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The Role of Neural Stem 
Cells in Neurorestoration 

E.O. Vik-Mo, A. Fayzullin, M.C. Moe, H. Olstorn and I.A. Langmoen 
Vilhelm Magnus Laboratory, 

Department of Neurosurgery and Institute of Surgical Research, Oslo University Hospital 
Norway 

1. Introduction  

Many neurological diseases have a poor prognosis. Most neurological treatment is primarily 
based on minimizing secondary - or further damage – and to optimize the remaining 
neurological function. Even a highly successful treatment like deep brain stimulation for 
Parkinson’s disease improves neurological function through conditional lesioning. Several 
neurodegenerative diseases have no established treatments1.  

The complex electrochemical, molecular and anatomical structure of the central nervous 
system is established during prenatal and early postnatal development. Thus, it was long 
considered impossible to heal or substitute destroyed nervous tissue. The adult human 
brain used to be viewed as static, as it was a common perception that no new neurons could 
be generated after birth. This has been referred to as the “no new neurons”-dogma2, and it 
goes back to the early neuronanatomist and Nobel Prize laureate Santiago Ramon y Cajal, 
who stated that “nothing may regenerate in the brain or central nervous system, everything 
may die”3. This axiom was challenged in the 1960s, but the work by Joseph Altman and co-
workers was met with skepticism and was generally not accepted by the scientific 
community4, 5. 

During the 1970`s and 80`s Fernando Nottebohm and his colleagues made some very 
important discoveries. They found that the vocal centers in the brain of male canaries 
increase in size prior to the breeding season when vocal activities escalate to play pivotal 
roles in mating. In a series of studies they found no proliferation in the vocal centers, but 
showed that cell divisions took place in the ventricular wall. The newborn neurons then 
migrated to the vocal centers where they were integrated in neuronal circuits6.  

Evidence for neurogenesis in the mammalian brain was first presented by Reynolds and 
Weiss in 1992. They isolated cells from the striatum of adult mice and induced proliferation 
by epidermal growth factor7. Subsequently subsets of the cells developed the morphology 
and antigenic properties of neurons and astrocytes. Some of the newly generated cells also 
expressed immunoreactivity for the neurotransmitters typically found in that area of the 
adult mouse brain. In 1998 Eriksson et al. identified cells with stem cell characteristics in situ 
in the brain of adult humans post mortem37, 152. 
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Through a steadily improving knowledge, primarily over the last 20 years, we have found 
that the central nervous system harbors cells with the ability to divide, mature and restore 
function after damage. Through manipulation it is even possible to differentiate cells 
derived from other organs into functioning neural cells that could be used as treatments.  

A new approach, based on regeneration of central nervous tissue, might allow for better 
treatments for several of these devastating diseases. Although awaited with great hope, the 
translation of this basic research into tested treatments for patients is still wanting. 

2. Definition of neural stem cells 

Stem cells (SC) can loosely be described as cells that (I) have capacity for self-renewal 
(symmetric division), and (II) can give rise to cells other than themselves through 
asymmetric cell division8. SCs give rise to more differentiated progeny; progenitor cells. 
These cells have a more restricted ability for proliferation and differentiation.  

The development from a multipotent stem cell to a variety of differentiated progeny has 
been most thoroughly examined in the hematopoietic system9. Here a detailed set of surface 
markers and transcription factors has been described to identify stem cells and different 
subsets of progenitor and differentiated cells10. Such a molecular phenotyping of the 
hierarchical organization allows for a detailed functional description, and to form 
hypothesis readily testable. However, even in this relatively well characterized cellular 
hierarchy controversies exist both on the stem cell nature and on the correct phenotype of 
such cells. 

Cells with SC characteristics that can give rise to neural tissue or are derived from the 
central nervous system (CNS) are called neural stem cells (NSC). NSC can be derived from 
several sources. In principal such cells can be classified according to the sources of origin. 
Cells can be isolated from embryos, fetal, or the adult CNS. Neural stem cells are 
multipotent, giving rise to the three major cell types of the mammalian CNS: neurons, 
astrocytes and oligodendrocytes. Adult stem cells, also referred to as somatic stem cells, are 
undifferentiated cells found among mature and specialized cells in a tissue or organ, and 
reside in various tissues in the human body, including the central nervous system. It is the 
stem cells of the adult brain that drive adult neurogenesis. 

