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1. Introduction  

Recently, metamaterials have attracted a great deal of attention due to their unusual 

properties not seen in naturally occurring materials, such as negative refraction (Lezec et al., 

2007; Pendry, 2000; Veselago, 1968), superlensing (Grbic & Eleftheriades, 2004) and cloaking 

(Leonhardt 2006; Pendry et al., 2006), etc. These unusual properties are derived from the 

resonant structures in their artificial building blocks. The resonant structures interact with 

the wave, but their small size prevents them from being “seen” individually by the wave 

with wavelength inside the background much larger than the size of the structures (Pendry 

& Smith, 2006). Thus, the properties of a metamaterial can be described with homogenized 

parameters or effective medium parameters. The theory that links the microscopic resonant 

structures to their effective medium parameters is called the effective medium theory 

(EMT). For example, the left-handed metamaterial consisting of a periodic array of split ring 

resonators and conducting thin wires has been successfully demonstrated that, in a frequency 

regime, it behaves like a homogeneous medium exhibiting negative effective permittivity, 

effε , and negative effective permeability, effµ , simultaneously (Pendry et al., 1999, 1996). 

Since the refractive index is defined as eff eff effn ε µ= , negative refraction is a 

consequence of double negativity in permittivity and permeability. This example shows 

how effective medium parameters of particular resonant structures can be used to describe 

unusual properties of a metamaterial. In turn, a valid and accurate EMT provides an 

efficient and systematic tool to design and engineer the resonant structures according to 

certain desired metamaterial properties. During the development of metamaterials, there 

has always been a continuous effort to find an appropriate EMT for metamaterials such that 

various novel phenomena can have a theoretical explanation. One can obtain the effective 

parameters from some phenomenological results, such as transmission and reflections 

(Baker-Jarvis et al., 1990; Smith et al., 2002), and wave propagation (Andryieuski et al., 2009), 

but only a theory can give a clear understanding on the physical origin of effecitve 
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parameters. Therefore, EMTs with physical insights can be regarded as theoretical 

foundations of metamaterials. 

The development of EMT has seen a long history accompanied by various approaches. A 

famous one for electromagnetic (EM) waves is the Maxwell-Garnett theory (Sheng, 2006), 

which is valid in the quasi-static limit, aka the zero frequency limit. The quasi-static limit 

requires the wavelengths inside the scatterer, the host, and the effective medium to all be 

very large compared to the size of the building block (Lamb et al., 1980). However, for 

metamaterials, the wavelength inside the scatterer could be smaller than the size of the 

building block and thus lead to resonances at low frequencies. This results in the failure of 

the widely used quasi-static EMT. Nevertheless, as long as the wavelength in the effective 

medium is still large compared to the size of the building block, there exists an effective 

medium description as the wave still cannot probe the fine structures of the building blocks. 

In this context, another limit is introduced, which is the long wavelength limit. Compared 

with the quasi-static limit, the long wavelength limit does not have restrictions on the 

wavelength inside the scatterer, while the wavelengths inside the host and the effective 

medium should still be large (Lamb et al., 1980). In the study of metamaterials, one aspect is 

to develop EMTs that are valid in the long wavelength limit. In this chapter, we will focus 

on the recent developments of EMTs for elastic metamaterials. 

1.1 Effective medium theories for electromagnetic metamaterials 

Though our focus is on elastic metamaterials, it is necessary to briefly review the EMTs for 

EM metamaterials to offer a systematic picture of the EMTs. Ever since the birth of EM 

metamaterials, EMTs have played an integral role in designing metamaterials and 

explaining their unusual properties. The EMTs for EM metamaterials can be broken down 

into one of several classes. In one class, the effective parameters are obtained from the 

average of the computed eigenfields in the unit cell (Chern & Chen, 2009; Chui & L. Hu, 

2002; Pendry et al., 1999; Smith & Pendry, 2006). This method gives inherently nonlocal 

parameters, i.e. parameters that depend on not only frequency but also the Bloch wave 

vector. For metamaterials with a good effective medium approximation, the nonlocality may 

be ignored. This method is especially helpful for use with metamaterials with complicated 

unit structures, such as split rings. Another class of EMTs is called the coherent potential 

approximation (CPA) method. In this method the effective medium is taken as the 

background embedded with the scatterer in the unit cell and by implying zero scattering, 

some elegent formulas of the effective parameters have been obtained (X. Hu et al., 2006; Jin 

et al., 2009; Wu et al., 2006). This method currently only works for scatterers with isotropic 

geometry, but it is very accurate in the long wavelength limit even at relatively high 

frequencies. Interestingly, the obtained effective parameters do not have any imaginary 

parts if the system does not have any absorption. Similar formulas can also be obtained from 

the multiple-scattering theory (MST) (Chui & Lin, 2008; Wu & Z. Zhang, 2009). The MST, 

which will be introduced in Section 2, is capable of producing the dispersion relations of a 

periodic structure. From dispersion relations, the effective wave speed can be easily 

calculated while the impedance still remains unknown. Recently, other methods have 

appeared, such as the quasimode method (Sun et al., 2009) and the first-principles method 

(Andrea, 2011).  
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1.2 Effective medium theories for acoustic metamaterials 

While the field of EM metamaterial has developed rapidly during the past decade, one of its 

counterparts, denoted as acoustic metamaterial has also seen fast growth (Ding et al., 2007; 

Fang et al., 2006; Lee et al., 2010; Yang et al., 2008). The acoustic metamaterial is designed to 

manipulate acoustic waves (Chen et al., 2010; Lu et al., 2009). Analogous to EM 

metamaterials, there are two material parameters that describe the wave propagation, which 

are bulk modulus, κ , and mass density, ρ . In two dimensions (2D), if the constituents of the 

metamaterials are all fluids, the governing equation can be mapped into 2D EM equations 

so that the EMT for 2D acoustic metamaterials is the same as that for 2D EM metamaterials. 

If the scatterers in acoustic metamaterials are solid, the shear modulus of the scatterers can 

be ignored when the longitudinal velocity contrast between the scatterer and the host is high 

(Kafesaki & Economou, 1999). In this case, the scattering property is basically the same as 

the EM cases. The mapping from the EM waves to acoustic waves facilitates the 

development of EMTs which have also been extensively studied by using various types of 

methods. MST (Mei et al., 2006; Torrent et al., 2006) and the CPA (Kafesaki et al., 2000; Li & 

Chan, 2004) represent two classes of them. Exciting news also came from the experimental 

realizations of acoustic metamaterials, such as acoustic negative refraction (S. Zhang et al., 

2009) and acoustic cloaking(S. Zhang et al., 2011). 

