_YES;

real_T *y = ssGetOutputPortRealSignal(S,0);

struct shared_struct *shared_stuff, *ishared_stuff;

shared_stuff = (struct shared_struct *)ssGetPWorkValue(S,1);

ishared_stuff = (struct shared_struct *)ssGetPWorkValue(S,3);

y[0] = shared_stuff->some_data;

y[1] = ishared_stuff->some_data;

CloseHandle((HANDLE)ssGetPWorkValue(S,0));

CloseHandle((HANDLE)ssGetPWorkValue(S,2));

}

static void mdlTerminate(SimStruct *S) {

struct shared_struct *shared_stuff, *ishared_stuff;

HANDLE c = (HANDLE) ssGetPWork(S)[0]; // retrieve and destroy C++

HANDLE ic = (HANDLE) ssGetPWork(S)[2]; // retrieve and destroy C++

shared_stuff = (struct shared_struct *)ssGetPWorkValue(S,1);

ishared_stuff = (struct shared_struct *)ssGetPWorkValue(S,3);

free(c);

if(ic != NULL) {

free(ic);

}

free(shared_stuff);

if(ishared_stuff !=NULL) {

free(ishared_stuff);

}

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as

a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

118 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 23

#include "cg_sfun.h" /*Code generation registration function*/

#endif

8. S-function library for bond graph elements

Bond graph modeling is an emerging field especially in electrical, mechatronics and
electro-mechanics, and a bond graph engineer may feel the necessity to define his own
element while making a model. With the set of callback routine and function available to MEX
files, any complex constitutive equation can be written for a new element. To provide support
for complex variables and vectors in Bond Graph, a tool library using C-MEX S-functions with
data propagation through shared memory, is developed. The MEX file for the library has been
written in C/C++. After compiling and debugging, C/C++ MEX S-Function are masked with
bond graph icons to distinguish between different elements.

Each element of the bond graph library has two common input/output blocks along with with
a middle block (Fig.11). The code for the middle block is specific to the element it implements.
After placing the three S-functions block in the subsystem, the subsystem is masked. The
element’s mask screen has a help at the top and parameter entry text boxes, below. There is
a check box to specify whether the bond is decider (Fig.12). The parameters entered in the
mask screen are manipulated by the S-functions underneath to initialise the element before
the simulation cycle starts.

The capability of S-functions to support arbitrary input dimensions is exploited in the tool box.
The actual input dimensions can be determined dynamically when a simulation is started by
evaluating the dimensions of the input vector driving the S-function. This feature allows the
same element to handle a scalar or a vector input as the case may be, without declaring it
apriori.

inPort bond constitutive equation outPort

Input Bond specific block Output

All blocks are coded in C-MEX S-functions

Fig. 11. Typical blocks under the mask of a bond graph element

The library is available in the standard format of simulink (Fig:13). The required elements
can be had for Pick and Place from library after navigating down (Fig:13(a) and Fig:13(b)).
The tools available in the mask’s - icon graphics support, is utilised to give a natural iconic
representation to the element subsystem.

8.1 Examples of tool box

Using the tool box, the circuit in Fig.14(a) is modeled in bond graph (Fig.14(b)). The simulation
results are given in Fig.14(c) and Fig.14(d). As can be observed the library is able to handle
complex quantities quite accurately.

119S-Function Library for Bond Graph Modeling

www.intechopen.com

24 Will-be-set-by-IN-TECH

Fig. 12. Input mask screen

For another example of switched junction, one model of the switched mode power converter
in Fig.14(f) is used. The circuit is of a boost converter. There are two switches S1 and S2

driven by complementary signals. This ensures that only one switch is on at any given time.
The circuit is modeled in bond graph using the switched junction as shown in Fig.14(e). The
simulation result of the effected state variable is shown in Fig.14(g).

8.2 Simulation results for IM model

A rotating electrical machine can be viewed as a machinery which converts one form of
energy into another. More specifically it converts electrical energy into mechanical energy
or vice-versa. Magnetic energy is used as a conversion medium between electrical and
mechanical energy.

