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1. Introduction

With the fast advancement of computer, multimedia and network technologies, the amount
of multimedia information that is conveyed, broadcast or browsed via digital devices has
grown exponentially. Simultaneously, digital forgery and unauthorized use have reached
a significant level that makes multimedia authentication and security very challenging and
demanding. The ability to detect changes in multimedia data has been very important
for many applications, especially for journalistic photography, medical or artwork image
databases. This has spurred interest in developing more robust algorithms and techniques
to allow to check safety of exchanged multimedia data confidentiality, authenticity and
integrity. Confidentiality means that the exchange between encrypted multimedia data
entities, which without decryption key, is unintelligible. Confidentiality is achieved mainly
through encryption schemes, either secret key or public key. Authentication is an another
crucial issue of multimedia data protection, it makes possible to trace the author of the
multimedia data and allow to determine if an original multimedia data content was altered in
any way from the time of its recording. Integrity allows degradation detection of multimedia
and helps make sure that the received multimedia data has not been modified by a third
party for malicious reasons. Many attempts have been noted to secure multimedia data from
illegal use by different techniques fields such as encryption field, watermarking field and
perceptual image hashing field. The field of encryption is becoming very important in the
present era in which information security is of the utmost concern to provide end-to-end
security. Multimedia data encryption has applications in internet communication, multimedia
systems, medical imaging, telemedicine, military communication, etc. Although we may
use the traditional cryptosystems to encrypt multimedia data directly, it is not a good idea
for two reasons. The first reason is that the multimedia data size is almost always much
great. Therefore, the traditional cryptosystems need much more time to directly encrypt the
multimedia data. The other problem is that the decrypted multimedia data must be equal
to the original multimedia data. However, this requirement is not necessary for image/video
data. Due to the characteristic of human perception, a decrypted multimedia containing small
distortion is usually acceptable. Deciding upon what level of security is needed is harder
than it looks. To identify an optimal security level, the cost of the multimedia information
to be protected and the cost of the protection itself are to be compared carefully. At present,
many available image encryption algorithms have been proposed (Ozturk & Ibrahim, 2005;
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Puech et al., 2007; Rodrigues et al., 2006). In some algorithms, the secret-key and algorithm
cannot be separated effectively. This does not satisfy the requirements of the modern
cryptographic mechanism and are prone to various attacks. In recent years, the image
encryption has been developed to overcome above disadvantages as discussed in (Furht et al.,
2004; Stinson, 2002). The other field to secure multimedia data is the watermarking field.
Watermarking schemes have been developed for protecting intellectual property rights,
which embed imperceptible signal, called watermark, carrying copyright information into a
multimedia data i.e. image to form the watermarked image. The embedded watermark should
be robust against malicious attacks so that it can be correctly extracted to show the ownership
of the host multimedia data whenever necessary (Bender et al., 1996; Memon & Wong, 1998).
A fragile or semi-fragile watermark detects changes of the host multimedia data such that
it can provide some form of guarantee that the multimedia data has not been tampered
with and is originated from the right source. In addition, a fragile watermarking scheme
should be able to identify which portions of the watermarked multimedia data are authentic
and which are corrupted; if unauthenticated portions are detected, it should be able to
restore it (Cox et al., 2002). Watermarking has been widely adopted in many applications that
require copyright protection, copy control, image authentication and broadcast monitoring
(Cox et al., 2000). Watermarking can be used in copyright check or content authentication for
individual images, but is not suitable when a large scale search is required. Furthermore, data
embedding inevitably cause slight distortion to the host multimedia data (Wang & Zhang,
2007) and change its content. Recently, researchers in the field of security/authentication of
multimedia data have introduced a technique inspired from the cryptographic hash functions
to authenticate multimedia data called the Perceptual hash functions or Perceptual image hashing
in case of image applications. It should be noted that the objective of a cryptographic hash
function and a perceptual image hash function are not exactly the same. For example, there
is no robustness or tamper localization requirement in case of a cryptographic hash function
(Ahmed & Siyal, 2006). Traditionally, data integrity issues are addressed by cryptographic
hashes or message authentication functions, such as MD5 (Rivest, 1992) and SHA series (NIST,
2008), which are sensitive to every bits of the input message. As a result, the message integrity
can be validated when every bit of the message are unchanged (Menezes et al., 1996). This
sensitivity to every bit is not suitable for multimedia data, since the information it carries
is mostly retained even when the multimedia has undergone various content preserving
operations. Therefore, bit-by-bit verification is no longer a suitable method for multimedia
data authentication. A rough classification of content-preserving and content-changing
manipulations is given in Table 1 (Han & Chu, 2010). Robust perceptual image hashing
methods have recently been proposed as primitives to overcome the above problems and
have constituted the core of a challenging developing research area to academia as well as the
multimedia industry. Perceptual Image hashing functions extract certain features from image
and calculate a hash value based on these features. Such functions have been proposed to
establish the “perceptual equality” of image content. Image authentication is performed by
comparing the hash values of the original image and the image to be authenticated. Perceptual
hashes are expected to be able to survive on acceptable content-preserving manipulations and
reject malicious manipulations. In recent years, there has been a growing body of research on
perceptual image hashing that is increasingly receiving attention in the literature. Perceptual
image hashing system generally consists of four pipeline stages: the Transformation stage, the
Feature extraction stage, the Quantization stage and the Compression and Encryption stage as
shown in Figure 1. The Quantization stage in a perceptual image hashing system is very
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Perceptual Image Hashing 3

important to enhance robustness properties and increase randomness to minimize collision
probabilities in a perceptual image hashing system. This step is very difficult especially if it
is followed by the Compression and Encryption stage because we do not know the behavior of
the extracted continuous features after content-preserving/content-changing manipulations
(manipulations examples are given in Table 1). For this reason, in most proposed perceptual
image hashing schemes, the Compression and Encryption stage is ignored.

Content-preserving manipulations Content-changing manipulations

- Transmission errors - Removing image objects

- Noise addition
- Moving of image elements or changing
their positions

- Compression and quantization - Adding new objects

- Resolution reduction
- Changes of image characteristics: color,
textures, structure, etc.

- Scaling
- Changes of the image background: day
time or location

- Rotation
- Changes of light conditions: shadow
manipulations etc.