1.3 Effective medium theories for elastic metamaterials 

The term elastic metamaterial refers to those metamaterials which are able to sustain not 

only longitudinal but also shear waves in their effective media. It is well-known that the 

EMT for an elastic composite in the quasi-static limit is anisotropic in general. The only 

exception is the hexagonal lattice in two dimensions (Landau & Lifshitz, 1986; Royer & 

Dieulesaint, 1999; Wu & Z. Zhang 2009). Even for this case, the EMT involves the 

determination of three effective parameters, i.e., mass density, ρ , bulk modulus, κ , and 

shear modulus, µ . This is in contrast to the cases of previously mentioned EM and acoustic 

EMTs which involve only two effective parameters. One more effective medium parameter 

greatly enriches the types and physics of wave propagation (Chen et al., 2008; Wu et al., 

2007), such as mode conversion between longitudinal and transverse waves (Wu et al., 

2011); however, it also adds complexity to the EMT. Recently, various EMTs for elastic 

metamaterials have been proposed, such as those ones based on the plane-wave-expansion 

method (Krokhin et al., 2003), and integration of fields (Zhou & Hu, 2009).  

In this chapter, the symmetry property of an elastic metamaterial is examined based on the 

MST. It is shown that the elastic metamaterial preserves the quasi-static symmetry 

properties. For isotropic elastic metamaterials, CPA provides a simple and accurate EMT in 

the long wavelength limit, which links the scattering properties of the scatterer and the 

effective medium parameters (Wu et al, 2007). Those formulae can also be derived by using 

the MST method (Wu & Z. Zhang, 2009). For anisotropic elastic metamaterial, the EMT 

involves three or more effective elastic moduli (Landau & Lifshitz, 1986). In this case, CPA 

fails. To tackle this problem, a method based on MST in conjunction with the Christoffel’s 

equation (Royer & Dieulesaint, 1999) has been proposed and the expressions for effective 

elastic moduli have been obtained (Wu & Z. Zhang, 2009). The combinations of anisotropy 
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and negativities in various effective moduli can give rise to many types of novel wave 

propagation behaviors that are unseen in normal solids (Lai et al., 2011).  

Within the scope of this chapter, all the EMTs mentioned above are limited to linear 

elastodynamics and do not consider the micro-structure introduced local rotation (Milton & 

Willis, 2007). 

2. Scattering properies of elastic metamaterials  

In order to illustrate EMTs and symmetry properties of elastic metamaterials, we start 

with a simple case where the resonant scatterer in a building block is homogeneous. More 

complicated scatterers will be discussed in Section 5. The elastic metamaterial considered 

here is composed of cylindrical inclusions of radius sr  with mass density sρ , shear 

modulus sµ , and bulk modulus sκ , embedded in an isotropic matrix, whose material 

parameters are denoted by ( 0ρ , 0µ , 0κ ). In two dimensions, the bulk modulus, κ, is 

related to the shear modulus through the relation κ λ µ= + , where λ  represents the 

Lamé constant (Royer & Dieulesaint, 1999). Due to the translational symmetry along the 

cylinder’s axis, denoted as z-axis, the elastic modes in the system can be decoupled into a 

scalar part, which is also called shear horizontal mode with vibrations along the z-axis, 

and a vector part, i.e.,xy-mode with vibrations in the x-y plane. xy-mode is a mixed 

polarization of quasi-longitudinal and quasi-shear vertical modes. Since the shear 

horizontal mode satisfies the scalar wave equation with the same mathematical structure 

as those for acoustic (Krokhin et al., 2003) and 2D EM cases, this part is skipped. Rather, 

the focus is on the more complicated case of the xy-mode whose wave equation is given 

by:  

 ( )
( )

( ) ( )( ) ( )
( )

( ) ( )
2

2
,i

i
i i

u r u r
r r u r r r u r

x xt
ρ µ µ λ

 ∂ ∂ ∂
= ∇ ⋅ ∇ + ∇ ⋅ +  ∇ ⋅    ∂ ∂∂  

      
 (1) 

where u


 is the displacement field. In general, u


can be decoupled into a longitudinal part 

and a transverse part, i.e. ˆ( )l t zu eφ φ= ∇ + ∇ ×


, where lφ  and tφ  are the longitudinal and 

transverse gauge potentials, respectively.  

2.1 Single-scattering, the scattering coefficients 

If there is only one scatterer, the solutions to lφ  and tφ  can be expanded by using Bessel and 

Hankel functions. The wave incident on a single scatterer, p , is:  

 ( )0 0ˆ( ) ( ) ( )  ,p pim imp pinc
p p m l p m t ptmlm

m

u r a J k r e a zJ k r e
θ θ   = ∇ + ∇ ×       

 (2) 

and the wave scattered by the same scatterer is 

 ( )(1) (1)
0 0ˆ( ) ( ) ( )p pim imp psca

p p m l p m t ptmlm
m

u r b H k r e b zH k r e
θ θ   = ∇ + ∇ ×       

, (3) 
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where ( )mJ x and (1)( )mH x  are Bessel functions and Hankel functions of the first kind, 

respectively.  

0 0 0 0( )lk ω ρ κ µ= +  and 0 0 0 tk ω ρ µ= represent the longitudinal and transverse wave 

vectors in the matrix, respectively. ω is the angular frequency. ( ),p p pr r θ=


 are the polar 

coordinates originating at the center of the scatterer. The longitudinal and transverse waves 

in the matrix are coupled by the scatterings of the scatterers, inside which the displacement 

is given by: 

 ( )ˆ( ) ( ) ( )p pim imp p
p p m ls p m ts ptmlm

m

u r c J k r e c zJ k r e
θ θ   = ∇ + ∇ ×       

, (4) 

where ( )ls s s sk ω ρ κ µ= +  and  ts s sk ω ρ µ=  are the longitudinal and transverse wave 

vectors inside the scatterer, respectively. The coefficients of those Bessel and Hankel 

functions can be determined by considering the elastic boundary conditions which are the 

continuities of the radial and tangential component of the displacement field, i.e., ru  and 

uθ , and the continuities of the stresses, rrσ  and rθσ , at the interface. These continuities on 

the surface of a cylinder relate p
lmb  and p

tmb  to p
lma  and p

tma  through: 

 
,

pp
m mm m

l t m

b t aα αβ β
β

′ ′
′=

=   ( , ) ,l tα =  (5) 

where mm m mmt Dαβ
αβ δ′ ′= . mDαβ  are elastic Mie-like scattering coefficients for isotropic 

scatterers and are functions of lsk , tsk , 0lk , 0tk  and sr . The explicit expressions for mDαβ  can 

be found in (Wu et al., 2007).  

2.2 Periodic structures and multiple-scattering 

For a collection of scatterers, the MST takes full account of the multiple scatterings between 

any two scatterers (Liu et al., 2000a; Mei et al., 2003). The wave incident on the scatterer p is 

contributed by two parts: one is the external incident waves from outside the system, and 

the other part is the scattered waves coming from all the other scatterers inside the system. 

Thus, the total incident waves on the scatterer p are expressed as:  

 

( )
( )

0 0
0 0

'' ''(1) (1)
0 0'' '' ''''

''

ˆ( ) ( ) ( )

ˆ                ( ) ( )  ,

θ θ

θ θ

≠

   = ∇ + ∇ ×      

   + ∇ + ∇ ×      





  p p

q q

im imp pinc
p p m l p m t ptmlm

m

im imq q
l q t qm tm mlm

q p m

u r a J k r e a zJ k r e

b H k r e b zH k r e
 (6) 

where ( , )q qr θ  denote qr


 in the polar coordinates originating at the center of scatterer q. 