8.2.1 Axis rotator element

This generalised concept for electrical machine modeling needs ’Axis Rotator’, a new bond
graph element (Umesh Rai & Umanand, 2008; 2009a;b) to mathematically model a electrical
commutator (Fig.15). The constitutive relationship for the flow and effort in the bonds is given
by Eqn.(2) and Eqn.(3).

fi =
d

dt

(

Λm

(

n

∑
k=1

ek cos α(i, k)

))

where, α(i, k) = αi − αk (2)

n

∑
k=1

ek fk = Pm (3)

120 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 25

Bond Graph Elements

Flow Causual
Elements

Effort Causual
Elements

(a) Bond Graph tool Box level 1

One Port Elements

Resistance Inductance Capacitance

Effort source Modulated
Effort source

−−

−−

Transformer Gyrator

Modulated
Transformer

Modulated
Gyrator

Rotary
Gyrator

Two Port Elements

Connector

rGYmTF

mSe

mGY

TF

Se

R L

GY

C

(b) Effort Causual Elements at level 2

Fig. 13. Bond Graph library

cos α(i, k) refers to the spatial angle between the kth winding’s axis and the ith winding axis with
respect to the bond under consideration. Λm is the mutual permeance (inverse of reluctance)
of the magnetic core, Pm is the reactive power required to magnetise the core.

8.2.2 Induction motor model

A bond graph model of 3φ doubly fed induction motor using the Axis Rotator element is
shown in Fig.16. There are six sets of electric energy input ports, three each for stator and
rotor, in the model. The motor shaft represents a mechanical output port. The air gap is
represented by the AR with six connection bonds terminating at it, each representing a set of

121S-Function Library for Bond Graph Modeling

www.intechopen.com

26 Will-be-set-by-IN-TECH

Vt = 2sin(50t)

+j1.5sin(50t)

R1

2 Ω i

R2

3 Ω

C1

0.001 F

(a) RC circuit

2*sin (50 *t)

1.5 * sin (50*t)

R1 = 2 ohm R2 = 3 ohm

c1 =0.001 farad

01mSe
Re

Im

Real In

Img In

Real Out

Img Out

Element Probe

(b) Bond graph model of RC circuit

0 1000 2000 2500

−0.1

−0.05

0

0.05

0.1

0.15

Time

A
m
ps

Capacitor Flow

Real

Imaginary

(c) Plots of C-bond flow

0 1000 2000 2500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Capacitor Effort

time

V
ol
ts

Real

Imaginary

(d) Plots of C-bond effort

Switched
junction

4

Ic

3

Vo

2

VL

1

IL

[e6]

Vo1

[e2]

VL1

[f6]

Ubar*IL1

Se

S
e

Repeating
Sequence

Relay

R

R

L

[f2]

IL1
[Ub]

Goto1

[U]

Goto

u[2]¿=u[1]

Fcn

C

1 0s 0

1

d

(e) Boost converter model built using switched junction

Vg

Rl L

i

S1

S2

Rc C

(f) A Boost converter

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−5

0

5

10

15

Inductor Flow

Time

A
m

p
s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

10

20

30

Capacitor Effort

Time

V
o
lt
s

(g) Plot of effected state variables

Fig. 14. Bond graph tool box examples

122 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 27

AR:Λm

α 1

α
2

··
·

α
n

·
·
·

···

j1
e1

f1

j2
e2

f2

en

fn

jn

Fig. 15. Axis rotator connected with bonds representing windings

winding. The permeance parameter of the AR represents the mutual coupling effect of the
flux. The iron loss is represented by the dissipative port. The stator and rotor energy ports are
described with different set of port parameters.