- Cropping

- γ Distortion

- Changes of brightness hue and saturation

- Contrast adjustment

Table 1. Content-preserving and content-changing manipulations.

In this chapter we analyze the importance of the Quantization stage problem in a perceptual
image hashing pipeline. This chapter is arranged as follows. In Section 2, a classification
of perceptual image hashing methods is presented followed by an overview of the unifying
framework for perceptual image hashing. Then, the basic metrics and important requirements
of a perceptual image hashing function wherein a formulation of the perceptual image hashing
problem is given. Then, perceptual hash verification measures are presented followed by an
overview of recent published schemes proposed in the literature. In Section 3, we present
the quantization problem in perceptual image hashing systems, then we discuss the different
quantization techniques used for more robustness of a perceptual image hashing scheme
where we show their advantages and their limitations. In Section 4, a new approach of
analysis of the quantization stage is presented based on the theoretical study presented in
Section 3 and it is followed by a presentation and discussion of some obtained experimental
results. Finally, Section 5 offers a discussion on the issues addressed and identifies future
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research directions. The objective of the latter section is to present prospects and challenges in
the context of perceptual image hashing.

2. Perceptual image hashing

In this Section, we give a classification of different perceptual image hashing techniques
followed by the presentation of perceptual image hashing framework and basic requirements
related to perceptual image hashing are discussed. Furthermore, related work is reviewed
and the challenging problems that are not yet resolved are identified.

2.1 Perceptual image hashing methods classification

Most of the existing image hashing studies mainly focus on the feature extraction stage and
use them during authentication, which can roughly be classified into the four following
categories (Zhu et al., 2010), (Han & Chu, 2010):

• Statistic-based schemes (Khelifi & Jiang, 2010; Schneider & Chang, 1996; Venkatesan et al.,
2000): This group of schemes extracts hash features by calculating the images statistics
in the spacial domain, such as mean, variance, higher moments of image blocks and
histogram.

• Relation-based schemes (Lin & Chang, 2001; Lu & Liao, 2003): This category of approaches
extracts hash features by making use of some invariant relationships of the coefficients of
discrete cosine transform (DCT) or wavelet transform (DWT).

• Coarse-representation-based schemes (Fridrich & Goljan, 2000; Kozat et al., 2004;
Mihçak & R.Venkatesan, 2001; Swaminathan et al., 2006): In this category of methods, the
perceptual hashes are calculated by making use of coarse information of the whole image,
such as the spatial distribution of significant wavelet coefficients, the low-frequency
coefficients of Fourier transform, and so on.

• Low level feature-based schemes (Bhattacharjee & Kutter, 1998; Monga & Evans, 2006): The
hashes are extracted by detecting the salient image feature points. These methods first
perform the DCT or DWT transform on the original image, and then directly make use of
the coefficients to generate final hash values. However, these hash values are very sensitive
to global as well as local distortions that do not cause perceptually significant changes to
the images.

2.2 Perceptual image hashing framework

A perceptual image hashing system, as shown in Fig. 1, generally consists of four pipeline
stages: the Transformation stage, the Feature extraction stage, the Quantization stage and the
Compression and Encryption stage.

In the Transformation stage, the input image undergoes spacial and/or frequency
transformation to make all extracted features depend the the values of image pixels or the
image frequency coefficients. In the Feature Extraction stage, the perceptual image hashing
system extracts the image features from the input image to generate the continuous hash
vector. Then, the continuous perceptual hash vector is quantized into the discrete hash vector
in the Quantization stage. The third stage converts the discrete hash vector into the binary
perceptual hash string. Finally, the binary perceptual hash string is compressed and encrypted
into a short and a final perceptual hash in the Compression and Encryption stage (Figure 1).
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Perceptual Image Hashing 5

Fig. 1. Four pipeline stages of a perceptual image hashing system.

2.2.1 Transformation stage

In the Transformation stage, the input image of size M × N bytes undergoes spatial
transformations such as color transformation, smoothing, affine transformations, etc. or
frequency transformations such as Discrete Cosine Transform (DCT), Discrete Wavelet
Transform (DWT), etc. When the DWT transformation is applied, most perceptual image
hashing schemes take into account just the LL subband because it is a coarse version of the
original image and contains all the perceptually information. The principal aim of those
transformations is to make all extracted features, in the Feature Extraction stage, depend upon
the values of image pixels or its frequency coefficients in the frequency space.

2.2.2 Feature Extraction stage

In the Feature Extraction stage, the image hashing system extracts the image features from
the transformed image to generate the feature vector of L features where L << M × N.
Note that each feature can contain p elements of type f loat which means that we get L × p
f loats at this stage. It is still an open question, however, which mappings (if any) from
DCT/DWT coefficients preserve the essential information about an image for hashing and/or
mark embedding applications. We can at this stage add another features selection as shown
in Fig. 2, so only the most pertinent features are selected which are statistically more resistant
against a specific allowed manipulation like addition of noise and image rotation, etc. The
selected features can be presented as an intermediate hash vector of K× p f loats, where K < L.

Fig. 2. Selection of the most relevant features in the Feature Extraction stage.

2.2.3 Quantization stage

In the next stage, the Quantization stage, we get a quantized intermediate perceptual
hash vector which contains L × p elements of type byte. Uniform quantization can be
applied to quantize each component of the continuous perceptual hash vector. Adaptive
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quantization (Mihçak & R.Venkatesan, 2001) is another quantization type which is is the most
famous quantization scheme in the field of image hashing. The difference between the two
quantization schemes is that the partition of uniform quantization is based on the interval
length of the hash values, whereas the partition of adaptive quantization is based on the
probability density function (pdf) of the hash values. This kind of quantization is detailed
in Section 3.

2.2.4 Compression and Encryption stage

Compression and Encryption stage is the final step of a perceptual image hashing system,
the binary intermediate perceptual hash string is compressed and encrypted into a short
perceptual hash of fixed size of l bytes, where l << L × p, which presents the final perceptual
hash that allows image verification and authentication at the receiver. This stage can be
ensured by cryptographic hash functions i.e. SHA series which generate the final hash of
fixed size (hash of 160 bits in case SHA-1).

In the next section, we give the most important requirements that a perceptual image hashing
must achieve and show how they conflict with each other.