The hierarchy of somatic stem cell differentiation in solid tissue is however much less 
clear11, 12. In addition, little is known about the differentiation pathways from such stem 
cells into the main groups of cells comprising brain stroma. Suggested progenitor cell 
phenotypes may differ between different parts of the brain13, 14. The fact that there exist 
thousands of different types of neurons in the CNS adds magnitudes of complexity. The 
impact of in vitro cultural artifacts confuses available data even further. Similar problems of 
stem- and progenitor-cell identification are present in several other organ systems where 
somatic stem cells have been described (breast, lung, prostate, skin, and gut). With such an 
uncharted landscape, defining a definitive SC population clearly poses a great problem.  

Several approaches have been used to isolate and identify potential NSC. After the 
successful use of flow cytometry for identification of SC in the hematopoietic system, 
surface markers have been sought for NSC. The marker CD133 (also termed prominin-1 or 
AC133) was initially identified on a subset of human hematopoietic stem and progenitor 
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cells 15. Antibodies directed at this protein were shown to prospectively identify a 
population of progenitor cells isolated from fetal human brain tissue16. CD133 is also 
expressed by the slow-dividing fraction of human umbilical cord progenitor cells17. This 
marker has been identified in the subventricular zone (SVZ) and rostral migratory stream 18 
and even cortex 19 in human post-mortem derived tissue. Conflicting data exist however20, 21, 
where a group identified CD133 positive cells in cells derived from embryonic SC, 
ependymal cells and brain tumor cells – but not in neurogenic cells derived from the adult 
human subventricular zone. This discrepancy may be due to technical issues, but could also 
be related to the plasticity of these cells in vitro as CD133 levels seems to be affected by 
bioenergetic stress22-24. Due to the discrepancy between studies, other adult human neural 
stem cell (ahNSC) or precursor markers have been suggested (SSEA1, CXCR4, A2B5, 
peanut-agglutinin ++)21, 25. These are less explored, but all seem to struggle with the level of 
variability and heterogeneity.  

SCs are more robust than differentiated cells. The fact that NSC can be isolated from human 
brain >48 hrs post mortem exemplifies this fact26. Another well known example is the 
regrowth of hair lost during chemotherapy treatment. During chemotherapy patients loose 
hair one to three weeks after initiation of therapy. However, the SC of hair follicles survive, 
and usually hair grow back from three to six months after termination of therapy27. The 
molecular machinery behind increased DNA-repair mechanisms, free-radical scavengers 
systems and membrane pumps to expel toxic substances have been described in a range of 
cancers28. The presence of the same molecular machinery in a variety of malignancies 
implies that such mechanisms are based on activation of intrinsic cellular properties and 
signaling events. The molecular machinery allowing protection of somatic stem cells could 
be used to prospectively identify and enrich for such cells. The efflux of toxic substances by 
ABC (ATP Binding Cassette Transporter) membrane pumps was used to identify a 
population of cells with high efflux of the DNA-binding dye Hoechst 33342 with stem cell 
properties in murine hematopoietic system 29. This functional phenotype was identified in 
fractions of cells isolated from developing mouse brain 30 and brain tumor cell lines 31. 
Similarly, the ability to metabolize aldehydes has been used to identify stem cells in 
developing and adult murine brain32. Whether this approach will overcome the problems 
described above for surface markers is still unknown. 

A third approach is to enrich for stem cells using culturing conditions selectively allowing 
for these cells to proliferate. This has been shown to effectively allow NSC proliferation in a 
range of species (murine33, canine34, porcine35, monkey36 and human37). Similarly, non-
adherent, serum-poor culturing conditions have been shown to be applicable for SC in 
colon38, 39, breast40, 41, prostate42,43, heart44, skin45, 46, pancreas47, 48, and liver49. Under these 
conditions SC can proliferate extensively, while cells lacking this ability are eliminated. The 
demonstration of extensive self-renewal and generation of differentiated progeny by a large 
number of groups have shown this to be a robust method of isolating SC.  

3. Neurogenesis and biology of endogenous NSCs 

3.1 Neurogenesis and neurogenic regions 

Stem cells differentiating into neurons (neurogenesis) have been identified in both the 
dentate gyrus of the hippocampus and in the walls of the lateral ventricles in the 
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subventricular zone (SVZ) and the rostral migratory stream (RMS) - the main pathway by 
which newly born neurons from SVZ reach the olfactory bulb. Cells in both neurgenic niches 
seem to translate through similar cellular development, but the anatomical organization is 
quite different.  