The dissipative, entropy producing fields, Ras, Rbs, Rcs, Rar, Rbr, Rcr and Ri are non-equal
non-linear resistances depending on the underlying physical system. Ri represents the iron
losses of the core. In a similar manner, the model represents the permeances Lasl , Lbsl , Lcsl ,
Larl , Lbrl , Lcrl and Lm . There is no linearity restriction on the above parameters. They
could be constants, functions or even a lookup table, without loss of generality. The value
of the lumped parameters are different for different phases, dependent on the electric and the
magnetic energy they represent. Similarly the energy sources feeding the different windings
are represented by s1, s2 and s3. For balanced supply voltages the voltage peaks and frequency
would be same, with a phase difference of (2π/3) to one another. The three domains of
electrical, magnetic and mechanical are clearly brought out in Fig.16.

At the shaft the developed electromagnetic torque as a function of the stator, rotor currents
and the angle between them is represented as an effort source. The electromagnetic
torque provides the effort at the one junction against the inertial, frictional and load torque
components. The feedback information on flow at this junction, which gives the measure
of rotor speed is transmitted to the AR for calculating the instantaneous angle of the rotor
windings.

8.2.3 S-function model of induction motor

The power of S-function is demonstrated by firstly implementing the complex AR element
using C Mex S-function and making it a part of bond graph library. As discussed in
the above section, there is no linearity or balance supply constraint on the model. The
increased complexity can easily be handled by the bond graph library. The causal model
implementation of squirrel cage induction motor is shown in Simulink (Fig.17). The machine
starts from stall. A step load is applied to the motor at 0.5sec. The simulation results of
speed curve for various step load are presented in Fig.18(a). Similarly the current curves and
the torque curve for a specific load are at Fig.18(c) and Fig.18(e) respectively. The transition of
rotor currents to slip frequency can be distinctly seen at Fig.18(c). The simulation results of the
bond graph model in S-function co-related well with the speed curves obtained by d-q model
of the induction motor implemented by functional block in Simulink (Fig.18(b), Fig.18(d) and
Fig.18(f)).

123S-Function Library for Bond Graph Modeling

www.intechopen.com

28 Will-be-set-by-IN-TECH

1
j1

mSe

vas

ias

Vassin(ωt)

s1

R
:
R

a
s

GY

g1

0
j2

C
:
Λ
a
s
l

1
j3

mSe

Vbs

ibs

Vbssin(ωt−
2π

3
)

s2

R
:
R

b
s

GY

g2

0
j4

C
:
Λ
b
s
l

1
j5

mSe

Vcs

ics

Vcssin(ωt−
4π

3
)

s3

R
:
R

c
s

GY

g3

0
j6

C
:
Λ
c
s
l

AR:Λm

α
1

α
2

α
3

α
6

α
5

α
4

R
:
R

i

cn1

cn2

cn3

cn4

cn5

cn6

0
j8

C
:
Λ
a
r
l

GY

g4

1
j9

R
:
R

a
r

Var

iar

mSe

s4

Varsin(ωt)

0
j10

C
:
Λ
b
r
l

GY

g5

1
j11

R
:
R

b
r

Vbr

ibr

mSe

s5

Vbrsin(ωt−
2π

3
)

0
j12

C
:
Λ
c
r
l

GY

g6

1
j13

R
:
R

c
r

Vcr

icr

mSe

s6

Vcrsin(ωt−
4π

3
)

Stator (Electric) Stator (Magnetic) air gap (Magnetic) Rotor (Magnetic) Rotor (Electric)

1mSe

Te

ω

fn (isabc, irabc, θr)

j15

B
: R

L
: J

Se : −T

Torque (Mechanical)

