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Limits in Planar PIV Due to Individual Variations
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1. Introduction

The basic algorithm of digital particle image velocimetry (PIV) processing (Keane & Adrian,

1992; Utami et al., 1991; Westerweel, 1993; Willert & Gharib, 1991) utilizes the cross-correlation

of image sub-spaces (interrogation windows) for local displacement estimation from two

consecutively acquired images of a tracer-particle-laden flow. A variety of image processing

techniques using sub-pixel interpolations has been applied in the past to significantly improve

both, the accuracy of the particle displacement measurement beyond the nominal resolution

of the optical sensor and the spatial resolution beyond the nominal averaging size of image

sub-spaces to be correlated. These include:

• sub-pixel interpolation of the correlation planes, e. g. the peak centroid (center-of-mass)

method (Alexander & Ng, 1991; Morgan et al., 1989), the Gaussian interpolation (Willert

& Gharib, 1991), a sinc interpolation (Lourenco & Krothapalli, 1995; Roesgen, 2003) or a

polynomial interpolation (Chen & Katz, 2005), which reduce the “pixel locking” or “peak

locking” effect (Christensen, 2004; Fincham & Spedding, 1997; Lourenco & Krothapalli,

1995; Prasad et al., 1992; Westerweel, 1998)

• windowing functions, vanishing at the interrogation window boundaries (Gui et al., 2000;

Liao & Cowen, 2005), reducing the effect of particle image truncation at the edges of the

interrogation windows to be correlated (Nogueira et al., 2001; Westerweel, 1997)

• direct correlation with a normalization, which so far has been realized in three ways:

asymmetrically, with a small interrogation window from the first image correlated with

a larger window in the second image (Fincham & Spedding, 1997; Huang et al., 1997;

1993a; Rohály et al., 2002), symmetrically, with two interrogation windows of the same

size (Nobach et al., 2004; Nogueira et al., 1999) or bi-directional, combining an asymmetric

direct correlation as above and a second direct correlation with a small interrogation

window from the second image correlated with a larger window in the first image

(Nogueira et al., 2001), originally introduced as a “symmetric” method, but nonetheless

using image sub-spaces of different sizes

• iterative shift and deformation of the interrogation windows (Fincham & Delerce, 2000;

Huang et al., 1993b; Lecordier, 1997; Scarano, 2002; Scarano & Riethmuller, 2000) with

different image interpolation schemes as e. g. the widely used, bi-linear interpolation, or

more advanced higher-order methods (Astarita, 2006; Astarita & Cardone, 2005; Chen

& Katz, 2005; Fincham & Delerce, 2000; Lourenco & Krothapalli, 1995; Roesgen, 2003)
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including the Whittaker interpolation (Scarano & Riethmuller, 2000; Whittaker, 1929), also

known as sinc or cardinal interpolation and the bi-cubic splines, which have found wide

acceptance

• image deformation techniques (Astarita, 2007; 2008; Jambunathan et al., 1995; Lecuona

et al., 2002; Nogueira et al., 1999; Nogueira, Lecuona & Rodriguez, 2005; Nogueira,

Lecuona, Rodriguez, Alfaro & Acosta, 2005; Scarano, 2004; Schrijer & Scarano, 2008;

Tokumaru & Dimotakis, 1995), where the entire images are deformed accordingly to the

assumed velocity field before the sub-division into interrogation windows to be correlated,

also using different image interpolation techniques.

With iterative window shift and deformation or image deformation techniques, an accuracy

of the order of 0.01 pixel or better has been reported (Astarita & Cardone, 2005; Lecordier,

1997; Nobach et al., 2005) based on synthetic test images. In contrast, the application to real

images from experiments shows less optimistic results, where the limit usually observed is

about 0.1 pixel. Only under special conditions, like in two-dimensional flows with carefully

aligned light sheets, can better accuracy be achieved (Lecordier & Trinité, 2006).

(a) Particles having an out-of-plane velocity component

(b) Two-dimensional flow aligned with the light sheet plane (only in-plane
velocity components)

Fig. 1. Particles moving through a light sheet with an intensity profile

One reason for the different achievable accuracies in simulations and experiments may be

the fact that in experiments, particles usually change their position within the light sheet

(Fig. 1a). Therefore, the particles are illuminated differently in the two consecutive exposures.