2.3 Metrics and important requirements of a perceptual image hashing

Perceptual hash functions can be categorized into two categories: unkeyed perceptual hash
functions and keyed perceptual hash functions. An unkeyed perceptual hash function H(x)
generates a hash value h from an arbitrary input x (that is h = H(x)). A keyed perceptual
hash function generates a hash value h from an arbitrary input x and a secret key k (that
is h = H(x; k)). The design of efficient robust perceptual image hashing techniques is a
very challenging problem that should address the compromise between various conflicting
requirements. Let P denote probability. Let H() denote a perceptual hash function which takes
one image as input and produces a binary string of length l. Let I denote a particular image
and Iident denote a modified version of this image which is “perceptually similar” to I. Let Idiff

denote an image that is "perceptually different" from I. Let h1 and h2 denote hash values of
the original image I and the perceptually different image Idiff from I. {0/1}l represents binary
strings of length l. Then the four desirable properties of a perceptual image hashing function
are identified as follows:

• Equal distribution (unpredictability) of hash values:

P(H(I) = h1) ≈
1

2l
, ∀h1 ∈ {0, 1}l (1)

• Pairwise independence for perceptually different images I and Idiff:

P(H(I) = h1|H(Idiff) = h2) ≈ P(H(Iident) = h1), ∀h1, h2 ∈ {0, 1}l (2)

• Invariance for perceptually similar images I and Iident:

P(H(I) = H(Iident)) ≥ 1 − θ1, f or a given θ1 ≈ 0 (3)

• Distinction of perceptually different images I and Idiff:

P(H(I) �= H(Idiff)) ≥ 1 − θ2, f or a given θ2 ≈ 0 (4)
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To meet property in equation (3), most perceptual hash functions try to extract features of
images which are invariant under insignificant global modifications such as compression or
enhancement. Equation (4) means that, given an image I, it should be nearly impossible
for an adversary to construct a perceptually different image Idiff such that H(I) = H(Idiff).
This property can be hard to achieve because the features used by published perceptual hash
functions are publicly known (Kerckhoffs, 1883; Mihçak & R.Venkatesan, 2001). Also, it makes
property in equation (3) be neglected in favor of property in equation (4). Likewise for perfect
unpredictability, an equal distribution (equation (1)) of the hash values is needed. This would
deter achieving the property in equation (3) (Monga, 2005). Depending on the application,
perceptual hash functions have to achieve these conflicting properties to some extent and/or
facilitate trade-offs. From a practical point of view, both robustness and security are important.
Lack of robustness (equation (3)) renders an image hash useless as explained above, while
security (equations (1),(4)) means that it is extremely difficult for an adversary to modify the
essential content of an image yet keep the hash value unchanged. Thus, trade-offs must be
sought, and this usually forms the central issue of perceptual image hashing research.

2.4 Perceptual hash verification

Perceptual image hashing system calculates hashes for similar images that must be equal.
Referring to the image space as shown in Figure 3, let I denote an image, and X denote the
set of images Iident that are modified from I by means of content-preserving manipulations
and are defined to be perceptually similar to I. Let Y contains all other images Idiff that are
irrelevant to I and its perceptually similar versions. Idiff are the results of content-changing
manipulations. Consequently, {I} ∪ X ∪ Y forms an entire image space. Let h, hident and hdiff

denote hash values of the original image I, the perceptually similar image Iident from I and the
perceptually different image Idiff from I respectively. In robust and secure perceptual image,
the following properties are required when Encryption and Compression stage is applied
in a perceptual image hashing system: h = hident for all identical images Iident ∈ X and
h �= hident for all different images Idiff ∈ Y (Figure 3). Since the requirement of bit-by-bit
hashes equality is usually hard to achieve, most of the proposed schemes compute distances
and similarities between perceptual hashes. The most often used are the Bit Error Rate (BER),
the Hamming distance and the Peak of Cross Correlation (PCC). The first two measure the
distance between two hash values, whereas the latter measures the similarity between two
hash values. Using theses measures, the sender determines the threshold τ. The proper
selection of τ is very important as it defines the boundary between content-preserving and
content-changing manipulations.

Let d(., .) indicates the used measure i.e. a normalized Hamming distance function. Let h,
hident and hdiff denote hash values of the original image I, the perceptually similar image
Iident from I and the perceptually different image Idiff from I respectively. The error-resilience
of multimedia data hashing is defined as follows. Iident is successfully identified to be
perceptually similar to I if d(h, hident) � τ holds. In other words if two images are
perceptually similar, their corresponding hashes need to be highly correlated. If d(h, hdiff) ≫
τ, then Idiff is identified as modified from I by means of content-changing manipulations.
Overall, the main theme of perceptual image hashing is to develop a robust perceptual
image hash function that can identify perceptually similar multimedia contents and reject
content-changing manipulations.

23Perceptual Image Hashing
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Fig. 3. The image space {I} ∪ X ∪ Y formed by an image {I}, its perceptually similar
versions set X and its modified version set Y.