Here qr


 and pr


 refer to the same spatial point measured from the positions of scatterers q 

and p, respectively. For simplicity, the center of scatterer p is chosen as the origin and the 

position of scatterer q is denoted by qp qp qpR = (R ,Θ )


. Thus, q p qpr r R= −
 

. The relation 

between pr


, qr


 and qpR


 is depicted in Fig. 1.  
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Fig. 1. The spacial relation of pr


, qr


 and qpR


. 

With the help of Graf’s addition theorem (Abramowitz & Stegun, 1972), the Hankel 

functions depicting the scattered wave coming from the scatterer q can be changed into 

Bessel functions describing the wave incident on the scatterer p, which is:  

 
''(1)

0 '' 0''( ) ( )q pim im
q mm m pm

m

H k r e g J k r e
θ θα

α α= ( , ) ,l tα =  (7) 

where  

 
( '' )(1)

'' 0''( ) qpi m m
mm qpm mg H k R e

Θα
α

−
−= ( , )l tα =  (8) 

Substituting Eqs. (7) and (8) into (6), we obtain:  

 

θ

θ

≠

≠

 
  = + ∇    

 
 

  + + ∇ ×    
 

 

 

  0
'' 0''

''

0
'' 0''

''

( ) ( )

ˆ             ( )  

p

p

imp qinc l
p p mm m l plm lm

m q p m

imp q t
mm m t ptm tm

m q p m

u r a b g J k r e

a b g zJ k r e

 (9) 

Eq. (2) together with Eqs. (5) and (9) leads to the following self-consistent equation:  

 
0

' ' '' ''
, ''

p qp
m mm m m m m

l t m q p m

b t a g bβ
α αβ β β

β
′

′= ≠

 
 = +
 
 

    (10) 

This set of self-consistent equations can be written into the standard form of linear equations 

Ax B= , and the multiple-scattering problem is numerically solved.  

If the scatterers are arranged in a periodic array, the Bloch theorem, 
qpiK Rq p

m '' m ''b b eα α

⋅
=

 

( )l, tα = , can be applied, where K


 is the Bloch wave vector. For an 

eigenvalue problem, the external incident field is dropped off so that Eq. (10) is converted 

into: 

q 

rq 

rp 

Rqp 

qp
Θp

θ

q
θ

p 
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 β
αβ β

β

δ
⋅

′
′= ≠


− =  

   
 

''
,

0 qiK R p
mm mm mm m

l t m m q p

t g e b  (11) 

Eq. (11) has nontrivial solutions if and only if,  

 ( ) 'det , ' 0 ,mm mm
m

t S m mαβ β δ′
′

− − =  (12) 

where 

( ) ', ' qiK R
m m

q p

S m m g eββ
⋅

≠

− = 
 

 

 represents lattice sums. The solution of Eq. (12) offers the dependence of frequency, ω , on 

the Block wave vector, K


, which is known as the dispersion relation. To solve Eq. (12) for 

dispersion relations, one needs to evaluate the lattice sums first, which can be accomplished 

through several techniques (Chin et al., 1994; Mei et al., 2003). The expression of 

( ), 'S m mβ −  is given by (Wu and Z. Zhang, 2009):  

 

1
0 (1)1

0 ,012 2
1 0 00

*

4 ( ) 2
( , ) - ( )

( ) ( )

( , ) ( , )

h

n
inn h

n
n h h h

i k J Q a i
S n e H k a

J k a k aQ k Q

S n S n

β ϕ
β

β ββ

β δ
Ω π

β β

+
+

+

 
= +  −  

− = −


, ( )0n ≥  (13) 

where a  denotes the lattice constant, Ω is the volume of the unit cell and h h(Q , )ϕ  stands 

for the vector h hQ K K= +
  

 in polar coordinates, and hK


 is the reciprocal lattice vector.  

3. Symmetry properties of elastic metamaterials  

Since the MST is capable of producing accurate dispersion relations for all frequencies, it is a 

good approach in the study of the symmetry properties of an elastic metamaterial. The 

elastic metamaterial is isotropic if its dispersion relation, ( )Kω


,does not depend on the 

direction of K


. In the framework of MST, the dispersion relation can be calculated 

numerically by solving Eq. (12). In the long wavelength limit, both Ka  and 0k a are all much 

smaller than unity and appropriate approximations can be made in the Bessel and Hankel 

functions in the lattice sum ( , ' )β −S m m  and the scattering matrix 'mmtαβ . This simplifies the 

secular equation and benefits the derivation of analytic expression of EMT.  

Taking ( )( ) 2 !n n
nJ x x n≅ , ( )(1)

0 2 lnH x x π≅  and ( ) ( ) ( )(1) n n
nH x 2 n 1 ! xπ≅ − −  for 0l sx k r= , 

0t sk r , 0lk a , 0tk a  and Ka in Eq. (12), it is easy to find that the leading terms are those with 

2m ≤ , where m corresponds to the order of Bessel and Hankel functions and is called the 

angular quantum number. Thus, we only need to consider the terms with 0 4n≤ ≤  in  

Eq. (13), in which the summation 

2 2
1 0( ) ( )hin

n h h h
h

J Q a e Q k Qϕ
β+

 −   

www.intechopen.com



 
Metamaterial 

 

150 

can be separated into two terms: the first is 0hK =


 or hQ K≅
 

, the second is the sum of all 

other terms with 0hK ≠


 or h hQ K≅
 

. Then, the lattice sum takes the following expression: 

( )

( )

11
0 1

2 2 1 2 2
( 0)0 0 00

*

2 1 ! ( )4
( , ) , (0 4)

( ) ( )

( , ) ( , ) ,

KhK

h

nn n
inin n h

n n
h K h h

k n J K ai K
S n e e n

k k K K k Kk a

S n S n

β φφ

β β ββ

β
Ω

β β

++
−− +

+
≠

 
+ ≅ + ≤ ≤ − − 

 

− = −


 (14) 

where ( ),h KhK φ  denotes the polar coordinates of hK


, the reciprocal lattice vector of the 

lattice. The summation of all nonzero reciprocal lattice vectors in the second term in the 

bracket reveals the dependence of lattice sum on the lattice structure, which influences the 

symmetry properties of the dispersion relations.  

3.1 Isotropic dispersions  

For a 2D hexagonal lattice with a lattice constant a , the reciprocal lattice follows: 

 
4 1 3ˆ ˆ ˆ ;  ,

2 23
h i j i jK h i h i j h h

a

π
Ζ

  
= + + ∈      


 (15) 

Here, î  and ĵ  represent the unit vectors along the x- and y-axes in the reciprocal space. 

When 0n ≠ , due to the symmetry of a hexagonal lattice, the summation in the second term 

of Eq. (14) is zero, which can be proved in the following way. For an arbitrarily chosen 

reciprocal lattice vector, 1 1( , )h KhK φ , there always exist five other reciprocal lattice vectors at 

h1 Kh1(K , N / 3)φ π+ , N 1,2,3,4,5=  such that 
5 inN 3

N 0
e 0π−

=
= . Thus, the summation in Eq. 

(14) vanishes after summing over all the non-zero hK


 and only the first term of Eq.  

(14) survives. When 0n = , the second term in Eq. (14) no longer sums to zero as 1Khine φ− = . 