Fig. 16. 3φ DFIM bond graph model

124 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 29

voltage

torque

speed

current

0

Vrc

0

Vrb

0

Vra im

To File

Ph C

Ph B

Ph A

Step

Nonlinear
Inductance

Induction

Machine

V
sa

V
sb

V
sc

V
ra

V
rb

V
rc

Load

L

Currents

ω

Torque

−C−

Freq

−C−

Amplitude

(a) Model in Solver

j21

ms11ms12

L1

R11

j1 j2

R1

ms1 g1 g2

c1

cn1

j3

j4 j5

R2

ms2 g3 g4

c2

cn2

j6

j7 j8

R3

ms3 g5 g6

c3

cn3

j9

R4

ms4
g7g8

c4

cn4

j10
j11

R5

ms5g9g10

c5

cn5

j12j13

R6

ms6g11g12

c6

cn6

j14j15

4

md3

wm

2

I

1

Vs

0

0

0

0

0

0

1

1

1

A
R

1

1

1

1

mSe

mSe

mSe

mSe

mSe

mSe

mSemSe
P theta

i

md

Torque

R
R

R

R
R

R

R
L

1
s

P/2
−1

GY

GY

GY

GY

GY

GY 0

0

0

AG

AG

AG

AG

AG

AG

C
C

C

C
C

C

1

mL

(b) Model in MATLAB/Simulink)

Fig. 17. 3φ Induction motor model in Matlab

125S-Function Library for Bond Graph Modeling

www.intechopen.com

30 Will-be-set-by-IN-TECH

0 250 500 750 1000
−50

0

50

100

150

200

Time in mSec

S
p
ee
d
in

ra
d
/
se
c

Speed from no load to overload

load (0 to 30)

Step load

(a) Speed curves proposed model

0 250 500 750 1000
−50

0

50

100

150

200

time in mSecs

S
p
ee
d
in

ra
d
/
se
c

Speed from full load to no load

(b) Speed curves dq model

0 250 500 750 1000
−40

−20

0

20

40

Time in mSec

C
u
rr
n
t
in

a
m
p
s

(c) Current curves proposed model

0 250 500 750 1000
−40

−20

0

20

40

Time in mSec

C
u
rr
en
t
in

a
m
p
s

(d) Current curves dq model

0 250 500 750 1000
−20

0

20

40

Time in mSec

D
ev
el
o
p
ed

to
rq
u
e
(N

-m
)

(e) Torque curves proposed model

0 250 500 750 1000
−20

0

20

40

Time in mSec

D
ev
el
o
p
ed

to
rq
u
e
in

N
-m

(f) Torque curves dq model

Fig. 18. Simulation results of the bond graph model

126 Technology and Engineering Applications of Simulink

www.intechopen.com

S-function Library for Bond Graph Modeling 31

9. Conclusion

The power of S-function in customising MATLAB/Simulink
®

environment suitable for
a specific modeling need is illustrated in this chapter. Two different approaches for
implementing a customised Simulink element is then discussed with their advantages and
disadvantages. Later the Bond graph approach of modeling is briefly introduced. Level 2 C
MEX S-function technique is then used to develop a library of bond graph element.

This library of bond graph elements can handle both the scalar and vector or complex
variables without declaring apriori, a distinct advantage. A new element - Axis Rotator,
used for representing rotating magnetic field is included in the library. The ability to handle
complex variables along with the rotation enables the elements in the library to be used for
modeling rotating frames as that existing in an electric machine. The library also incorporates
switched junctions, which allows for the modeling of switches in any circuit. In developing
the library, the Shared Memory Concept is used. By using shared memory concept, the memory
requirement comes down as only the pointer to the memory location are passed and not the
data values.

10. References

Borutzky, W. (2009). Bond Graph Modelling, Simulation Modelling Practice and Theory.
Borutzky, W., for Modeling, S. & International, S. (2004). Bond Graphs: A Methodology for

Modelling Multidisciplinary Dynamic Systems, SCS Publishing House e. V.: Society for
Modeling and Simulation International.

Breedveld, P. (1984). Physical Systems Theory in Terms of Bond Graphs, THT-Afdelin
Electrotechniek.