2.5 Review of some related work on perceptual image hashing techniques

In recent years, there has been a growing body of research on perceptual image hashing that
is increasingly receiving attention in the literature. Most of these existing papers focus on
studies of the feature extraction stage because they believe that extracting a set of robust
features that resist, and to stay relatively constant, content-preserving manipulations and at
the same time should detect content-changing manipulations is the most important objective
in perceptual image hashing system. Few papers address perceptual image hashing system
security. In (Fridrich, 2000), the extraction of the hash is based on the projection of image
coefficients onto filtered pseudo-random patterns. The final perceptual hash is used for
generating a pseudo-random watermark sequences, that depend sensitively on a secret key
yet continuously on the image, for authentication and integrity verification of still images. In
(Venkatesan et al., 2000), a perceptual image hashing technique based on statistics computed
from randomized rectangles in the discrete wavelet domain (DWT) is presented. Averages
or variances of the rectangles are then calculated and quantized with randomized rounding
to obtain the hash in the form of a binary string. The quantized statistics are then sent
to an error-correcting decoder to generate the final hash value. Statistical properties of
wavelet subbands are generally robust against attacks, but they are only loosely related to
the image contents therefore rather insensitive to tampering. This method has been shown
to be robust against common image manipulations and geometric attacks. The proposed
method in (Schneider & Chang, 1996) is using the intensity histogram to sign the image.
Since the global histogram does not contain any spatial information, the authors divide the
image into blocks, which can have variable sizes, and compute the intensity histogram for
each block separately. This allows some spatial information to be incorporated into the
signature. The method in (Fridrich & Goljan, 2000) is based on the observation of the low
frequency DCT coefficient. If a low frequency DCT coefficient of an image is small in absolute
value, it cannot be made large without causing visible changes to the image. Similarly, if
the absolute value of a low frequency coefficient is large, it cannot change it to a small value
without influencing the image significantly. To make the procedure dependent on a key, the
DCT modes are replaced with DC-free random smooth patterns generated from a secret key.
Other researchers have used others techniques to perform image perceptual hashing. Authors
in (Swaminathan et al., 2006) used Fourier-Mellin transform for perceptual image hashing
applications. Using Fourier-Mellin transform’s scale invariant property, the magnitudes of the
Fourier transform coefficients were randomly weighted and summed. However, since Fourier
transform did not offer localized frequency information, this method was not able to detect
malicious local modifications. In a more recent development, a perceptual image hashing
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scheme based Radon Transform is proposed in (Lei et al., 2011) where the authors perform
Radon Transform on the image and calculate the moment features which are invariant to
translation and scaling in the projection space. Then Discrete Fourier Transform (DFT) is
applied on the moment features to resist rotation. Finally, the magnitude of the significant DFT
coefficients is normalized and quantized as the final perceptual image hash. The proposed
method can tolerate almost all the typical image processing manipulations, including JPEG
compression, geometric distortion, blur, addition of noise and enhancement. The Radon
transform was first used in (Lefebvre et al., 2002), and further expanded in (Seo et al., 2004).
Authors in (Guo & Hatzinakos, 2007) propose a perceptual image hashing scheme based on
the combination of discrete wavelet transform (DWT) and the Radon Transform. Taking
the advantages of the frequency localization property of DWT and shift/rotation invariant
property of the Radon transform, the algorithm can effectively detect malicious local changes,
and at the same time, be robust against content-preserving modifications. Obtained features
derived from the Radon Transform are then quantized by the probabilistic quantization
(Mihçak & Venkatesan, 2001) to form the final perceptual hash.

In this Section, we have presented some reviews of different schemes proposed in the field of
perceptual image hashing. In Section 3, we develop the quantization problem in perceptual
image hashing and we present some approaches to address this problem which surely have
limitations in practice.

3. Quantization problem in perceptual image hashing

3.1 Problem statement

The goal of the quantization stage, in the perceptual image hashing system, is to discretize
the continuous intermediate hash vector (continuous features) into a discrete intermediate
hash vector (discrete features). This step is very important to enhance robustness properties
and increase randomness to minimize collision probabilities of a perceptual image hashing
system. Quantization is the conventional way to achieve this goal. The quantization step is
difficult because we do not know how the values in the continuous intermediate hash drop
after content-preserving (non-malicious) manipulations in each quantization interval Q. This
difficulty of an efficient quantization increases more when it is followed by an encryption
and compression stage i.e. SHA-1, because the discrete intermediate hash vectors must be
quantized in a correct way for all perceptual similar images. For this reason this stage is
ignored in most schemes presented in the literature. To understand the quantization problem
statement, let us suppose that the incidental distortion introduced by content-preserving
manipulations can be modeled as noise whose maximum absolute magnitude is denoted as
B, which means that the maximum range of additive noise is B. Suppose that the original
scalar value xl ∈ R for l ∈ {1, ..., L} of the continuous intermediate hash is bounded to a
finite interval [−A, A]. Furthermore, suppose that we wish to obtain a quantized message
q(xl) of xl in P quantization points given by the set τ = {τ1, ..., τP}. The points are
uniformly spaced such that Q = τj − τj−1 = 2A/(P − 1) for j ∈ {1, ..., P}. Now suppose
xl ∈ [τj, τj+1), then it will be quantized as τj. However, when this value is corrupted after
noise addition, the distorted value could drop in the previous quantization interval [τj−1, τj)
or in the next interval [τj+1, τj+2) and it will be quantized as τj−1 or τj+1, respectively, and the
quantized xl value will not remain unchanged as τj before and after noise addition. Thus, the
noise corruption will cause a different quantization result and automatically cause different
perceptual hashes (Hadmi et al., 2010). Figure 4 shows the distribution of the original DWT
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Fig. 4. The influence of additive Gaussian noise on the quantization (Q = 2) of the original
DWT LL-subband coefficients and their noisy version in the interval [40, 50]. In green: DWT
LL-subband quantized coefficients that dropped from the right neighboring quantization
interval. In red: DWT LL-subband quantized coefficients that dropped from the left
neighboring quantization interval.

LL-subband (level 3) coefficients, of Lena image sized 1024 × 1024, in the interval [40, 50] and
their noisy version, in the same interval [40, 50], by an additive Gaussian noise of standard
deviation equals σ = 1. When applying a Gaussian noise with σ = 1, the noisy image remains
visually the same than the original image however it causes changes on extracted features
distribution as we can see in Figure 4. This causes errors in the quantization step because
the quantized features do not remain unchanged after noise addition as shown in Figure 4. To
avoid such cases, many quantization schemes have been proposed in the literature. Authors in
(Sun & Chang, 2005) proposes an error correction coding (ECC) to correct errors of extracted
features caused by corruption from additive noise to get the same quantization result before
and after additive noise. In their work, they assume that the quantization step Q > 4B,
which is not always true at the practical point of view, and they push the points away from
the quantization decision boundaries and create a margin of at least Q/4 so that original xl

value when later contaminated will not exceed the quantization decision boundaries. The
illustration of the concept of error correction is illustrated in Figure 5. The original feature P
is quantized in nQ before adding noise, but after adding noise there is also a possibility that
the noisy feature value could drop at the range [(n − 1)Q, (n − 0.5)Q)[ and will quantized
as (n − 1)Q. As a solution to this, Authors propose to add or subtract 0.25Q to remain the
features at the range [(n − 0.5)Q, (n + 0.5)Q)] and then remain the quantized value the same
as the original quantized value nQ even after adding noise.