However, this term can be ignored in the long wavelength limit because compared to the 

first term in Eq. (14) which is on the order of 2ω− , it is on the order of 0ω . Thus, Eq. (14) is 

further reduced to: 

 ( )
φ

β β

β
+

−≅ ≤ ≤
−

1

2 2 2
0 0

8
( , ) ,  0 4

3
K

n n
in

n

i K
S n e n

a k k K
 (16) 

Substituting Eq. (16) into Eq.(12), we find the following two roots: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2tri ll ll tri ll ll ll

1 1 1 2 2 2 1 1 3 2 0K F D F D  and K F D F D ,D  ,= =      (17) 

with 

( ) ( ) 2 2
1 0 0 0

1 1 2

16 3
,

3

ll
ll iD a

F D
a

κ µ ω ρ+ −
= −
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 ( )
( )( )

( )

ll 2 2
2 0 0 0 0 0 0

ll
2 2

ll 2 2
0 2 0 0 0 0 0

3
4D 2 i a

2F D  ,
3

4D i a
2

κ µ κ µ ω µ ρ

µ κ κ µ ω µ ρ

+ + +
= −

 
+ −  

 





 (18) 

( ) ( )( )

( ) ( ) ( )

2 2 2 2
0 0 0 0 2 0 0 0 0 0 0

3 2 0
2 2 2 2 2

0 0 0 2 0 0 0 0 2 0 0 0 0 0

3 3
4 4 2

2 2
( , )  ,

3 3
32 4

2 2

ll ll

ll ll

ll ll ll

D i a D i a

F D D

D D i a D i a

κ µ ω ρ κ µ κ µ ω µ ρ

κ µ µ κ µ ω ρ κ κ µ ω µ ρ

  
+ + + + +    

  = −
  

+ + − + −      

 
 

  
 

where  ll
mD  is the Mie-like scattering coefficient ll

mD  after taking the long  

wavelength approximation. It is obviously seen that the roots ( )
2tri

1K  and ( )
2tri

2K  given in 

Eq. (17) do not depend on the direction of K


, i.e., Kφ . This implies that all the dispersion 

relation for an elastic metamaterial with a hexagonal structure are isotropic near the Γ point 

in the long wavelength limit. 

3.2 Anisotropic dispersions  

For the case of a square lattice, the lattice sum is almost the same as that of the hexagonal 

lattice case except for the 0n ≠  case. The reciprocal lattice vector of a square lattice is 

expressed by: 

 ( )2 ˆ ˆ ;  ,h i j i jK h i h j h h
a

π
Ζ= + ∈


 (19) 

For an arbitrarily chosen reciprocal lattice vector 1 1( , )h KhK φ , there always exist the other 

three at 

1 1( , / 2)h KhK Nφ π+ , 1,2,3N = , which makes the summation 
3 inN 2

N 0
e π−

=   

cancel to zero when 1 3n≤ ≤ , and equals to 4 when 4n =  respectively. This indicates that 

the second term of Eq. (14) only vanishes when 1 3n≤ ≤ . Thus, in the long wavelength 

limit, the lattice sum can be written, as  

 
( )

1

2 2 2
0 0

4
( , ) K

n n
in

n

i K
S n e

a k k K

φ

β β

β
+

−≅
−

( )0 3n≤ ≤  (20) 

for 0 3n≤ ≤ , and 

 
( )

4
4 4

2 4 2 2
0 0

4
( ,4) K Ki iiK

S e e
a k k K

φ φ
β

β β

β γ −
 
 ≅ +  −
 

 (21) 

for 4n = , where 
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( )

β
β

β

π
γ

π
π= =

 
+ ⋅ ⋅  =
  

+ − +    

 
4arctan( / )2 2

5 5

6 4
2 2 2 2 2 20 10

0

2
16 2 5!

2
2 ( ) ( )

j i

j i

i h h
N N i j

h h
i j i j

J h h e
i

a k h h k h h
a

 (22) 

Due to the non-zero βγ  term in Eq. (22), the determinant in Eq. (12) is Kφ -dependent, which 

gives rise to anisotropic dispersion relations. The explicit expressions for 1
squK  and 2

squK  are 

very complicated and will be futher discussed in the next Section. 

4. Effective medium theory for elastic metamaterials  

The MST method is capable of producing the dispersion relations of an elastic metamaterial 
so that the effective wave speed for elastic waves in the metamaterial can be obtained 
accordingly. However, it is not able to provide an effective description for each parameters. 
Knowing the effective parameters will provide a clear theoretical explanation of the unusual 
phenomenon of a metamaterial and greatly benefit the design of new metamaterials. This 
Section is devoted to the derivation of EMTs. 

4.1 Isotropic media: Coherent potential approximation approach  

If the elastic metamaterial is isotropic, i.e., cylinders arranged in a hexogonal lattice, the 

EMT can be derived by considering the scattering of elastic waves by a coated cylinder 

embedded in the effective medium with effective parameters ( eκ , eµ , eρ ), which is shown in 

Figure 2 (Wu et al., 2007). The coated cylinder consists of the scatterer surrounded by a layer 

of the matrix. The inner and outer radii, which are denoted by sr  and 0r , respectively, 

satisfy 2 2
0/sr r p= , where p  is the filling ratio of the scatterer. The effective parameters eκ , 

eµ  and eρ  are determined by the condition that the total scattering of the coated cylinder 

vanishes which is so-called CPA. This condition together with the boundary conditions on 

the surface of the coated cylinder at = 0r r , provides another two relations: 
= +( ) ( )ll lt

lm m lm m tmb D e a D e a  and = +( ) ( )tl tt
tm m lm m tmb D e a D e a , where 

αβ ( )mD e α β =( , , )l t  can be 

obtained by replacing λs  
ρ s  

µ s , lsk
, tsk  and sr  in 

αβ
mD

 
α β =( , , )l t

 mentioned in Section 2.1 

with λe , 
ρ e , 

µ e , lek
, tek  and 0r , respectively, where lek ( tek ) are the longitudinal 

(transverse) wave vectors in the effective medium. These relations together with the 

relations between α mb and α ma  ( α = ,l t ) shown in Section 2.1 give the following effective 

medium condition:  

 

Fig. 2. Micro-sctructure of the effective medium. (Wu et al.,2007) 

κe, μe, ρe 

κ0, μ0, ρ0 

r0 
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 ( )m mD e Dαβ αβ= ( , , )l tα β =  (23)   

In the long wavelength limit, where 0 0 1lk r << , 0 0 1tk r << , 0 1lek r <<  and 0 1tek r << , Eq. 

(23)can be simplified into the following effective medium equations for the elastic 
metamaterial:  

 0 0
2 2

0 0 0

( ) 4

( )

ll
e

e l

D

i r k

κ κ

µ κ π

−
=

+


, (24) 

 0 1
2 2

0 0 0

( ) 8 ll
e

l

D

i r k

ρ ρ

ρ π

−
= −


, (25) 

 0 0 2
2 2

0 0 0 0 0 0

( ) 4

( ( 2 ) )

ll
e

e l

D

i r k

µ µ µ

κ µ κ µ µ π

−
=

+ +


 (26) 

Obviously, eκ , eρ  and eµ  are independently determined by ll
mD  of the embedded 

cylinders alone with angular quantum numbers m = 0, 1 and 2.  