In the dentate gyrus cells migrate only a few micrometers, from the subgranular zone to the 
granule cell layer. Cells develop from a precursor cell type in which mitotic events are 
found. Most of the newly formed cells are eliminated, and only few cells are able to establish 
axons, dendrites and functional synapses (postmitotic maturation phase). During the late 
survival phase characteristic electrophysiological patterns develop, receiving glutamatergic 
input from the entorhinal cortex and sending out axons to the hippocampal CA3 region. 
After a maturation period of several weeks the newly developed neurons establish 
characteristics identical to the other preexisting neurons2. 

The SVZ, in the walls of the lateral ventricles, contains the largest concentration of dividing 
cells in the adult mammalian brain4, 50. In the human brain there seems to be far more 
proliferating cells in the SVZ compared to the hippocampus51, 52. The cellular composition 
and organization of this region differs somewhat amongst species53, 54. In mammals the SVZ 
contains three cell populations important for stem cell proliferation. The proper stem cell 
population is maintained through slowly dividing astrocyte-like neural stem cells known as 
type B cells. These cells give rise to actively proliferating type C cells, which in turn give rise 
to immature neuroblasts, called type A cells. These neuroblasts, not yet neuronally 
committed, migrate to the olfactory bulb via chain migration by cell-cell contacts. 
Neuroblast chains are ensheathed by the processes of type B cells. In the anterior and dorsal 
SVZ, these chains condense to form the RMS 55-57. After reaching the olfactory bulb cells 
migrate radially along blood vessel, and differentiate into interneurons incorporated into the 
functional circuitry of olfactory bulb and forebrain50, 57. 

In the adult brain, rodent and human studies reveal that neurogenesis continues in the SVZ 
throughout adult life4, 56, 58-60. The SVZ-RMS structure of the human brain contains 105 
dividing cells, a number that is high compared with the rodent51, 61. As age increases in 
rodents, the number of neurogenic cells decreases62, 63. Early data based on magnetic 
resonance spectroscopy suggests that this may also be the case in humans64. 

Under normal circumstances the function of the SVZ is to produce neuroblasts for the 
RMS51, 53, 56. More recent experiments have demonstrated that the progenitors of the SVZ are 
capable of producing oligodendrocytes in addition to olfactory interneurons65. After 
experimental injury in animal models of Huntigton disease and stroke, the SVZ not only 
supplies the RMS with neuroblasts but SVZ progenitor cells also migrate toward the site of 
injury and cell death66, 67. Thus, the proliferation and migration from the SVZ responds to 
injury, suggesting a more important role for this region in neurorestoration. 

3.2 Regulatory signaling of the NSC pool 

The proliferation and differentiation of the NSC pool is highly regulated. The 
microenvironment maintaining this function is called the stem cell niche. This is a 
combination of signaling through extracellular matrix (ECM), cell-cell contacts, secreted 
substances, innervation and physical factors.  
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The niche is embedded in extensions of the vascular basal lamina that extends around NSCs 
and progenitors68. These laminin and collagen I-rich ECM structures can be observed under 
the electron microscope and have been named fractones. These structures has been 
suggested to bind secreted growth factors, like Fiborblast growth factor (FGF), regulating 
concentrations and signaling strength of secreted factors69, 70, tenascin-C70-72, osteopentin73, 
chondroitin/dermatan sulfate proteoglycans74, 75.  

Ependymal cells, lining the ventricles, exert a supporting/ regulatory function in the niche, 
since they can modulate the transport of ions and other factors from the cerebrospinal fluid 
(CSF)76. They secrete neurogenic factors like pigment epithelium-derived factor (PEDF)77 
and the pro-neurogenic bone morphogenic protein (BMP) signaling substances78, 79. These 
cells also form gap junctions with SVZ astrocytes80, allowing controlled transfer of 
substances from the CSF to the niche. NSC adapt close contacts to blood vessels both in the 
subgranular zone and the SVZ69, 81. This connection is suggested to be central in 
neurogenesis82. This could be through cell-cell-contact mediated signaling or through 
secreted factors like PEDF, leukemia-inhibitory factor (LIF) and brain-derived neurotrophic 
factor (BDNF) 83. 

Several studies have shown effect on SVZ progenitor proliferation through infusion of 
growth factors into the ventricles. FGF, epidermal growth factor (EGF) and transforming 
growth factor alpha (TGFalpha)62, 84, 85 have no identified source within the niche, but may 
originate from the choroid plexus and transported through CSF. Platelet derived growth 
factor (PDGF), PEDF and Vascular endothelial growth factor (VEGF) derived from 
endothelial cells regulate NSC and progenitor proliferation77, 86-88, and PDGF also have 
effects on the differentiational balance between neurons and oligodendrocytes86. Several 
other secreted factors contributes to this orchestra of regulation like LIF87, 89, BDNF90, 91 and 
BMPs78, 92.  