Other similar work based on this approach has recently been proposed (Ahmed et al., 2010)
where the authors calculate and record a vector of 4-bits called “Perturbation information”.
This additional transmitted information has the same dimension of the extracted features. It
is used at the receiver’s end to adjust the intermediate hash during the image verification
stage before performing quantization. Therefore, the information carried in the “Perturbation
information” helps to make a decision to positively authenticate an image or not. Their
theoretical analysis is more general than in (Sun & Chang, 2005) from a practical point of view.
One main disadvantage of such schemes is that vectors used to correct errors of extracted
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Fig. 5. Illustration on the concept of error correction in Sun’s scheme (Sun & Chang, 2005).

features need to be transmitted or stored beside the image and the final hash as shown in
Figures 6 and 7.

Fig. 6. Hash generation module with quantization in Fawad’s scheme (Ahmed et al., 2010).

Fig. 7. Image verification module with quantization in Fawad’s scheme (Ahmed et al., 2010).

Another quantization scheme which is widely applied in perceptual image hashing
(Swaminathan et al., 2006), (Zhu et al., 2010) proposed by (Mihçak & Venkatesan, 2001) called
Adaptive Quantization or Probabilistic Quantization in (Monga, 2005). Its property is that it takes
into account to the distribution of the input data. The quantization intervals Q = τj − τj−1 for

j ∈ {1, ..., P} are designed so that
∫ τj

τj−1
pX(x) dx = 1/P, where P is the number of quantization

levels and pX(.) is the pdf of the input data X. The central points {Cj} are defined so as

to make
∫ Cj

τj−1
pX(x) dx =

∫ τj

Cj
pX(x) dx = 1/(2P). Around each τj, a randomization interval

[Aj, Bj] is introduced such that
∫ τj

Aj
pX(x) dx =

∫ Bj

τj
pX(x) dx = r/P, where r ≤ 1/2. The

randomization interval is symmetric around τj for all j in terms of distribution pX . The natural
constraint must be respected Cj ≤ Aj and Bj ≤ Cj+1. The overall quantization rule is then
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given by:

q(xl) =

⎧
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⎪
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⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j − 1 w.p. 1 if Cj ≤ xl < Aj,

j − 1 w.p.

(

P
2r

∫ Bj

xl
pX(t) dt

)

if Aj ≤ xl < Bj,

j w.p.

(

P
2r

∫ xl

Aj
pX(t) dt

)

if Aj ≤ xl < Bj,

j w.p. 1 if Bj ≤ xl < Cj+1.

(5)

where w.p. stands for “with probability”.

The discrete scheme of Adaptive Quantization has recently been developed by (Zhu et al., 2010)
to make it applicable in practice.

3.2 Theoretical analysis

In this section, we analyze statically the behavior of the extracted features under additive
uniform noise, Section 3.2.1 and Gaussian noise, Section 3.2.2, as well as the probability of
a false quantization for these selected features. The main goal of this analysis is to give a
theoretical behavior of the extracted image features to be hashed against content-preserving
/content-changing manipulations, that are simulated by an additive noise, that may undergo
an image (Hadmi et al., 2011).

3.2.1 Case of an additive uniform noise

To analyze the influence of an additive noise on perceptual image hashing robustness, we
have decided to lead a statical analysis of the quantization problem. The idea is to compute
the length of the quantization interval Q for a noise whose maximum absolute magnitude is
B, which represents the content-preserving manipulations, and a previously fixed probability
that a value in this interval drops out, that is denoted as Pdrop.

To address this problem, we have started by developing the convolution product between two
distributions defined as follows:

• Let Pρ(x) denote the extracted feature distribution limited to an interval [a, b] of length
ρ = b − a. Pρ(x) is given by:

Pρ(x) =

⎧

⎨

⎩

1
ρ for x ∈ [a, b],

0 otherwise.
(6)

• Let PB(x) denote the probability density function of the continuous uniform noise, which
presents content-preserving manipulations, in the interval B = [− B

2 , B
2 ], with B < ρ.

PB(x) is expressed as:

PB(x) =

⎧

⎨

⎩

1
B for x ∈ [− B

2 , B
2 ],

0 otherwise.
(7)
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The convolution product h(x) of Pρ(x) by PB(x) is:

h(x) =
∫ +∞

−∞
Pρ(y)PB(x − y) dy =

∫ b

a

1

ρ
PB(x − y) dy (8)

Finally, we get the convolution product h(x) (equation (9)) expressed as:

h(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 for x ≤ a − B
2 ,

1
ρB

(

x + B
2 − a

)

for x ∈
]

a − B
2 , a + B

2

]

,

1
ρ for x ∈

]

a + B
2 , b − B

2

]

,

1
ρB

(

− x + B
2 + b

)

for x ∈
]

b − B
2 , b + B

2

]

,

0 for x > b + B
2 .

(9)

An example of h(x) is presented in Figure 8, with B <
ρ
2 .

Fig. 8. Convolution product of Pρ(x) by PB(x).

Suppose that y presents an extracted feature which is in the interval [a, b] and let Pdrop be
the probability that y drops out from [a, b] because of the adding noise B. Thus, Pdrop(y) is
calculated and expressed as follows (Equation 10):

Pdrop(y) = P(y /∈ [a, b])

=
∫ a

a− B
2

h(x) dx +
∫ +

¯
B
2

b
h(x) dx

=
B

4ρ
(10)

Equation (10) allows us to get an information of the extracted features behavior after adding
noise. For example, for a uniform noise of length B = 4.10−2, if we want to have Pdrop = 10−3,
then the length of the quantization interval ρ that must be chosen is: ρ = 10.

To make a comparison between the theoretical probability that extracted features drop out
from the quantization interval given by Equation 10 and the experimental probability, we
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Fig. 9. Comparison between the theoretical and the experimental probabilities that extracted
features drop out from the quantization interval for various noise lengths.

applied continuous uniform noise of different lengths from B = 0 to B = 50 on the same N =
10000 samples in the interval ∆ = [−10, 10], and then we calculated the probability Pdrop for
each noise length. We note that the experimental results presented in Figure 9 coincide with
the theoretical results calculated from Equation 10 for all noise lengths until B = 44. Some
divergences are observed after this noise length which can be considered as content-changing
(malicious) manipulations.