Additionally, the different illumination is individually different for each particle due to

their different starting positions perpendicular to the light sheet plane. The result is an

individual variation of particle intensities (further denoted as “intensity variations”), even in

a homogeneous flow without any velocity gradient. Intensity variations can easily be seen in

images from a variety of PIV applications, where some particles become brighter between the

two exposures, whereas other particles, even if close by, become darker (Fig. 2). Simulations

often assume that different particles can have different intensities, but not that the intensities

can vary between subsequent exposures. This scenario can be realized in experiments only

in two-dimensional flows with light sheets exactly aligned parallel to the flow field (Fig. 1b).

Other sources of intensity variations could be an offset between the light sheets of the two

illumination pulses or fluctuating scattering properties of the particles, e. g. non-spherical

particles rotating in the flow.

30 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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(a) First exposure (b) Second exposure

Fig. 2. Examples demonstrating individual particle intensity variations (marked regions,
detail of public PIV images from the PIV challenge 2003, case A, axisymmetric turbulent jet
in stagnant surrounding, images A001a and A001b)

Note that the effects of intensity variations are different from extern large scale illumination

variations (Huang et al., 1997), the intensity variations only due to the different particle

locations within the light sheet without relative changes between the exposures (Westerweel,

2000), or the loss-of-pairs and the degradation of the correlation peak due to out-of-plane

motion (Keane & Adrian, 1990; 1992; Keane et al., 1995; Westerweel, 2000). While the

loss-of-pairs and the degradation of the correlation peak increase the susceptibility to noise

and the probability of outliers, the effect discussed here occurs additionally and directly

affects the position of the correlation maximum and is a dominant limitation of the achievable

accuracy in correlation-based image processing of planar PIV (Nobach, 2011; Nobach &

Bodenschatz, 2009).

This study generally applies to Standard-PIV (two-dimensional, two-component, planar),

independent of its application. This error principally applies also for Micro-PIV, where

the particle images are large and may strongly overlap. However, the particle density

and the intensity variations between consecutive images are small yielding a small effect

of intensity variations. For Stereo-PIV, the errors are expeted to increase further compared

to Standard-PIV due to the necessary coordinate transforms. Furthermore, the errors from

the two perspectives are dependent due to the observation of identical particles within the

same illumination sheet. In Tomo-PIV a reconstruction of three-dimensional particle locations

preceds a three-dimentional correlation analysis. Since the overlap of particle images occurs

in the projections only, the three-dimentional correlation should not be affected by this error.

However, detailed studies about this error in Micro-PIV, Stereo-PIV and Tomo-PIV are still

pending.

2. Effect of varying intensities

In PIV, the displacement of particle patterns between consecutive images is obtained from

the peak position in the two-dimensional cross-correlation plane of the two images or image

sub-spaces (interrogation windows). Assuming (i) a certain number of imaged particles in

31Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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the interrogation window, each with different intensity, but with the same relative intensity in

the two consecutive images and (ii) no truncation at the edges of the interrogation windows,

the correlation peak is at the correct position, even if the particle images overlap and if the

intensity of one entire image is scaled by a constant factor. Note the different meaning of

“images”, which are the entire images to be correlated, and “particle images”, which are the

spots at the particle positions. For demonstration, in Fig. 3a two images, each consisting of

two well separated particle images (Airy discs), are correlated. The particles are at identical

positions in the two images (no displacement between the images). The correct position of the

correlation maximum at zero displacement can be seen clearly even for overlapping particle

images and also with a constant scaling of one image (Fig. 3b).

(a) Same intensity of the particle images in the two images with well separated particle images

(b) One image intensity scaled and with overlapping particle images

Fig. 3. Intensity and cross-correlation function (CC with lines of zero displacement in x and
in y direction respectively and with the correlation maximum marked with a black dot) of
two images (I and II), each consisting of two particle images

This holds true also for the correlation of images with different relative amplitudes of the

particle images, as long as the particle images do not overlap (Fig. 4a). With overlapping

particle images and varying relative amplitudes (Fig. 4b), the maximum position of the

correlation peak is shifted, yielding a biased displacement estimate, depending on the

amplitudes of the particle images, widths, and overlap.