Breedveld, P. (1991). Special Issue on Current Topics in Bond Graph Related Research, Pergamon.
Breedveld, P. (2004). Port-based modeling of mechatronic systems, Mathematics and Computers

in Simulation 66(2-3): 99–128.
Breedveld, P., Rosenberg, R. & ZHOU, T. (1991). Bibliography of bond graph theory and

application, Franklin Institute, Journal 328(5): 1067–1109.
Cellier, F., Elmqvist, H. & Otter, M. (1995). Modeling from physical principles, The Control

Handbook pp. 99–108.
Dauphin-Tanguy, G. (2000). Les bond graphs, Hermès science publications.
Gawthrop, P. (1995). Physical model-based control: A bond graph approach, Journal of the

Franklin Institute 332(3): 285–305.
Gawthrop, P. & Smith, L. (1996). Metamodelling: for bond graphs and dynamic systems, Prentice

Hall International (UK) Ltd. Hertfordshire, UK, UK.
Karnopp, D., Margolis, D. & Rosenberg, R. (1990). System Dynamics: A Unified Approach, John

Wiley & Sons, Inc., NY.
Karnopp, D., Margolis, D. & Rosenberg, R. (2006). System Dynamics: Modeling and Simulation

of Mechatronic Systems, John Wiley & Sons, Inc. New York, NY, USA.
Karnopp, D. & Rosenberg, R. (1968). Analysis and Simulation of Multiport Systems: The Bond

Graph Approach to Physical System Dynamics, MIT Press.
Kron, G. (1962). Diakoptics: The Piecewise Solution of Large-scale Systems, Macdonald.
Mathworks (2011). Developing S-Functions, The MathWorks, Inc.

URL: www.mathworks.com

127S-Function Library for Bond Graph Modeling

www.intechopen.com

32 Will-be-set-by-IN-TECH

Mukherjee, A. & Karmakar, R. (2000). Modelling And Simulation of Engineering Systems Through
Bondgraphs, Alpha Science Int’l Ltd.

Paynter, H. & Briggs, P. (1961). Analysis and Design of Engineering Systems, MIT Press.
Rosenberg, R. & Karnopp, D. (1983). Introduction to Physical System Dynamics, McGraw-Hill,

Inc. New York, NY, USA.
Thoma, J. (1990). Simulation by bondgraphs, Berlin and New York, Springer-Verlag, 194 p.
Thoma, J. & Perelson, A. (1976). Introduction to Bond Graphs and Their Applications, Systems,

Man and Cybernetics, IEEE Transactions on 6(11): 797–798.
Umarikar, A., Mishra, T. & Umanand, L. (2006). Bond graph simulation and symbolic

extraction toolbox in MATLAB/SIMULINK, J. Indian Inst. Sci 86: 45–68.
Umesh Rai, B. & Umanand, L. (2008). Bond graph model of doubly fed three phase induction

motor using the Axis Rotator element for frame transformation, Simulation Modelling
Practice and Theory 16(10): 1704–1712.

Umesh Rai, B. & Umanand, L. (2009a). Bond graph model of an induction machine with
hysteresis nonlinearities, Nonlinear Analysis: Hybrid Systems 4(3): 395–405.

Umesh Rai, B. & Umanand, L. (2009b). Generalised bond graph model of a rotating machine,
International Journal of Power Electronics 1(4): 397–413.

128 Technology and Engineering Applications of Simulink

www.intechopen.com

Technology and Engineering Applications of Simulink

Edited by Prof. Subhas Chakravarty

ISBN 978-953-51-0635-7

Hard cover, 256 pages

Publisher InTech

Published online 23, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Building on MATLAB (the language of technical computing), Simulink provides a platform for engineers to plan,

model, design, simulate, test and implement complex electromechanical, dynamic control, signal processing

and communication systems. Simulink-Matlab combination is very useful for developing algorithms, GUI

assisted creation of block diagrams and realisation of interactive simulation based designs. The eleven

chapters of the book demonstrate the power and capabilities of Simulink to solve engineering problems with

varied degree of complexity in the virtual environment.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

B. Umesh Rai (2012). S-Function Library for Bond Graph Modeling, Technology and Engineering Applications

of Simulink, Prof. Subhas Chakravarty (Ed.), ISBN: 978-953-51-0635-7, InTech, Available from:

http://www.intechopen.com/books/technology-and-engineering-applications-of-simulink/s-function-library-for-

bond-graph-modelling

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