The same analysis can be performed for other noise distributions such as Gaussian
distribution or triangular distribution. Thus, by just modeling the content-preserving
manipulations by the aforementioned distributions, we can precisely obtain the probability
from which the extracted features will drop from a fixed quantization interval to its
neighboring intervals. Alternately, we can beforehand fix the maximum range of additive
noise that we judge to be a content-preserving manipulation and the probability that extracted
features change of quantization interval. This will allow us to fix the length of the appropriate
quantization interval which respects to this probability.

3.2.2 Case of an additive Gaussian noise

Figure 10 shows an example of an original image of size 512 × 512 and their noisy versions
with many levels of additive Gaussian noise controlled by its standard deviation σ. Note that
the applied additive Gaussian noise is 0-mean, and changing its standard deviation σ allows
us to increase or decrease its level.

To evaluate the perceptual similarity between the original and their modified versions, we can
based on the perceptual aspect provided by the Human Visual System (HVS), on the method
of the Structural SIMilarity (SSIM)1 (Wang et al., 2004), or on the method of Peak Signal to
Noise Ratio (PSNR). Table 2 gives the SSIM and PSNR values for noisy images obtained by
applying different standard deviation values σ of the additive Gaussian noise. The quality of
the Gaussian noisy images is compared to the original image and they are classified into four

1 SSIM is a classical measure well correlated to the Human Visual System.The SSIM values are real
positive numbers lower or equal to 1. Stronger is the degradation and lower is the SSIM measure.
A SSIM value of 1 means that the image is not degraded.
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(a) Original image (b) σ=1 (c) σ=5

(d) σ=10 (e) σ=11 (f) σ=14

(g) σ=15 (h) σ=20 (i) σ=25

(j) σ=30 (k) σ=35 (l) σ=40

Fig. 10. Original image and their noisy versions with different additive Gaussian noise
parametrized with different standard deviations σ.
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categories: very similar, similar, different and very different. The changed images qualified
very similar and similar (Figures 10(b), 10(c), 10(d), 10(e)) must have the same perceptual hash
of the original image noted by Iident. Other cases of images i.e. images qualified as different or
very different Figures (10(f), 10(g), 10(h), 10(i), 10(j), 10(k), 10(l)) from the original image must
have a different perceptual hash noted by Idiff as presented in Table 2.

Standard deviation σ SSIM PSNR (dB) Image quality Perceptual hash

1 0.997 47.79 very Similar Iident

5 0.946 34.15 Similar Iident

10 0.828 28.16 Similar Iident

11 0.802 27.32 Similar Iident

14 0.728 25.25 Different Idiff

15 0.704 24.70 Different Idiff

20 0.600 22.24 Different Idiff

25 0.517 20.36 Different Idiff

30 0.450 18.86 very Different Idiff

35 0.397 17.59 very Different Idiff

40 0.354 16.50 very Different Idiff

Table 2. SSIM and PSNR values for noisy images obtained by applying different standard
deviation values σ of the additive Gaussian noise.

In the case of σ=1, the noisy image remains visually the same as the original image and it has
high values of SSIM (SSIM = 0.997) and PSNR (PSNR = 47.79). For σ=5, σ=10 and σ=11, the
changes in the noisy images are very small and we can consider that the noisy images are still
similar to the original image. In the case of σ = 5, 10, 11, the SSIM values remain smaller than
80% and the PSNR values remain larger than 27db. When the level of the additive Gaussian
noise increases, the noisy images are perceptually different from the original image as it is
shown in Figure 10 for σ=14,. . . ,40 and both the SSIM and PSNR values degrade. We can fix
the threshold of the additive Gaussian noise that holds a good content in the sense of human
perception fixed at σ=11 as it is justified in term of the SSIM and PSNR values. We fixed the
degradation to a SSIM value of 80% and the PSNR value at 27db to consider a noisy image
similar to the original image. The threshold of the SSIM and PSNR values is justified in terms
of the subjective measure based on the HVS for many tests that we have done for a large
database of grayscale images as we can see in Figure 10.

To address theoretically the influence of an additive Gaussian noise whose 0-mean and
standard deviation σ on an uniform distribution of features limited in an interval [a, b], we
compute the convolution product between the distribution of the extracted features and the
distribution of the additive Gaussian noise defined as follows:

• Let Pρ(x) denote the extracted feature distribution limited to an interval [a, b] of length
ρ = b - a. Pρ(x) is given by:

Pρ(x) =

{

1
ρ for x ∈ [a, b],

0 otherwise.
(11)
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• Let Pσ(x) denote the probability density function of the Gaussian noise whose 0-mean
and standard deviation σ, which presents content-preserving manipulations. Pσ(x) is
expressed as:

Pσ(x) =
1

σ
√

2π
e
− x2

2σ2 (12)

The convolution product h(x) of Pρ(x) by Pσ(x) is:

h(x) =
∫ +∞

−∞
Pρ(y)Pσ(x − y) dy

=
1

ρ

(

∫ x−a

−∞
Pσ(y) dy −

∫ x−b

−∞
Pσ(y) dy

)

=
1

ρ

(

∫ x−a

−∞

1

σ
√

2π
e
− y2

2σ2 dy −
∫ x−b

−∞

1

σ
√

2π
e
− y2

2σ2 dy
)

=
1

ρ

(

∫ x−a
σ

−∞

1√
2π

e−
y2

2 dy −
∫ x−b

σ

−∞

1√
2π

e−
y2

2 dy
)

=
1

2ρ

[

er f
( x − a√

2σ

)

− er f
( x − b√

2σ

)]

(13)

with er f (x) = 2√
π

∫ x
0 e−t2

dt.

The convolution product h(x) models the behavior of the original features after adding
the Gaussian noise in each quantization interval. Figure 11 shows a normalized uniform
distribution of 10000 features belonging in the interval [10, 20] before and after the
quantization stage where the quantization step Q=10. All these features are quantized to
the value 15 as shown in Figure 11. Figure 12 presents the normalized distribution of the
noisy features after adding a Gaussian noise with 0-mean and standard deviation σ=2. This
distribution coincides exactly with the theoretical results given by Equation 13. As shown
in Figure 12, the noisy features are quantized and spread in 3 quantization intervals and are
quantized to three values: 5, 15 and 25. The 5 quantized value presents the quantized value
to the left neighbor quantization interval and the 25 presents the quantized value to the right
neighbor quantization interval. Statistically, for the same experiment settings we have 8%
of features drop to the left neighbor quantization interval and 8% of features drop to the
right neighbor quantization interval. For the other experiments settings, we always have a
symmetric percentage of features drop in the left and right neighbor quantization interval.