The dispersion relation can be reproduced from effective medium parameters. Comparing 

Eqs. (24)-(26) to Eqs. (17) and (18), it is easy to show that e eρ µ  coincides with ( )
2

1
triK ω  

and ( )e e eρ κ µ+  is identical to ( )
2tri

2K ω . The equivalence provides a strong evidence that 

the dispersion relation is isotropic for a hexagonal lattice and its effective medium 

properties can be evaluated from the EMT derived from CPA.  

Eqs. (24)-(26) require the wavelengths in both the host and the effective medium to be much 

larger than the size of the unit cell, but they do not impose any restriction on the 

wavelengths inside the scatterer. If the condition of 1ls sk r << , 1ts sk r <<  is further 

considered, the quasi-static limit is reached and Eqs. (24)-(26) becomes: 

 0 0

0 0

( ) ( )
,

( ) ( )
e s

e s

p
κ κ κ κ

µ κ µ κ

− −
=

+ +
 (27) 

 0 0( ) ( ) ,e spρ ρ ρ ρ− = −  (28) 

 
µ µ µ µ

κ µ κ µ µ κ µ κ µ µ

− −
=

+ + + +
0 0

0 0 0 0 0 0 0 0

( ) ( )
 

( ( 2 ) ) ( ( 2 ) )
e s

e s

p  (29) 

The 3D version was reported by Berryman decades ago (Berryman, 1980). It should be 

pointed out that elastic EMT cannot recover the acoustic EMT by setting all the shear moduli 

to be zero, because of the different boundary conditions of elastic and acoustic waves.  

Figure 3 shows the equifrequency surface (EFS) of a hexagonal array of silicone rubber 

cylinders with radii of 0.2 a  embedded in an epoxy host. An EFS is a collection of all states 

in the K


 space that have the same frequency. The metamaterial is isotropic if its EFS is a 

circle. Here the dimensionless frequency, 0( ) (2 )tf a cω π= , is used, where 0tc  is the 
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transverse wave speed inside the host. The silicone rubber’s material parameters are 
3 31.3 10 /kg mρ = × , 5 26 10 /N mλ = ×  and 4 24 10 /N mµ = × , which means the wave speeds 

inside the rubber are: 22.87 m/s for longitudinal waves and 5.54 m/s for transverse waves. The 

corresponding parameters in the epoxy host are 3 31.18 10 /kg mρ = × , 9 24.43 10 /N mλ = ×  

and 9 21.59 10 /N mµ = × , which indicates the wave speeds are 2539.52m /s  ( 1160.80m /s ) 

for longitudinal (transverse) waves (Liu et al., 2000b). Apparently, slow wave speeds imply 

that wavelengths inside the silicone rubber cylinder may be comparable to or even much 

smaller than the size of the cylinder at low frequencies. Thus, Mie-like resonances may occur, 

which serve as the built-in resonances required for metamaterials. Here the frequency f  is 

chosen to be 0.03 where both 1.9ls sk r   and 7.9ts sk r   are larger than unity indicating it is not 

in the quasi-static limit. Figure 3(a) shows the corresponding EFS, which exhibits two circular 

rings, with the inner one denoting the quasi-longitudinal branch and the outer one 

representing the quasi-transverse branch. The corresponding Ka  as a function of Kφ  is plotted 

in Fig. 3(b) by open circles. These circles form two horizontal lines, indicating dispersions are 

isotropic, i.e., effective wave speeds do not vary with directions. Also plotted in Fig. 3(b) are 

the results of EMT calculated from Eq. (17) or Eqs. (24)-(26), depicted by two solid lines. The 

complete overlaps between solid lines and circles give a numerical support to the correctness 

of the EMT in the long wavelength limit. 
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Fig. 3. (a) The equifrequency surface for a hexagonal array. (b) . Ka . as a function of Kφ .  

(Wu & Z. Zhang, 2009) 

4.2 Anisotropic media: Christoffel’s equation  

If the elastic metamaterial is anisotropic, such as cylindrical scatterers arranged in a square 

lattice, the CPA fails as it only deals with isotropic cases. In this case, the result of MST, i.e., 

Eq. (14), can give an anisotropic EMT in the form of Christoffel’s equation.  

Taking the long wavelength limit approximation on Eq. (12) and plug in Eqs. (20) and (22), 

the expressions for 1
squK  and 2

squK  can be written as the solutions of the following 

Christoffel’s equation for an anisotropic medium (Royer & Dieulesaint, 1999) 

( ) ( )

( ) ( )

22 1 2 1 1
11 44 12 44

21 2 1 2 1
12 44 44 11

cos sin cos sin
det 0

cos sin cos sin

K e K e K K e

K K e K e K e

C C K C C

C C C C K

φ ρ φ ρ ω φ φ ρ

φ φ ρ φ ρ φ ρ ω

− − −

− − −

+ − +
=

+ + −
 (30) 
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where Kφ  denotes the angle between the Bloch wave vector K


 and the x-axis, and eρ is the 

effective mass density derived from CPA. It is convenient to express the three effective 

moduli in Eq. (32) in terms of the two effective parameters eκ  and eµ  shown in Eqs. (26) 

and (28) for isotropic media,  

 11 1 ,e eC κ µ ∆= + +  (31) 

 12 1 ,e eC κ µ ∆= − −  (32) 

 44 2 ,eC µ ∆= +  (33) 

where ( ) ( )2
1,2 0 0 08e e∆ δ µ µ δ µ µ ρ = − −  ,with −  and +  for 1∆  and 2∆ , respectively. 

Here ( )4 4 2 2
0 0l l t ti k k aδ γ γ ω= −  and ,l tγ  is given by Eq.(22). It is clear that 1∆  and 2∆  are 

responsible for the anisotropy. In the long wavelength limit, δ  has the following 

expression: 

 
( )

( )
πκ ρ

δ
µ κ µπ = =

 
+ 

 = −
+  

+ 
 

 
4arctan( / )2 2

5
0 0

5 5
2 20 0 0 0 1

2
1920

( )

j i

j i

i h h
N N i j

h h
i j

J h h e

h h

 (34) 

Eq. (30) gives: 

 ( )( ) ( )( )
2

2 22 2
11 44 12 44 11 44

1

1
sin 2 cos 2 ,

2
K K

e

C C C C C C
K

ω
φ φ

ρ

   = + − + + −   
  

 (35) 

 ( )( ) ( )( )
ω

φ φ
ρ

   = + + + + −   
  

2
2 22 2

11 44 12 44 11 44
2

1
sin 2 cos 2

2
K K

e

C C C C C C
K

 (36) 

Since the origin of anisotropy comes from the term 0βγ ≠ , the isotropy is expected to 

recover when 0βγ =  (or 0δ = ). In this case, 11 12 442C C C= +  (Royer & Dieulesaint, 1999) 

and Eqs. (35) and (36) can be reduced to 2
1( / ) /e eKω µ ρ=  and 2

2( / ) ( ) /e e eKω κ µ ρ= + , 

which are the square of two known wave speeds. For the case of anisotropic dispersions, 

Eqs. (35) and (36) give the dispersion relations for the quasi-transverse and quasi-

longitudinal bands (Royer & Dieulesaint, 1999). Eq. (35) shows that 2
1( / )Kω  oscillates 

between two extrema, ( )2e eµ ∆ ρ+  and ( )1e eµ ∆ ρ+ at 0Kφ = and 4π , respectively. 