The consequence for PIV image processing is an additional error in displacement estimates, if

the intensities of particle images vary between the consecutive PIV images, while the particle

images overlap. This error is especially large for de-focussed particle images (where the

particle images tend to overlap) and in the case of misaligned light sheets or flows with

32 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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(a) Varying relative intensity of well separated particle images

(b) Varying relative intensity of overlapping particle images yielding a correlation peak with a
shifted maximum location

Fig. 4. Intensity and cross-correlation function (CC with lines of zero displacement in x and
in y direction respectively and with the correlation maximum marked with a black dot) of
two images (I and II), each consisting of two particle images

out-of-plane motion of the particles (where the illumination of individual particles changes

between the two light pulses). This is almost independent of the particle number density as

shown below.

While different intensities of particle images obviously occur if the particles move out-of-plane

in e. g. a Gaussian illumination profile, this effect also occurs for a top-hat profile, if one of

the two particle images is present in only one of the images (drop-off), as it occurs if one

particle moves out of or enters the illumination plane. With a top-hat illumination profile, the

amplitude of one of the particle images stays constant between the two exposures while the

other particle image is absent in one of the two images. For well separated particle images

(Fig. 5a) the correlation has its maximum at the correct position. As soon as the two particle

images (in one of the two images) overlap, the correlation maximum is shifted (Fig. 5b).

3. Accuracy

To derive the dependence of the achievable accuracy on the intensity variations, computer

simulated images have been used with varying parameters. The simulated particles are

uniformly distributed within the light sheet and over the observation area. To consider the

diffraction-limited imaging of small particles, the simulated particle images are represented

by Airy functions (diameter given by the first zero value), integrated over the sensitive sensor

33Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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(a) Drop-off with well separated particle images

(b) Drop-off with overlapping particle images yielding a correlation peak with a shifted maximum
location

Fig. 5. Intensity and cross-correlation function (CC with lines of zero displacement in x and
in y direction respectively and with the correlation maximum marked with a black dot) of
two images (I and II), one consisting of two particle images and one with only one particle
image (particle image drop-off)

areas (pixels). The pixels are assumed to have a square shape with uniform sensitivity

with a fill-factor of 1 (no gaps between the sensitive areas). All particle images get a

random maximum intensity, equally distributed between zero and 1000 photo electrons (see

comments about the noise below), corresponding to e. g. different sizes or reflectivity. The

maximum intensity does not change between the exposures for only in-plane motion. With

an out-of-plane motion, the particles change their position relative to the light sheet plane

yielding different illumination of each individual particle in the two exposures. In this

simulation, a top-hat profile of the light sheet illumination intensity is simulated, where the

illumination changes only, if a particle enters or leaves the light sheet. The Airy functions

of overlapping particle images are linearly superimposed. To investigate the error of the

displacement estimation, a series of 1000 individual image pairs is generated for each of

the following test cases. The displacement of the particles between the two exposures is

randomly chosen between −1 and +1 pixel simulating a variety of sub-pixel displacements.

Larger in-plane displacements can easily be eliminated by full-pixel shift of the interrogation

windows (Scarano & Riethmuller, 1999; Westerweel, 1997; Westerweel et al., 1997). To

isolate the effect of intensity variations from additional effects by e. g. velocity gradients, the

simulated displacement is constant for all particles, imitating a homogeneous velocity field.

34 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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(a) A simple FFT estimation with full-pixel shift
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(b) Iterative sub-pixel interrogation window shift with bi-cubic splines image
interpolation

Fig. 6. Total RMS error of the displacement estimate as a function of the particle image
diameter (particle number density: 0.05 pixel−2, interrogation window size: 16×16 pixels)

To demonstrate the dominating influence of the intensity variations on the accuracy of

correlation-based PIV algorithms, in Fig. 6 the total RMS error over the particle image

diameter is shown for three test cases: (i) for only in-plane motion (without noise), (ii) for only

in-plane motion, but with strong photon noise (1000 photo electrons for the brightest particles

35Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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giving about 32 electrons noise), read-out noise (RMS of 20 electrons) and quantization

noise (10 electrons per count, yielding a mean gray value of 102 for the above mentioned