4. Experimental results

4.1 Experimental analysis protocol

In this section, we describe the quantization analysis protocol for perceptual image hashing
based on statistical invariance of extracted block mean features. The aim is to find agreement
between the density of the additive Gaussian noise, the size of the image block and the
quantization step size that must be taken to ensure a good level of image hashing robustness.
As shown in Figure 13, the original input image I of size N × M pixels is split to non
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Fig. 11. 10000 original features uniformly distributed in one quantization interval [10, 20]
before quantization (black) and after uniform quantization (green) where the quantization
step Q=10.
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Fig. 12. 10000 noisy features after adding Gaussian noise whose 0-mean and standard
deviation σ = 2 before quantization (black) and after uniform quantization (green) where the
quantization step Q=10.

overlapping blocks of size q × p pixels that we note by Bi,j, where i ∈ {1, 2, . . . ,
N

q
} and

j ∈ {1, 2, . . . ,
M

p
}. The float mean value mi,j of each block Bi,j is computed and stored in a one

dimensional vector that we note by Vm(k), where k ∈ {1, 2, . . . ,
N

q
× M

q
}. Quantization step

is the conventional way to descretize the continuous vector Vm. For a given quantization size
step Q, the quantized vector V ′

m
(k) of Vm(k) is given by the floor operation:

V ′
m(k) = ⌊Vm(k)

Q
⌋ × Q +

Q

2
(14)

where k={1, 2, . . . ,
N

q
× M

q
}.
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The distribution DistI of the quantized vector V ′

m
is then calculated and stored as a reference

enabling us to make a comparison with distributions of other candidate images for verification
of their integrity with the original image.

Fig. 13. Proposed quantization analysis protocol for perceptual image hashing based image
block mean.

The image hashing system assumes that the original image I may be sent over a network
consisting of possibly untrusted nodes. During the untrusted communication the original
image could be manipulated for malicious purposes. Therefor, the received image Ī may
undergo non-malicious operations like JPEG compression, etc. or malicious tampering. The
final perceptual hash of I should be used to authenticate its received version Ī. In the case of
non-malicious operations, the original feature vector and the received one should differ by a
small Euclidean distance which makes quantization control easier, and by a large Euclidean
distance in the case of content-changing manipulations. This allows to have different results
after the quantization step. Note, that even if the feature vector undergo small changes under
small additive noise may cause false authentication of the received image Ī where it has to be
considered similar to I. The received image Ī, that we simulate like the original image plus
a Gaussian noise with 0-mean and a standard deviation σ, will undergo the same steps than
the original image (Fig.13) which allows to get the distribution Dist Ī of V̄ ′

m
(k). Let Vm(k)

be the mean of an original image block of size q × p pixels noted by pi,j. By the same way,

we note by V̄
′

m
(k) the mean of noisy image block noted by p′i,j. V̄

′

m
(k) can be expressed as

function of Vm(k) as follow:

V̄ ′
m(k) =

1

p × q

p

∑
i=1

q

∑
j=1

p′i,j

=
1

p × q

p

∑
i=1

q

∑
j=1

(pi,j + ni,j)

=
1

p × q

p

∑
i=1

q

∑
j=1

pi,j +
1

p × q

p

∑
i=1

q

∑
j=1

ni,j

= Vm(k) +
1

p × q

p

∑
i=1

q

∑
j=1

ni,j (15)

where ni,j is a Gaussian noise belongs to N0,σ and k ∈ {1, 2, . . . ,
N

q
× M

q
}.
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The term “ 1
p×q

p

∑
i=1

q

∑
j=1

ni,j” in Equation 15 belongs to Gaussian distribution with 0-mean and

standard deviation σ√
p×q

.

V̄
′

m
is the discrete vector which contains the quantized values of the computed means of

the received image blocks. The comparison between DistI and Dist Ī allows us to get the
information about the percentage of stable features that stayed fix after the additive Gaussian
noise, the percentage of the features that moved to the left neighbor quantization interval
and the percentage of the features that moved to the right neighbor quantization interval.
This information of the features behavior is very useful, it allows us to take into account
the percentage of the stable features that resist to non-malicious operations, simulated by an
additive Gaussian noise. Also, it allows us to control the parameters of blocks size division
and quantization step size to achieve an aimed level of the image hashing system robustness
against a given level of additive noise. Selected features will then be hashed in the step of
“Compression and Encryption” as shown in Figure 1. The “Compression and Encryption”
stage is achieved by the cryptographic hash function SHA-1 generating a final hash of 160-bits
with height level of security.

4.2 Experimental analysis of the quantization problem in a perceptual image hashing

system

In the experiments of the proposed scheme, the features are the means of different image
block sizes. The computed image block are sized: 4 × 4, 8 × 8 and 16 × 16. Then after, they
are quantized by different quantization step sizes: Q=1, Q=4 and Q=16. In other words, for
each given quantization step size, we tested different image block sizes against different levels
of the additive Gaussian noise. The experiments are tested for a large database of grayscale
images of size 512× 512. Figure 3 shows the variation of mean distribution for different image
block sizes and different levels of additive Gaussian noise in the case of quantization step size
Q = 4 applied for the image Figure 10(a). In the case of the quantization step size Q=4
and standard deviation σ=1 (Figure 10(b)) (Table 3), we observe that unstable mean block
features decrease when we increase the block size. We note also that the percent of stable
mean block features is significant even in the case of block size equals to 4 × 4 (Table 4). When
the standard deviation in the additive Gaussian noise increase (case of σ=5 shown in Table 3)
while keeping the visual contents of the noisy image the same as the original image 10(a), the
percentage of the stable mean block features decrease compared to the case of σ=1. When the
visual contents of the noisy/attacked image changes Figure 10(l) than the original one (case of
σ=40), we observe that a little of mean block features remain stable for all the block size that
we tested as shown in Table 3.