Similarly, 2
2( / )Kω  oscillates between its two extrema, ( )1e e eκ µ ∆ ρ+ +  and 

( )2e e eκ µ ∆ ρ+ + . If both 1∆  and 2∆  are much smaller than eµ  and e eκ µ+ , and the 

amplitude of the oscillation, 1 2∆ ∆− , is small, the angle averaged dispersions, 2
1( / )Kω  

and 2
2( / )Kω , can be well approximated by e eµ ρ  and ( )e e eκ µ ρ+ , which are the results 

of isotropic EMT given by Eqs. (24)-(26). 

Figure 4(a) is the same as Figure 3(a), but the rubber cylinders are arranged in a square 

array. The inner ring represents the quasi-longitudinal branch with distinct anisotropy and 

the outer one is the quasi-transverse branch with weak anisotropy. The corresponding Ka  
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as a function of Kφ is plotted in Fig. 4(b) in open circles, which form two oscillating curves 

induced by the βγ  term in Eq. (21). In this case, 1 0.0158∆ =  and 2 0.0179∆ = −  (in the unit of 

0µ ), which are very small compared to eκ  (2.241) and eµ  (0.733). 2
1( / )Kω  and 2

2( / )Kω  

should reach their maximum and minimum at 0Kφ = ,respectively. This implies 1K  ( 2K ) is 

at its minimum (maximum). Also, 1K  arrives at its maximum at / 4Kφ π= , where 2K  takes 

its minimal value. These are clearly illustrated Fig. 4(b). If we use the ratio 

( )max min / ,( 1,2)i i i id K K K i= − =  to characterize the amount of anisotropy (Ni and Cheng, 

2005), where max
iK , min

iK  and iK  are the maximum, minimum and average of iK , the 

corresponding quantities are 1 5.39%d =  and 1 0.1603K a =  for the transverse waves and 

2 1.20%d =  and 2 0.0793K a =  for the longitudinal waves. The averaged values of iK a  

coincide with the results calculated from the isotropic effective medium, i.e., Eq. (24)-(26), 

which give 0.1599tK a =  and 0.0794lK a =  as shown in Fig. 4 (b) in two horizontal solid 

lines. Fig. 4(b) demonstrates that the isotropic EMT can well predict the angle-averaged 

value of iK a  in the case of anisotropy.  
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Fig. 4. The same as Figure 3 but the lattice is a square lattice. (Wu & Z. Zhang, 2009) 

5. Design of elastic metamaterials  

The purpose of deriving EMTs is to reveal the relationship between the resonances of the 

microstructures and the effective parameters and to provide a guide in the design of new 

metamaterials with novel properties. Even for isotropic metamaterials, the negativities in 

three effective parameters as well as their combinations can give rise to various interesting 

properties unseen in natural materials. For instance, since the effective phase velocities in 2D 

elastic metamaterials are 1le e e ec κ µ ρ= +  and 1te e ec µ ρ=  for longitudinal and 

transverse waves, respectively, a single negative eρ  in a frequency regime leads to 

imaginary lec  and tec , which implies the existence of a band gap for both longitudinal and  

 

 
0e eκ µ+ >

0eµ >  

0e eκ µ+ >

0eµ <  

0e eκ µ+ <

0eµ >  

0e eκ µ+ <

0eµ <  

0eρ >  0ln > ; 0tn >  0ln > ; t:gap 0tn > ; l:gap l&t: gap 

0eρ <  l&t: gap 0tn < ; l:gap 0ln < ; t:gap 0ln < ; 0tn <  

Table 1. Various wave propagation properties. Positive (negative) n indicates positive 
(negative) propagating bands. l and t represent longitudinal and transverse waves, 
respectively. 
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transverse waves (Liu et al., 2000b). On the other hand, a simultaneous negative eρ  and eµ  

(or e eκ µ+ ) induces negative refractive index for the transverse (longitudinal) waves. Table 

1 lists eight possible types of wave propagation in 2D elastic metamaterials with different 

combinations of signs in e eκ µ+ , eρ  and eµ . Like acoustic metamaterials (Li & Chan, 2004), 

the effective bulk modulus and shear modulus eκ  and eµ  determined according to Eqs. 

(24)-(26) do not satisfy the well-known bounds (Hashin & Shtrikman, 1963; Torquato, 1991) 

on the effective elastic moduli as these bounds are derived in the quasi-static limit. For 

anisotropic metamaterials, there exists at least one more effective elastic modulus which can 

also turn negative. Thus, many more interesting novel wave transport behaviors would be 

expected. Examples will be shown in a later section. 

5.1 Isotropic elastic metamaterials  

The simplest isotropic elastic metamaterial which is comprised of silicone rubber cylinders 

embedded in an epoxy host was exhibited in the last section. If the rubber cylinders’ radii 

are chosen to be 0.3 a , it has been shown that various types of resonances were produced 

(Wu et al., 2007). The displacement fields for three typical resonances are plotted in Fig. 5, 

which clearly shows in (a), (b) and (c) the dipolar, quadrupolar and monopolar resonances. 

These resonances are linked to the effective medium parameters in the following manner 

implied by the EMT. The negative eρ  arises from a dipolar resonance ( 1
llD ), whereas  

the quadrupolar ( 2
llD ) and monopolar ( 0

llD ) resonances give rise to negative eµ  and 

negative eκ , respectively. We can enlarge the negative regions of effective medium 

parameters by enhancing these resonances. For instance, the dipolar resonance shown in 

Fig. 5(a) exhibits the collective motion of the core part of rubber. This mode can be regarded 

as a simple “mass-spring” harmonic oscillator, with the central part serving as a “mass” and 

the boundary layer of the rubber serving as “spring”. Replacing the inner region of rubber 

with another heavier cylinder, e.g. lead, will enhance the field oscillation of the silicone 

rubber, which, in turn, will widen the resonant region of eρ . This design was first proposed 

by Liu et al and was named as “locally resonant sonic materials” (Liu et al., 2000b), which 

were comprised of a cubic array of rubber-coated lead spheres embedded in epoxy. A large 

low-frequency band gap for both longitudinal and transverse waves, induced by negative 

mass 

 

Fig. 5. Displacement fields for different resonances. The arrows represent the direction and 
the brightness denotes the amplitude, with white indicates larger. (Wu et al., 2007) 
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density, was found. Figure 5(c) exhibits the field pattern of a monopolar resonance, where 

the shape of the silicone rubber cylinder remains as a circle, with its cross-sectional area 

oscillating in time. This suggests that by making the inner core more easily compressed, we 

would enhance the monopolar resonance. This notion was supported by using air bubbles in 

water to achieve a large frequency region of negative bulk modulus (Ding et al., 2007). 