1000 photo electrons incl. read-out noise) and (iii) for an out-of-plane component of 25 %

of the light sheet thickness. Fig. 6a shows the results for a simple displacement estimation

utilizing the peak position of the cross-correlation of two interrogation windows with 16×16

pixels obtained by means of the fast Fourier transform (FFT). The sub-pixel location of the

maximum is obtained by fitting a Gaussian function to the maximum of the correlation and

its two direct neighbors in x and y direction separately. In Fig. 6b an iterative window shift

method has been used alternatively. Starting with the displacement estimate obtained from

the simple FFT-based method above, in the next and all following iteration steps, the two

consecutive PIV images are re-sampled at positions shifted symmetrically by plus/minus half

the pre-estimated displacement. For re-sampling the images at sub-pixel positions, bi-cubic

splines are used for interpolation, widely accepted as one of the best methods so far (Raffel

et al., 2007; Stanislas et al., 2008). The interpolation has been realized here with an 8 × 8

pixels kernel, requiring also the environment of the 16×16 pixels large interrogation window

to be simulated. To keep the investigations simple and to isolate the influence of intensity

variations, window deformation has not been implemented here to avoid other well known

effects, such as limited spatial resolution or dynamic range issues, which may additionally

influence the results. However, the conclusions are equally applicable to the case of velocity

fields with gradients. In that case the other error sources sum.

The difference between the simulated displacement and that estimated by the above

procedures gives individual estimation errors. >From the series of individual errors, an

averaged RMS error is derived. In the interesting range of particle image diameters of 2 pixels

and larger, for both algorithms, the influence of the out-of-plane displacements is significantly

larger that the error due to the noise, making the intensity variations a dominating limitation

of the achievable accuracy of planar PIV displacement estimation. The uncertainty of the

estimated RMS values is about 21 % of the actual value. This value has been derived assuming

independent estimates, yielding an estimation variance of the variance estimate of 2σ
4/N with

N the number of estimates (1000 image pairs) and σ the true RMS value. The uncertainty of

the shown graphs is then 4
√

2/N σ.

The estimation accuracy can be improved in all three test cases by increasing the size of

the interrogation windows, because the displacement errors average (Fig. 7a). The particle

image diameter is set fix to 3 pixels. All other simulation and estimation parameters remain

unchanged from the simulation above. The results are shown representatiovely for an iterative

sub-pixel interrogation window shift with bi-cubic splines image interpolation only. For

a constant particle number density, the RMS value decreases as the inverse of the linear

dimension of the interrogation window. For large interrogation window sizes a transition

towards a lower bound of the total RMS error is indicated. This lower bound is due to

remaining interpolation errors in the correlation plane, which are independent of the size

of the interrogation windows, and agrees with the findings in Fig. 6.

In contrast, varying the particle number density (Fig. 7b) has almost no effect on the RMS

error in the case with an out-of-plane displacement. With only in-plane motion, the number of

successfully correlated particle images increases linearly with the particle number density. For

each particle, the correlation of the images has a small stochastic error, caused e. g. by image

36 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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(b) Total RMS error as a function of the particle number density

Fig. 7. Total RMS error of the displacement estimates for an iterative sub-pixel interrogation
window shift with bi-cubic splines image interpolation

noise, intensity interpolation over the pixel areas or by errors during image interpolation. The

individual errors average over all particles in the interrogation window, yielding an RMS error

decreasing with the square root of the particle number density. This complies with Westerweel

(2000) (there for low particle densities). This error has a lower bound caused by interpolation

errors in the correlation plane, which are independent of the particle number density. The

image noise has been used to provoke large RMS errors in Fig. 7b, to make the range of RMS

37Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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errors decreasing with the square root of the particle number density on top of the lower

bound visible.

If there is a certain out-of-plane displacement, the previous errors are superimposed by the

strong influence of intensity variations of overlapping particle images. In contrast to the

number of successfully correlated particle images, the probability of overlapping particle

images increases with the square of the particle number density. Each of these pairs of

overlapping particle images contributes a stochastic error to the correlation. After averaging

the individual errors of overlapping pairs of particle images over the number of particles in

the interrogation window, these two contributions exactly compensate, and the observed error

becomes independent of the particle number density.