Of special interest are the three stem cell related signaling pathways; Hedgehog-, Wnt- and 
Notch- pathways. Sonic hedgehog (Shh) is a morphogen known to regulate neurogenesis 
and gliogenesis during development. This signaling increase precursor and NSC 
proliferation both in the hippocampus and the SVZ94-96 and Shh is essential for their 
maintenance97. Genetic manipulation by knocking-down the Shh signaling results in 
depletion of SVZ neurogenesis, while increased signaling leads to upregulation of 
proliferation98. Wnt-pathway signaling is orchestrated through a number of secreted Wnt 
ligands and a range of Frizzled receptors, and their interaction mediates the possibility for 
fine tuning of a proliferation-differentiation signal99-102. The combination of FGF and b-
catenin signaling might be a requisite for neuronal differentiation103. Notch signaling is 
based on binding of ligands and receptors that are membrane bound, and thus acts through 
cell-cell interaction. This signaling is essential for niche maintenance, and again regulates 
both the size of the NSC pool and differentiation104, 105, and differences in Notch signaling 
distinguish NSC from progenitors106. 

The convergence of synaptic input by classical neurotransmitters like ┛-amino-butyric acid 
(GABA) and serotonin (5-HT) modulates the NSC niche. GABA is the principle inhibitory 
neurotransmitter in the adult CNS but has an excitatory action in the SVZ and the 
subgranular zone  of the hippocampus107, 108. This effect is similar to its effect during brain 
development 109. Isolated rat neuroblasts also express the GABA-A receptor. GABA has been 
found to decrease neuroblast migration110 and to cause cell cycle exit111, suggesting that the 
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number of dividing neuroblasts could be regulated by a feedback loop between NSCs and 
neuroblasts112. Major focus has been put on the serotonergic systems effect on the niche due 
to its importance in psychiatric diseases 113. Early studies depleting serotonin (5-HT) in 
prenatal stages showed a reduction in cell proliferation in both neurogenic niches114. The 
effects of 5-HT are mediated on receptor level on NSC population might, however, differ in 
the SVZ and the subgranular layer115, 116. 

In Huntington’s disease (HD) the SVZ increases in size, and has increased number of 
progenitor cells, while the mature cells present are altered. In Parkinson disease, on the 
other hand, the number of proliferating progenitors is almost halved compared to the 
normal situation66, 67, 117-119. This is believed to be related to the loss of dopamine stimulation 
of NSC proliferation.  

Gas composition also affects NSC regulation. Processes of nitrergic neurons intercalate with 
neuroblasts in the SVZ 120. Inhibitors of Nitirc oxide (NO) signaling affects cell proliferation 
and NO synthase deficient mice also exhibit higher levels of proliferation in the SVZ120-122. 
Oxygen tension highly affects the potency and proliferative potential of NSC123, 124, and can 
switch the neurogenesis from differentiation of GABA-positive to glutamate positive 
neurons125.  

3.3 Cancer stem cells and their relation to NSC 

The phenotype of neural stem cells is mirrored in several aspects of malignant tumor 
biology126-128. Several of the intrinsic molecular pathways and extracellular signaling 
systems identified in regulation of NSC have also been identified in cancer cells. Such cells, 
termed cancer stem cells (CSC) have been suggested to be essential in tumor growth and 
therapy resistance. Since NSC harbor the molecular machinery to respond to signals of 
proliferation and defense mechanisms to extrude toxic substances129, 130, it has been 
suggested that NSC are the cell of origin for brain neoplasms131. By using conditionally 
targeted gene knock down of the tumor suppressor p53 in neural progenitor cells (Nestin +) 
and astrocytes (GFAP+), it has been demonstrated that both populations of cells can give 
rise to tumors132, 133. The induction of tumors however seem to be at lesser threshold by RAS 
and AKT transformation in Nestin+ cells, suggesting greater risk of tumor development 
from less differentiated cells. Similarly, different cell populations of NSCs, neural progenitor 
cells (NPCs) and more differentiated cells can all be candidates for malignant 
transformation131. In two subgroups of medulloblastomas different cells of origin and 
different molecular pathways seem to be important in tumorigenesis. Midline 
medulloblastomas present in the brain stem seem to develop from dorsal brainstem 
progenitors and be dependent on the Wnt- pathway. More laterally situated, cerebellar 
tumors seem to develop from granule neuron progenitors and be stimulated through SHH-
pathway signaling134. 