Figure 5(b) shows the relative motion of the rubber. This suggests that by making the core 

areas easier to deform, we would enhance the quadrupolar resonance so as to enlarge the 

negative region for shear modulus. An intuitive design is to make the rubber cylinder 

hollow. A metamaterial based on this design is made of rubber-coated air cylinders 

embedded in epoxy. The material parameters of air are given by 31.23 /kg mρ = and 
10 21.42 10 /N mλ = × . The effective medium parameters are evaluated by a generalized 

EMT, which uses the standard transfer-matrix method to obtain the quantities ll
mD  if the 

scatterers are layered cylinders.  
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Fig. 6. Band structure and effective medium parameters for an triangular array of hollow 
rubber cylinders embedded in epoxy. (Wu et al., 2007) 

Figure 6(a) shows the band structure of hollow rubber cylinders embedded in epoxy in a 

hexagonal lattice. The inner and outer radii of hollow rubber cylinders are given as 

0.87air sr r=  and 0.3sr a= , which are carefully chosen so that a negative band for shear wave 

can be realized. The accurate MST results are plotted in open circles and the EMT predictions 

are featured by curves, with solid representing the longitudinal branch and dashed 

corresponding to the transverse branch. In the region of 0.12240 0.12253f< < , negative-n 

bands of both longitudinal and transverse waves are found, which implies that eρ , e eκ µ+  

and eµ  are all negative. These negative values are induced only by the resonances of eρ  and 

eµ  as shown in Fig. 6(b), in which the individual effective medium parameters are plotted. In 

another region of 0.12340 0.12356f< < , negative-n band purely for longitudinal waves is 

found, which implies that eρ  and e eκ µ+  are both negative. These negative values arise from 

resonances of both eρ  and eκ . Figure 6(a) demonstrates that the isotropic EMT is still a good 

approximation even for complex scatterers with layered structures. The small discrepancies 

between the band-structure calculation and the effective medium prediction for the 

longitudinal branches shown in Fig. 6(a) is due to the less accurate approximation of the 

Hankel functions when the values of 0 0lk r  and 0 0tk r  are not much less than 1.  
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The structure of the hollow silicone rubber cylinder in epoxy does provide a frequency 

region of negative band for shear waves, but the bandwidth is too small to be of any 

practical use. Enlarging the quadrupolar resonance is a challenge task that has yet to be 

accomplished. Since replacing the inner part of the rubber by an easier deformed material is 

the direction, another common material, water, becomes a candidate. The material 

parameters of water are: 3 31.0 10 kg mρ = × and 9 22.22 10 N mλ = × . Figure 7 shows the 

effective medium parameters for the metamaterial with air core being replaced by water, 

which exhibits an improvement in the absolute bandwidth for negative shear modulus. 

However, the bandwidth to mid-frequency ratio (0.00145) is comparable to the previous air 

core case (0.00183). Moreover, the negative shear band disappears as the region for negative 

mass density does not overlap with that for negative shear modulus. This example 

demonstrates that simple replacement of air by water does not improve the negative shear 

band. Nevertheless, the replacement does enhance the dipolar resonance greatly in the very 

low frequency regime (which is not plotted here). This fact suggests that water core is a 

better candidate than air in the context of realizing negative mass density. The difficulty lies 

in increasing the negative region for shear modulus and adjusting it to overlap with that for 

the negative mass. This requires optimizing the inner and outer radii of the rubber cylinder. 

However, it can be shown that only altering the geometry parameters will not make a 

significant change.  
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Fig. 7. Effective medium parameters for rubber-coated water cylinders embedded in epoxy 
in a hexogonal lattice.  

Both Figs. 6(b) and 7 show that the µ  resonance is very sharp, indicating that the energy is 

confined in the cylinders locally. To broaden the resonance, one strategy that could be 

adopted is to make the energy “spread” out of the cylinders so that resonances in different 

cylinders become “coupled” to each other. This can be realized by reducing the impedance 

mismatch between the rubber and the host.  

Figure 8 shows the effective medium parameters for a rubber-coated water cylinder 

embedded in a foam host in a hexagonal lattice. The foam is polyethylene foam (HD115) 

whose material parameters are 3115 /kg mρ = , 6 26.0 10 /N mλ = ×  and 6 23.0 10 /N mµ = ×  

(Zhou & Hu, 2009). The light foam makes the host more matched to the rubber than epoxy 
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which will benefit the enhancement of the resonance for shear modulus. It also makes the 

water-coated rubber core relatively heavier so that the resonance for mass density is also 

enhanced. By adjusting the geometric parameters to be 0.24a  and 0.32a  for inner and outer 

radii, respectively, a large frequency region, marked by “A” and “B” in Fig. 8, for both 

negative shear modulus and negative mass density is obtained. The bandwidth to mid-

frequency ratio reaches 0.258, which is two orders of magnitude greater than the rubber-

coated air cylinders in epoxy. The corresponding band structures as well as the transmission 

coefficeints of a slab numerically calcuated by MST are plotted in Fig. 9(a), which clearly 

shows a large negative band for transverse waves denoted by red dots and a narrow 

negative band for longitudinal waves denoted by blue dots. The polarization of these 

negative bands is determined through the transmission as shown in Fig. 9(b). 
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Fig. 8. Effective medium parameters for rubber-coated water cylinders embedded in foam in 
a hexogonal lattice.  
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Fig. 9. (a) The dispersion along KΓ  direction for the same system as Fig. 8.  
(b) Transmission coefficients for longtidinal (solid blue) wave incident and transverse 
(dashed red) wave incident on a slab of witdth 6a and length 50a. The incident wave is along 

KΓ  direction. (Wu et al., 2011) 
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5.2 Anisotropic elastic metamaterials and boundary effective medium theory 

The rubber-coated water cylinder embedded in foam provides the possiblity of realizing 
double negative shear bands. The isotropic scatterers and the hexagonal lattice structure 
result in a simple isotropic effective medium description of the metamaterial, which makes 
the design of the elastic metamaterial easier. If there is no restriction on the symmetery 
properties of the scatterer, there would be much more choices at the cost of many more 
complicated microstructures of the scatterers.  

 

Fig. 10. A schematic figure of the physical model and the practical design. (Lai et al., 2011) 

Since Fig. 5(b) exhibits a four-fold symmetry of a quadrupolar resonance, inserting heavier 

objects into the rubber in a way that is in accordance with the field pattern would help 

enhance the resonance. Figure 10(a) is a schematic figure of the physical model of the unit 

cell, which shows four masses connected to their center and the host (Lai et al., 2011). Such a 

structure is favorable of enhancing the dipolar resonance by the collective motion of the four 

masses, and the quadrupolar and monopolar resonances by relative motions of the masses. 

A practical realization of the model is illustrated in Fig. 10(b). The scatterers are composed 

of four steel rods surrounding a hard silicone rubber cylinder embedded in a soft silicone 

rubber cylinder. The matrix material is still foam. The lattice structure is a square with  

lattice constant of 10cm ; the radii of the soft and hard silicone rubber rods are 4cm  and 

1cm , respectively; the rectangular steel rods are 1.6 2.4cm cm× in size, located at a distance  

of 2.4cm from the center. The material parameters for the foam and soft silicone rubber  

remain the same as the ones used in the design of rubber-coated water cylinder.  