A better view onto the influence of the out-of-plane displacement can be achieved by

investigating the total RMS error as a function of the out-of-plane displacement (Fig. 8a).

Here, a variety of commonly used algorithms has been simulated for comparison: a simple

FFT-based estimation with full-pixel shift as above, the same algorithm but with a triangular

window function applied to the interrogation windows, a symmetric direct correlation with

normalization and iterative sub-pixel shift of the interrogation windows with either bi-linear,

Whittaker or bi-cubic splines image interpolation. The different algorithms show the smallest

errors for only in-plane motion, however, they have a large variation of achievable accuracy in

this case. With increasing out-of-plane displacement, the total error increases approximately

exponentially with decreasing difference (on the log scale) between the various algorithms.

The large error of the method with the window function applied to the interrogation windows

is originated in the smaller “effective” window size, which is for the triangular weighting

function about half the nominal size of the window, amplifying the susceptibility to intensity

variations. Also the iterative window shift with bi-linear interpolation shows large errors due

to the pure quality of the bi-linear interpolation scheme.

For large displacements, also outliers occur. To separate the RMS error due to the limited

accuracy and the dominating influence of outliers a simple outlier detection algorithm has

been implemented. All displacement estimates outside a range of ±1 pixel around the

expected value are assumed to be outliers and are not taken into account for the calculation

of the RMS error. From the number of outliers the probability of outliers is estimated. More

reliable outlier detection algorithms based on statistical properties of the surrounding vector

field as e. g. in Westerweel & Scarano (2005) could not be used in this simulation because only

single displacement vectors are simulated. Starting at about 50 % out-of-plane displacement,

the probability of outliers increases rapidly (Fig. 8b), limiting the useful range to a maximum

out-of-plane displacement of about half the light sheet thickness for the given particle number

density and interrogation window size. For the algorithm making use of the window function

the onset of outliers is at smaller out-of-plane displacements due to the smaller effective size

of the interrogation window. For the symmetric direct correlation with normalization the

onset is shifted to larger displacements due to the better robustness of this procedure. The

uncertainty of the estimated RMS values again is about 21 % of the actual value for small

out-of-plane displacements ( 4
√

2/N1 σ, where N1 is the number of validated estimates) and

increases with larger out-of-plane displacements as N1 the number of validated estimates

decreases. The uncertainty of the outlier probability is
√

P(1−P)/N with the true value P of

the outlier probability and N the total number of estimates (1000 image pairs).

38 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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Fig. 8. Properties of the displacement estimates as a function of the out-of-plane
displacement (in percent of the light sheet thickness) for various PIV procedures (particle
number density: 0.05 pixel−2, interrogation window size: 16×16 pixels)

Experimental verification of the results given above requires a PIV setup with an adjustable

beam shape (and width) and an adjustable out-of-plane component of the real velocity field.

The first requirement can be realized with a video projector imaging different intensity profiles

39Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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into the measurement volume using an additional collimation lens (Fig. 9). To achieve

stable illumination, LCD technology is preferred. The projector with DLP technology used

here realizes individual gray values by pulse width modulation, which causes illumination

problems with PIV cameras at short exposure (integration) times. In the present study

the exposure time has been set to 0.25 s, which corresponds to 30 illumination cycles of

the DLP chip, since it works at a frame rate of 120 Hz. This long exposure time requires

small velocities, which have been realized by moving a solid glass block on a 3D translation

stage (Newport CMA12PP stepping motors and ESP300 controller). The glass block has

a size of 5 cm × 5 cm × 8 cm and includes 54 000 randomly distributed dots in the inner

3 cm × 3 cm × 6 cm volume, corresponding to a particle density of 1 mm−3.

Fig. 9. Sketch of the experimental setup: A video projector is imaging different illumination
profiles into the measurement volume, which is observed by a digital camera. A glass block
with internal markers is translated vertically through the measurement volume.

Furthermore, an accurate synchronization of the in-plane and the out-of-plane translation

through the light sheet is required. To avoid synchronization problems, the system has been

inverted. The glass block moves along one axis of the translation stage, while the plane of

illumination is tilted with respect to the axis of motion. During the translation of the glass

block with a constant velocity of 0.1 mm/s through the observation area of the camera (Phantom

V10), a series of 80 images of 480×480 pixels size has been taken at a frame rate of 0.8 Hz. By

choosing the number of frames between the two images to be correlated, different out-of-plane

components can be imitated. For details of the experiment see Nobach & Bodenschatz (2009).