The NSC pool and niche is highly controlled through a range of factors, underscoring the 
biological importance of these cell populations. Manipulating the signaling pathways for 
NSC homeostasis could thus be potential therapeutic intervention in brain tumors. 
Conversely, it is apparent that molecular signals or drugs that induce NSC proliferation 
could potentially be tumorigenic. 
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4. Challenges for the generation of NSCs 

Several stem cell types have neural capabilities: 1. pluripotent self-renewing embryonic stem 
cells, 2. multipotent stem cells with broad potential and self-renewing capacity from 
embryonic, fetal or adult brain, 3. neural progenitors with limited potential and self-renewal 
capacity from adult brain or spinal cord, 4. committed neural progenitors (neuronal and 
glial) from brain subregions 135.  

Embryonic stem cells (ESCs) have an almost unlimited capacity to self-renew. On the other 
hand, ESCs also have a considerable teratogenic potential after implantation into host tissue, 
and it is not yet clear how long chromosomal stability can be maintained136. In addition, 
immense ethical concerns exist regarding the use of human ESCs as well as government 
restrictions that continue to limit clinical applications 137. 

Human fetal mesencephalic NSCs fulfill some important requirements for the use in cell 
replacement strategies. They can be generate high yields of functional neurons from a small 
starting population, representing on-demand availability of cells without major logistical 
problems and the possibility to standardize the cell source in a clinical setting. In contrast to 
ES cells, tumorigenicity seems to be a minor problem with fetal NSCs. These cells are less 
flexible with regards to multiplication and differentiation, but there is increasing evidence 
that it is more beneficial to use cells that are already committed to becoming a particular cell 
type138. 

More recently, induced pluripotent stem cells (iPS) were generated, and such cells offer 
another source of autologous neural stem cells137. It has been known that differentiated cells 
can be reprogrammed to an embryonic-like state by nuclear transfer to oocytes, fusion with 
ES cells or molecular reprogramming of somatic cells into induced pluripotent stem cells 
using genetic factors138. Most of the current reprogramming methods are using expression of 
putative oncogenes by retroviral vectors. The factors used are involved in carcinogenesis, 
posing a risk for clinical translation. Important questions regarding safety and genetic 
stability must be solved before iPS can be used in clinical trials139. 

Brain-derived ahNSC are very attractive because of the clear logistical benefits if the 
therapeutic stem cells can be derived from a patient’s own body. Technical obstacles 
(obtaining fetal and embryonic tissue, immune graft rejection in hetero- and 
xenotransplantation, potential tumor formation after grafting of induced pluripotent cells) 
as well as ethical issues (in contrast to embryonic, fetal, hetero- or xenotransplantations of 
cells) can be avoided. Despite this, there are limited data concerning the application of adult 
human-derived neural stem cells in clinical trials and very limited number of experimental 
data140.  

Adult human neural stem cells can be isolated from a range of sources. Cells derived from 
the two neurogenic regions of the brain have been the most thoroughly examined, but cells 
with neurogenic potential in vitro can be derived from subcortical white matter141, spinal 
cord142, filum terminale143, 144 and hypothalamus145. Also cells derived from the olfactory 
mucosa, found in the nasal cavity, contain ahNSC146. Several of these regions allow for 
harvesting of autologous NSC with minimal risk and morbidity for the patient143, 146, 147. 

Multipotent adult stem cells have also significant advantages with regard to autologous 
transplantation approaches without immunological graft rejection. Hematopoietic stem cells 
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(HSCs) and mesenchymal stem cells (MSCs) are valuable sources for cell transplantation 
and cell therapy. Although recent in vitro as well as in vivo studies suggested that 
multipotent adult stem cells, or their pro-neurally converted derivatives, could display 
protective or regenerative effects in experimental models of CNS diseases138, more 
experimental data to translate the application of this type of cells to clinical trial is needed137. 

The discovery of multipotent stem and progenitor cells in the adult human brain has opened 
the possibility of treating central nervous system disorders through replacement of the 
injured tissue by transplanted cells or by stimulating recruitment of endogenous repair 
mechanisms. We have previously shown that in principle adult human neural progenitor 
cells (ahNPCs) could be transplanted to ischemically damaged brain for in vivo maturation 
into neurons93,148. The latter can be achieved both by infusion of growth factors or by 
transplanting progenitors delivering neurogenic factors to the injured brain. .  