The hard siliconerubber and the steel have parameters of: 3 31.415 10 /kg mρ = × ,  
9 21.27 10 /N mλ = ×  and 6 21.78 10 /N mµ = ×  for hard silicone rubber and 

3 37.9 10 /kg mρ = × , 11 21.11 10 /N mλ = ×  and 10 28.28 10 /N mµ = × for steel. The four 

rectangular steel rods serve as the four masses and the soft silicone rubber rods serve as the 

springs. The insertion of the hard silicone rubber is for the purpose of adjusting the spring 

constants between the masses.  

The band structure of such metamaterial was calculated by using a finite element solver 

(COMSOL Multiphysics) and is shown in Fig. 11(a). There are two negative bands (red and 

blue dots), where the lower one (red dots) has a bandwidth about 18 Hz and the higher one 

(blue dots) has band widths of 18Hz and 10 Hz along MΓ  and XΓ  direction respectively. 

These two bands are separated by a small complete gap (178 Hz~198 Hz). The two 

eigenstates in the lower and upper negative bands at the Γ  point are plotted in Figs. 11(b) 
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and 11(c), respectively. The eigenstate in Fig. 11(b) is clearly a quadrupolar resonance, 

whereas the eigenstate in Fig. 11(c) is a monopolar resonance.  

The negative bands can also be understood from an effective medium point of view. Since 

the scatterer involves a four-fold symmetry, the previously derived formula based on MST 

for isotropic inclusions does not apply and an EMT based on boundary integration is  

 

Fig. 11. (a) Band structure of the multi-mass metamaterial. (b) and (c) Displacement field of 

eigenstates. The color represents the amplitude of displacement (blue/red for small/large 

values) and the arrows show the displacement vectors directly. (d) and (e) effective medium 

parameters calculated by a boundary EMT. (Lai et al., 2011) 

developed. Though the scatterer is anisotropic, the dispersions and the associated modes 

can still be obtained from Christoffel’s equation, i.e., Eqs. (35) and (36), with three 

independent effective moduli, 11C , 12C  and 44C , and a mass density, ρ . The task is to 

determine the values of these parameters. The mass density is determined by Newton’s law, 
2 2/e e e

x xF u aρ ω= − , where both the effective force e
xF on the unit cell and its effective 

displacement e
xu  may be obtained from surface integration of the stresses (along the x 

direction) and the displacements over the unit cell, i.e.,  

 
0 0

e
x xx xx xy xy

x a x y a y
F T dy T dy T dx T dx

= = = =
= − + −     (37) 

and 

 0

2

x xe x x a
x

u dy u dy
u

a
= =

+
=
 

 (38) 

The stresses and displacements can be obtained from the COMSOL calculation. Similarly, 

the effective moduli are evaluated from the effective stress and strain relations: 

11 12
e e e e e
xx xx yyT C S C S= + , 12 11

e e e e e
yy xx yyT C S C S= + , and 442e e e

xy xyT C S= , where both the effective 

stresses and the effective strains are evaluated on the unit cell boundary as follows: 

00 ; ;
2 2

yy yyxx xx y y ae ex x a
xx yy

T dy T dyT dy T dy
T T

a a

= == =
++

= =
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0 0;
2 2

xy xy xy xyy y ae e x x a
xy yx

T dx T dx T dy T dy
T T

a a

= = = =
+ +

= =
   

 (39) 

and 

 

00
2 2

0 0

2

;

2

y yx x y a ye ex a x
xx yy

x x y y
y a y x a xe

xy

u dy u dyu dy u dy
S S

a a

u dx u dx u dy u dy
S

a

= == =

= = = =

−−
= =

− + −
=

  

   
 (40) 

Though the above equations are presented for calculations along the ГХ direction,  

the corresponding formula for ГM direction can be similarly transcribed. Due to the 

obvious link between the bulk (shear) modulus and monopolar (quadrupolar) resonance, 

it is more convenient to introduce ( )eff 11 12C C 2κ = +  and  ( )11 12 2eff C Cµ = −  as effective 

elastic bulk modulus and shear modulus. The results for effκ  and effµ  evaluated from the 

relevant eigenstates are plotted in Figs. 11(d) and 11(e). In the lower negative band, 
κ eff  is 

positive and finite, while effµ  is negative and diverges at the Г point, which is in 

accordance with the quadrupolar resonance. In the higher negative band, effµ  is positive 

and finite, while effκ  is negative and diverges at the Г point, which is induced by the 

monopolar resonance.  

Knowing the effective moduli, the corresponding dispersion relations can be calculated by 

using Christoffel’s equation. Along the ГХ direction, compressional wave and shear wave 

velocities are given by by 11C ρ  and 44C ρ , respectively; whereas along the ГМ 

direction the compressional and shear wave velocities are ( ) ( )11 12 442 2C C C ρ+ +  and 

( ) ( )11 12 2C C ρ− . The effective medium results show that the lower negative band 

supports a longitudinal (transverse) wave along ГХ (ГM) direction, whereas the upper 

negative band only allows longitudinal wave in both ГХ and ГM directions. The 

corresponding results obtained from the EMT are also plotted in Fig. 11(a) by crosses. 

Excellent agreements between the finite element results and the EMT prediction are found.  

6. Some intriguing properties of elastic metamaterials  

Like their EM and acoustic counterparts, elastic metamaterials have shown many intriguing 

wave transport properties. For example, the total mode conversion and the super-anisotropy 

are two of them. The total mode conversion can completely convert the incident transverse 

(longitudinal) wave into a refracted longitudinal (transverse) wave. It is an analogue of the 

Brewster angle in the EM case (for example, Jackson, 1999), but in a much more stringent 

and complex manner. It only occurs on the interface between a normal solid and an elastic 

metamaterial with negative refractive index (Wu et al. 2011). The super-anisotropic behavior 

has been demonstrated in Section 5.2. Also shown there is the property of sustaining only a 

longitudinal wave at certain frequencies, which is so-called “fluid-like” solids, blurring the 

distinction between solids and fluids (Lai et al., 2011).  
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7. Conclusion  

In this chapter, the effective medium properties of 2D elastic metamaterials have been 

reviewed. Unlike EM or acoustic metamaterials, the elastic metamaterial is in general 

anisotropic unless the lattice structure is a hexagon with isotropic scatterers. For the 

isotropic elastic metamaterial, the EMT may be derived from CPA. For the anisotropic 

metamaterial, the EMT may be obtained from the MST in conjunction with Christoffel’s 

equation, or from the integration of eigenfields on the boundaries. EMT could greatly 

facilitate the design of new elastic metamaterials, such as rubber-coated water cylinder 

embedded in foam which gives rise to large negative bands for shear waves and a multi-

mass locally resonant structure which results in both negative bands for longitudinal waves 

and super-anisotropic negative bands.  

Elastic metamaterial opens a new research area. The experimental realization would be 

much more challenging and exciting. The generalization of EMT as well as the symmetry 

property to more complex lattice structures, such as rectangular lattices, would also be of 

interest as it will introduce even stronger anisotropy. Meanwhile, finding an EMT that can 

also treat the rotational modes is a challenging task. Such modes are normally excited at 

lower frequencies and form flat bands in the band structures.   
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