The images are available from the author. For a comparison to the previous simulation, the

images taken with a 4mm wide top-hat illumination profile with a slope of 0.75 have been

re-processed in this study.

Unfortunately, the precision of the translation stage and the motion of the glass block are not

satisfactory. An a priory analysis discovered a frame-to-frame variation of the displacement.

Additionally, a small perspective error has been found generating a velocity gradient in

y direction. To compensate the displacement variations and the velocity gradient within

the observation field, for each image pair, an a priori analysis with two large interrogation

windows (352×192 pixels) with 50 % overlap in y direction has been taken as a reference

40 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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Fig. 10. Comparison of the experiment and the simulation for an iterative sub-pixel
interrogation window shift with bi-cubic splines image interpolation as a function of the
out-of-plane displacement

to derive the mean displacement and the velocity gradients in y direction. The second PIV

analysis is done with standard interrogation windows (32×32 pixels) in a 352×288 pixels

large window, centered within the original observation area of 480×480 pixels. This area

coincides with the area that is taken for the reference estimation. Based on the difference

41Limits in Planar PIV Due to Individual Variations of Particle Image Intensities
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between the PIV analysis with standard interrogation windows and the reference estimation

with large interrogation windows the RMS error is calculated. To suppress effects from the

edges, the RMS analysis uses only valid vectors from a further reduced window (160×96

pixels), yielding 5×3 displacement estimates with interrogation windows of 32×32 pixels

size. From these estimates the universal outlier detection (Westerweel & Scarano, 2005) can

be used as a validation criterion with a threshold of 0.5 pixel plus 2 times the found median

RMS derived from the neighboring vectors. For better statistics, all validated displacement

vectors from all image pairs with the same number of frames between them, selected from the

original series of 80 images, have been averaged.

For direct comparison of the experimental and simulated results in Fig. 10, the numerical

simulation has been repeated with simulation parameters and processing and validation

methods as for the experimental images (particle number density: 0.013 pixel−2, interrogation

window size: 32×32 pixels, iterative window shift and deformation, universal outlier

detection). The uncertainty of the results of the simulation again are 4
√

2/N1 σ for the RMS

values and
√

P(1−P)/N for the outlier probability. The pendents for the measurements change

with the distance between frames since the number of image pairs decreases with increasing

distance between frames. Here error bars are given, showing the interval of plus/minus the

RMS of expected uncertainty. Note that the expected uncertainty represents only random

errors. Systematic errors or non-detected outliers are not included.

Except for a small shift of large probabilities of outliers towards smaller out-of-plane

displacements, the results of simulated and experimentally obtained data agree, verifying

both the effect of the intensity variations and the simulation procedure. Remaining deviations

are possibly originated in cross-illumination of markers, interference and camera noise.

4. Resolution

To increase the spatial resolution of PIV processing beyond the size of the interrogation

windows, overlapping the interrogation windows is an appropriate mean. Of course, this

has limitations, since the image data of overlapping windows is not independent, however

for moderate overlaps of about 50 % this works fine for all PIV algorithms, for PIV algorithms

with windowing functions or iterative image deformation techniques the overlap can be even

larger to obtain further increased spatial resolution. In the latter case, the deformation’s

degree of freedom is related to the grid of velocity estimates, independent of the interrogation

window size. With a high overlap of neighboring interrogation windows the spatial resolution

of iterative image deformation is governed by the grid spacing without loosing the robustness

of the large interrogation windows. Therefore, this method is gained to improve the

achievable spatial resolution of the PIV processing. Instabilities of this technique, occurring

for high overlaps of interrogation windows due to negative responses in certain frequency

ranges (Nogueira et al., 1999; Scarano, 2004) can be avoided either by applying appropriate

spatial filters to the estimated velocity field or the application of appropriate windowing

functions to the interrogation windows, which then have frequency responses with only

non-negative values. Investigations of stability and spatial resolution of iterative image

deformation applying either spatial filters or window functions can be found in Astarita