To obtain such a goal, one must have culturing protocols with the ability to obtain enough 
cells resulting in a clinically significant effect in one or more patients. In addition, the cells 
must survive long enough for quality testing and possible genetic manipulation before 
transplantation. One of the main obstacles when culturing ahNPCs has been that the cells 
seem to stop proliferating after a limited number of passages and also lose their ability for 
proper differentiation with repetitive passages151  

The problem may however not apply to all ahNSC, as olfactory mucosa derived SC show 
higher propencity for proliferation and have been shown to be effective in an animal model 
of PD195. Also, it has been reported that ahNPCs can be propagated in vitro for as long as 20 
months (12 to 15 passages) and have shown differentiation into cells expressing neuronal 
and astrocytic markers149. Together with a publication by Walton et al.150, this article 
provides further evidence that the limitations upon continued propagation of ahNPCs 
previously reported by others may be surmounted. 

Finally, when an adequate number of cells have been produced in vitro, the cells must be 
documented to have the appropriate ability to differentiate into mature neurons with the 
ability to produce synapses and generate functional action potentials. While we have 
documented this in cells cultivated short term in vitro151-153, similar data on long term 
cultivated cells are lacking. We are looking forward to future experiments we hope will 
evaluate the ability of these long-term propagated progenitors for normal functional 
differentiation in vitro and in vivo. 

5. NSC treatment strategies 

Concerning the techniques of NSC application, regardless of the cell source, there are 
several treatment strategies that are explored in restorative approach.  

5.1 Stimulation of endogenous NSC 

It is evident that the adult brain contains a pool of NSC that have the ability to proliferate- 
and that can respond to extrinsic signals154, 155.  

Recent data suggests that NSCs and NPCs can migrate from their site of birth to other parts 
of the brain and contribute to the replacement of specific cell types lost due to injury or 
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disease156-158. In animal stroke models striatal neurons can be derived from endogenous NSC 
and progenitors 157, 159-161. Similarly, compensatory neurogenesis exists in Huntington's and 
Alzheimer's disease patients. Compensatory neocortical neuron production have been 
demonstrated after targeted ablation of both interneurons and corticospinal neurons162-165. 
This neurogenesis is, however, quite modest and not associated with clinically significant 
functional effects. This is probably due to the limited number of stem cells recruited and/or 
the unfavorable environment of the injured adult brain for supporting efficient production 
of new neurons and glia.  

Thus, the current challenge is to understand how to modify the molecular basis of 
compensatory neurogenesis in order to overcome its limiting factors in the pathological and 
aged CNS, while supporting those that accentuate its' influence.  

Several of the described factors that affects the NSC pool are potentially tumor inducing 
when administered systemically, thus a major obstacle in developing this type of therapy is 
how to deliver the factor- or rather- the sequence of factors needed at high temporal and 
anatomical precision. Animal models have primarily used intraventricular injections or viral 
delivery methods to achieve this. Intraventricular injection of TGFAlpha activates 
endogenous neurogenesis in the SVZ of Parkinson’s disease (PD) model rats 166, 167. 
Similarly, the injection of the Notch receptor ligand angiopoietin2 or DII4 growth factors can 
induce widespread stimulation of endogenous neural precursors, and in a PD rodent model 
rescue injured dopamine neurons and stimulate improvement of motor function. 
Adenoviral co-delivery of BDNF and BMP signaling molecule Noggin induces striatal 
neuron replacement from endogenous precursors and delays motor impairment in a 
Huntington's disease model168. Intraventricluar injection of EGF and erythropoietin in 
combination can mobilize endogenous adult neural stem cells to promote cortical tissue re-
growth and functional recovery after stroke169. Systemic erythropoietin is already in clinical 
use for the stimulation of erythropoiesis, thus allowing a rapid translation of this approach to 
clinical investigation. In a combination with the neurotrophic hormone ┚-human chorionic 
gonadotropin (hCG) this was found to be safe, and potentially beneficial in a phase II trial for 
the stimulation of neurogenesis after stroke170.  

5.2 Cell replacement by transplantation 

As several obstacles remain regarding how to stimulate the correct cells with the correct 
sequence of stimulatory factors within the complex NSC niche, most therapeutic strategies 
are based on the transplantation of in vitro or ex vivo manipulated cells. 

Most groups have favored the transplantation of immature cells. The idea is to let grafted 
cells differentiate under the influence of the host environment, integrate into the local 
neuronal network and thus become a functional unit of the brain or spinal cord. Immature 
cells are believed to be more robust than differentiated cells, and could contain the necessary 
plasticity to overcome pathological scar formation and inhibitory signals of relocation and 
differentiation. This approach is the most common in animal models of neurorestoration2. 
Also, the transplanted cells must have the ability to form the correct cells needed, and must 
stop proliferation when the proper cell types have been formed. 