The obtained numerical results in Table 4 present the percentage of features that have not
moved and remain stable under different additive Gaussian noise and also those that drop
from the left neighbor quantization interval or from the right neighbor quantization interval
for each size of image block. As we can observe in Table 4, the percentage of stable features
that remain fixed after adding Gaussian noise decreases when the level of the noise increases.
For the same level of noise, the percentage of stable features increase when the the image
block size increase. Thus, if we set the quantization step size to Q = 1, we can take into
account the percentage of stable features that resist against tolerable level of the additive
Gaussian noise. For example, if we fix the quantization step size Q equals to value 1 and we
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Table 3. Variation of mean distribution for different image block sizes and different levels of
additive Gaussian noise in the case of quantization step size Q = 4.

consider that an image which undergos a tolerable manipulations equivalent to an additive
Gaussian noise whose a standard deviation equal to σ = 5, we choose a compromise between
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the percentage of stable features and the size of the blocks image decomposition. For the
block size equal 4 × 4 we have to take into account the maximum percent of stable features
≈ 30% and if the block size equals 8 × 8, we take into account the maximum percent of
stable features ≈ 54%. The highest percentage of stable features ≈ 77% can be taken if we
applied a 16 × 16 in the preprocessing image treatment. We tested our experiment on a large
database of grayscale images of size 512 × 512 and we observed that these values presented
in Table 4 can be obtained approximatively for others images of the same settings of image
blocks decomposition and Gaussian noise addition, also we noted that the percentages of
features that moved from the left and those moved from the right approximately equals
which coincides with the theoretical study presented in Section 3.2.2. Same remarks of
the approximately equalities of the percentages that moved from the left and the right
are observed in the cases of Q=4 and Q=16 than in the case of the quantization step size
Q=1. These obtained numerical values are almost approximately fixed in the same settings
parameters in the block image decomposition and the level of Gaussian noise addition because
we tested our experiments on large database grayscale images. These values are obtained for
the grayscale image shown in Figure 10(a) and can be obtained for any other grayscale image.

Based on the numerical results presented in Table 4, Figure 14 shows the percentage of the
features that remain stable under the additive Gaussian noise for different image blocks
decomposition. As we remark, to get a high percentage of of stable features, we have two
possibilities: either we apply great size of image block decomposition or the original image
undergos small additive Gaussian noise.

4x4 8x8 16x16
0

10

20

30

40

50

60

70

80

90

100

Block Size

St
ab

ili
ty

 p
er

ce
nt

 

 

σ=1

σ=5

σ=11

σ=14

σ=40

(a) Case of quantization step size Q=1.
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(b) Case of quantization step size Q=4.
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(c) Case of quantization step size Q=16.

Fig. 14. Stability percent of mean features for a fixed quantization step size for different block
sizes: (a) Case of quantization step sizes Q = 1, (b) Case of quantization step size Q = 4 and
(c) Case of quantization step size Q = 16 .
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Q Block Size σ (%) Not Moved
(%) Moved from the

Right
(%) Moved from the

Left

1

1 79.4128 10.4004 10.1868
5 30.5237 34.8633 34.6130

4 × 4 11 14.5569 42.5842 42.8589
14 11.4258 43.0176 45.5566
40 4.1382 47.5281 48.3337
1 90.7471 4.5410 4.7119
5 53.4180 23.3643 23.2178

8 × 8 11 29.0283 35.0586 35.9131
14 23.0957 36.3037 40.6006
40 7.6660 46.5332 45.8008
1 94.9219 2.1484 2.9297
5 77.4414 11.8164 10.7422

16 × 16 11 52.9297 23.5352 23.5352
14 41.2109 27.2461 31.5430
40 14.2578 43.5547 42.1875

4

1 94.6960 2.7710 2.5330
5 74.7864 12.8540 12.3596

4 × 4 11 50.4456 24.6826 24.8718
14 41.6382 28.4851 29.8767
40 15.9119 41.8457 42.2424
1 97.5098 1.2939 1.1963
5 87.6221 6.0547 6.3232

8 × 8 11 73.7061 12.7930 13.5010
14 66.2598 15.4297 18.3105
40 29.2725 35.8154 34.9121
1 98.9258 0.5859 0.4883
5 94.7266 3.0273 2.2461

16 × 16 11 88.9648 4.9805 6.0547
14 83.3984 7.7148 8.8867
40 45.7031 28.5156 25.7812

16

1 98.6694 0.6714 0.6592
5 93.9575 3.0273 3.0151

4 × 4 11 86.3953 6.6162 6.9885
14 82.8918 8.0811 9.0271
40 53.8086 22.5220 23.6694
1 99.4141 0.2686 0.3174
5 96.7529 1.5625 1.6846

8 × 8 11 93.5059 3.0518 3.4424
14 91.7969 3.5645 4.6387
40 74.6826 12.5244 12.7930
1 99.9023 0.0000 0.0977
5 98.7305 0.7812 0.4883

16 × 16 11 96.5820 1.3672 2.0508
14 95.2148 1.9531 2.8320
40 85.3516 6.9336 7.7148

Table 4. Numerical results for different levels of the additive Gaussian noise and image block
size in the case of the quantization step sizes Q = 1, Q = 4 and Q = 16.
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5. Conclusion

In this chapter, we introduced the main aim of the perceptual image hashing field in
image security. We presented the important merits and requirements of a perceptual
image hash function used for authentication wherein a formulation of the perceptual
image hashing problem was given. We dedicated a section to presenting an overview
of recent techniques that are used for perceptual image hashing. After, we presented
the different quantization techniques used for more robustness of a perceptual image
hashing scheme showing their advantages and their limitations. Finally, we presented a
theoretical model describing the behavior of the extracted image features to be hashed against
content-preserving/content-changing manipulations. In the presented analysis, we simulated
the manipulations that may undergo the original image by an additive Gaussian noise. We
tested the presented model by several experiments to demonstrate the effectiveness of the
proposed theoretical model giving practical analysis for robust perceptual image hashing.
The presented model is applied on image hashing based on statistical invariance of mean
block features. The obtained results confirms the theoretical study presented in Section 3.2.
Some approximations must be done to improve results. The same study can be generalized for
other features in block-based image hashing scheme like DCT domain features, DWT domain
features, etc.
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