(2007); Lecuona et al. (2002); Nogueira, Lecuona & Rodriguez (2005); Nogueira, Lecuona,

Rodriguez, Alfaro & Acosta (2005); Scarano (2004); Schrijer & Scarano (2008).
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To proof the gain of resolution by image deformation a series of 100 pairs of PIV images

with 512×512 pixels each has been generated with a random in-plane displacement on a

pixel-resolution (Gaussian distribution for each component and for each pixel with an RMS

value of 0.5 pixel) and no out-of-plane motion. The particle images have random maximum

intensities, equally distributed between zero and 1000 photo electrons, and Airy disk intensity

profiles with 3 pixels diameter (defined by the first zero value of the Airy disk).

The images have been analyzed with an iterative window shift and first-order deformation

technique (Scarano, 2002) with 32×32 and 16×16 pixels window size and an iterative image

deformation with a triangular weighting applied to each PIV window of 32×32 pixels size.

Except for the interrogation window size, the window function is identical to that in Nogueira

et al. (1999), who apply the square of the triangular window to the product of the two

PIV windows. To isolate the effect of decreasing the effective window size by weighting,

the triangular weighting function has also been applied to the iterative window shift and

deformation with a 32×32 pixels window. All methods use 10 iteration and a velocity

estimation grid of 8×8 pixels corresponding to 75 % overlap for 32×32 pixels windows and

50 % overlap for the 16×16 pixels window.

>From the individual displacement estimates, which are interpolated with bi-cubic splines

and re-sampled at all pixel positions, and the simulated displacement, which originally is

given for all pixel positions, a two-dimensional coherent frequency response

Cij =

〈

U∗
est,ijUsim,ij + V∗

est,ijVsim,ij

〉

〈

U∗
sim,ijUsim,ij + V∗

sim,ijVsim,ij

〉 (1)

is calculated, where Usim,ij and Vsim,ij are the two-dimensional Fourier transforms of the

simulated u and the v displacement fields, Uest,ij and Vest,ij are the estimated counterparts,

the ∗ denotes the conjugate complex and 〈〉 denotes the ensemble average. The products

and the coherent frequency function are calculated element-wise for the two-dimensional

functions. From the two-dimensional coherent frequency response function a common

(one-dimensional) one is derived by iteratively optimizing a one-dimensional function ci

so that the component-wise products cicj fit best the two-dimensional function Cij with

minimum L2 norm.

Fig. 11a shows the frequency response function for only in-plane motion for the four

investigated estimation procedures. With a rectangular weighting window, the frequency

response clearly drops below zero at 1/32 pixel or 1/16 pixel corresponding to the interrogation

window size of 32×32 or 16×16 pixels respectively. The triangular weighting window applied

to a 32×32 pixels interrogation window leads to a frequency response function with only

non-negative values, while the resolution increases beyond the nominal resolution of the

interrogation window size, reaching almost an effective window size of half the nominal

window size. The image deformation technique can further improve the spatial resolution,

which then is limited by the velocity grid of 8×8 pixels. Fig. 12a shows the obtained

bandwidth (−3 dB limit) as a function of the overlap of interrogation windows. Clearly, the

image deformation technique gains most by increasing the density of the velocity estimation

grid. Note, that the overlap of interrogation windows for a given grid of velocity estimates
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(b) Out-of-plane displacement of 25 % of the light sheet thickness

Fig. 11. Coherent frequency response for the different estimation procedures for a velocity
estimation grid of 8×8 pixels corresponding to 75 % overlap for 32×32 pixels windows and
50 % overlap for the 16×16 pixels window (particle number density: 0.05 pixel−2)

changes with the size of the interrogation windows yielding a shifted overlap for the method

with the 16×16 pixels interrogation window compared to the other methods.

Figs. 11b and 12b show the corresponding results for an out-of-plane displacement of 25 %

of the light sheet thickness. There is no significant difference compared to Figs. 11a and 12a.