Better control of the developed progeny could be achieved by grafting of mature or at least 
partly differentiated cells. It is supposed that predifferentiation may help the processes of 
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functional integration of transplanted cells. We have shown that in selective injury of 
hippocampal CA1 region by global ischemia both ahNSC and predifferentiated cells 
preferentially migrate into the damaged area93,148. The predifferentiated cells develop more 
markers of differentiated neurons at an earlier time point. Thus, ahNSC can be manipulated 
in vitro to yield a greater neuronal differentiation after transplantation. In approaches where 
potential tumor forming cells are used, a controlled differentiation could reduce the risk of 
adverse tumor formation165. Similar in-vitro predifferentiation has been tested for 
generation of dopaminergic neurons in PD169. Further modification of the transplanted cells 
could be genetically manipulated cells that secret anti-apoptotic or pro-differentiation signal 
or a combination of NSC and stromal cells. 

5.3 Microenvironmental modification 

A third approach facilitates the ability of transplanted cells to affect the environment which 
the cells are transplanted into. Autocrine and paracrine factors derived from NSC can 
modulate the niche and stem-, progenitor and differentiated cells after transplantation. In 
rats it has been found that secreted growth factors from transplanted NSCs stimulated 
proliferation of endogenous NSC171, called “bystander effect”. In several transplantation 
studies functional recovery is far greater than the number of identified transplanted cells 
would indicate. This has been suggested to be a result of synergistic effects of the NSC on 
the host microenvironment.  

Furthermore, transplanted NSC can secrete factors not present in the host. Infantile neuronal 
ceroid lipofuscinosis is a fatal neurodegenerative disease caused by a deficiency in the 
lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). The lack of this enzyme leads to 
pathological lipofuscin-like material accumulating in cells, leading to progressive loss of 
vision, decreasing cognitive and motor skills, epileptic seizures and premature death. 
Normally functioning cells produce surplus of this enzyme, and some of this is secreted to the 
extracellular environment. This secreted enzyme can be absorbed by other cells, also cells not 
producing this enzyme on their own. This can be done in quantities high enough to stop 
lysosomal sequestering. In a mouse model lacking the gene for PPT1 transplanted NSC could 
reduce lipofuscine levels, provide neuroprotection and delay loss of motor function 172.  

6. Towards using NSC to treat neurological disorders 

Although NSC therapy have been suggested as a therapy for a range of neurological 
diseases, here we highlight the results for the most studied diseases; PD, stroke, and spinal 
cord injury.  

6.1 Parkinson’s disease 

Over the past 30 years, neural transplantation has emerged as a possible therapy for PD. It 
was shown that grafted neural cells from different sources can survive for over 20 years and 
exert beneficial effects in PD patients173. Different types of cell have been tested both in 
experimental and clinical trial. Embryonic derived stem cells have been suggested the cell of 
choice, since they promise to be made in high quantities and to hold large amounts of the 
desired cell type 138. Clinical testing of transplants to patients with PD of primary human 
embryonic dopaminergic neurons or tissue using double-blind, placebo-controlled protocols 
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have shown positive results. The patients displayed impressive improvements of symptoms 
and restoration of dopaminergic neurotransmission, but also demonstrated several clinical 
limitations. Only subpopulations of patients showed significant clinical benefits. Moreover, 
a significant proportion of patients (with up to 56%) suffered from dyskinesias after a 
twelve-hour drug-free period174-176.  

Whether, these early results could be transferable to the use of ESC is uncertain. Also, the 
use of ÈSC harbors problems of controlling cell growth and differentiation, including brain 
tumor and teratoma formation138, 177-179. In contrast, there are no reports of tumor formation 
in fetal NSCs transplantations, what makes the usage of fetal tissue-specific be a safer way to 
establish a transplantation protocol in PD. Open-label clinical studies continued through the 
1990s have shown that fetal ventral mesencephalic allografts could survive in patients with 
advanced PD, become functionally integrated, and produce sustained clinical benefits; 
however, it also soon became clear that transplants of this type produced very variable 
responses, with some patients showing only little improvement or transient benefits173. In 
patients receiving grafts post mortem studies have demonstrated that also transplanted cells 
display Lewy bodies, a sign of PD180, 181.  