Therefore, one can conclude that the intensity variations have no significant influence on the

achievable resolution.
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Fig. 12. Bandwidth as a function of the window overlap obtained from a series of simulated
PIV images with a random in-plane displacement field (particle number density:
0.05 pixel−2)

5. RMS error versus resolution

However, taking into account the RMS errors, a significant influence of the intensity variations
can be seen. Fig. 13a shows the obtained total RMS errors against the bandwidth with overlaps
of interrogation windows varied between 0 and 87.5 %. The various methods cover different

45Limits in Planar PIV Due to Individual Variations of Particle Image Intensities

www.intechopen.com



18 Will-be-set-by-IN-TECH

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.01  0.02  0.03  0.04  0.05  0.06

to
ta

l 
R

M
S

 e
rr

o
r 

(p
ix

e
l)

bandwidth (pixel
−1

)

32x32 window deformation (rectangular weight)
16x16 window deformation (rectangular weight)

32x32 window deformation (triangular weight)
32x32 image deformation (triangular weight)

(a) Only in-plane motion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.01  0.02  0.03  0.04  0.05  0.06

to
ta

l 
R

M
S

 e
rr

o
r 

(p
ix

e
l)

bandwidth (pixel
−1

)

line/symbol key as in subfigure a

(b) Out-of-plane displacement of 25 % of the light sheet thickness

Fig. 13. Total RMS error against the bandwidth (particle number density: 0.05 pixel−2)

ranges of obtainable bandwidths and RMS errors yielding a lower bound of about 0.02 pixel,
slightly increasing with the obtainable bandwidth.

For the window shift and deformation techniques with rectangular window function, the
achievable bandwidth basically depends on the size of the interrogation windows. The
bandwidth increases slightly with the overlap up to about 50 % overlap. For higher overlaps,
the bandwidth stays constant and the RMS error rapidly increases. With the window shift and
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deformation technique with a triangular window function the bandwidth further increases up
to about 75 % overlap, reaching almost the bandwidth of the window shift and deformation
with a rectangular window function of half the size corresponding to an effective window size,
which is half as large as the nominal size. Again, the RMS error increases rapidly for further
increased overlaps. With the image deformation technique and strong overlap of interrogation
windows the bandwidth can be increased further. The RMS error increases much less then
with the other methods.

The picture changes completely in the presence of an out-of-plane component. Fig. 13b
shows the results for an out-of-plane component of 25 % of the light sheet thickness. Again
a rapid increase of the RMS error can be seen beyond 50 % overlap for iterative window
shift and deformation techniques with rectangular window functions, respectively 75 % for a
triangular window function. The image deformation reaches the highest bandwidth at strong
overlaps. However, with the out-of-plane component the errors are much larger than with
only in-plane motion and, additionally, the results for the various methods do not overlay any
more. For the window shift and deformation techniques the achievable accuracy depends on
the window function and the interrogation window size, as one has seen in Fig. 7. For the
image deformation, the bandwidth continuously increases with the overlap, and the RMS
error nearly linearly increases with the obtained bandwidth, but here for the prize of a larger
RMS error in the entire range of overlaps and bandwidths compared to the other methods.

6. Conclusion

The effect of particle image intensities varying individually between the two consecutive
images on the obtainable accuracy of a PIV system has been reviewed. Such intensity
variations occur in experiments due to the motion of the particles in the intensity profile of
the light sheet, misalignments of the two light pulses or changes of the particle’s scattering
properties between the two exposures. The error has been quantified for several commonly
used PIV processing methods. This effect limits the obtainable accuracy of PIV measurements,
even under otherwise ideal conditions and is much stronger than noise or in-plane loss of
particle images. The commonly used best practice parameters for PIV experiments (particle
image diameter around 3 pixels and out-of-plane components of not more than 25 % of the
light sheet thickness) and the usually observed limit of about 0.1 pixel could be re-produced.
This error is almost independent of the particle number density, but it strongly increases with
increasing out-of-plane displacements, and decreases with increasing interrogation window
size. In summary, besides under-sampling, the variations of the particle image intensities
are an additional error, dominating the range of particle image diameters of larger than
2 pixels. This error leads to a basic limitation of the planar PIV technique and explains
the accuracy limit of PIV of about 0.1 pixel usually seen in experiments. High-resolution
image deformation techniques as in Nogueira et al. (1999) or Schrijer & Scarano (2008), with
their small effective interrogation windows are especially affected in terms of the achievable
accuracy, even if the achievable resolution does not change with intensity variations.
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