Overall several issues hinders the further development of a cellular replacement approach 
for PD176. Ethical issues and technical problems (i.e. obtaining fetal and embryonic tissue, 
immune graft) are slowing down the clinical application in PD patients. New candidate for 
cell replacement are needed, but the role of other types of potential sources for 
transplantations - brain-derived adult neural stem cells, adult multipotent stem cells, 
induced pluripotent cells is still not clear. One case-report describes the effect of autologous 
transplantation of SVZ derived NSC140. Although effects on several clinical aspects were 
reported, these only lasted 36 months and weaned off after 4-5 years. Based on this result, a 
phase II study has been approved, but later put on hold due to demands put on cell 
production facilities (neurogeneration.com).  

6.2 Stroke 

Stroke is another severe pathology where significant loss of neural tissue is the major factor 
of the illness. No current therapies promote neuronal recovery following ischemic insults. 
As mentioned above, endogenous NSC proliferate as a response to both ischemic stroke and 
subarachnoid hemorrage182, 183, and stimulation of this endogenous neurogenesis has been 
tried using a combination with of erythropoietin and hCG as mentioned above.  

Based on work in animal models, transplantation of exogenous cells into the injured brain to 
replace the lost cells or support the remaining cells is one of promising direction184. There is 
a significant experimental background that supports the idea that the grafting of exogenous 
stem cells from multiple sources can generate neural cells that survive and form synaptic 
connections after transplantation in the stroke-injured brain185. The world’s first fully 
regulated clinical trial of a neural stem cell therapy for disabled stroke patients - PISCES 
study (Pilot Investigation of Stem Cells in Stroke) – has been started in Scotland at the 
Institute of Neurological Sciences in 2011. Stem cell therapy (purified population of human 
neural stem cells, derived from human fetal brain tissue) is being administered to a total of 
12 patients. The obtained data is planned to be announced in 2012.  
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6.3 Spinal cord injury 

Cell replacement in spinal cord injury (SCI) is also a field of great interest for neurobiologist 
and clinicians. A large number of different cells including embryonic and adult stem cells 
have been transplanted into animal models of spinal cord injury, and in many cases these 
procedures have resulted in modest sensorimotor benefits186. Also a range of clinical 
experiments involving administration of stem cells for SCI patients have already taken 
place. Early studies in nine patients showed that unselected human fetal neural tissue 
transplanted to progressively developing posttraumatic syringomyelia could safely be used 
to obliterate the syrinx187, 188. No tumor developed, but the clinical effect of this obliteration 
was however limited.  

A Portuguese study have reported using unselected olfactory mucosa transplanted into SCI 
damage site in twenty patients with complete medullary lesions189, 190. Treatment resulted in 
a filling at the transplant site. Urodynamic responses improved in five patients. Two of the 
patients regained voluntary control of anal sphincter. Eleven patients improved while one 
patient declined in ASIA impairment scale. The authors concluded that olfactory mucosa 
autografts are feasible, safe and possibly beneficial. 

Geron Corporation (Menlo Park, CA, USA) was in 2009 given a US Food and Drug 
Administration (FDA) approval for the first test of human embryonic stem cell derived 
oligodendroglial cells in patients for SCI. Although high controversy existed regarding cell 
source, safety and patient selection, several patients were included into the study. After an 
early stop in the study because of worries regarding cyst development at injection sites in 
preclinical studies, recruitment started in 2010. In the first four patients included in the study, 
the treatment appeared safe. Sadly, the study was recently stopped due to financial reasons191.  

7. Future directions 

Through the last two decades the presence and potential of NSC has become apparent. NSC 
are used to understand developments of pathology and new based treatments are explored 
in a range of neurological disease 

Although we clearly are at a very early stage of translating the basic biological understanding 
of NSC into possible therapies, several phase I and II studies have been reported using cell 
based approaches to treat neurological conditions. However several obstacles affect the 
translation of promising preclinical studies. Laws, regulation and public understanding of this 
research are poorly developed. While ethical concerns have develop into regulations that 
forces restrictive use on a broad range of new technologies in some regions, lack of established 
safety and quality parameters have led to unsafe and dangerous trials other places192. It is a 
story as old as it is unfortunate, in which opportunistic individuals and companies may 
manipulate hype and hope for financial gain193. Already reports exist on patient developing 
tumors after ill-designed and unsafe treatment based on NSC194. Certainly, at this early stage 
NSC based therapies should be part of a well designed and publically reported clinical trial 
(http://www.isscr.org/clinical_trans/pdfs/ISSCRPatientHandbook.pdf). 
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