
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



5 

Woven Fabrics Surface Quantification 

Jiří Militký 
Faculty of Textile Engineering, Technical University of Liberec, LIBEREC,  

Czech Republic 

1. Introduction 

It was revealed (Kawabata, 1980) that surface roughness is one of the main characteristics of 

fabric responsible for hand feeling. On the other hand it was found (Militký  Bajzík, 2000) 
that paired correlation between subjective hand ratings and surface roughness is statistically 
not significant. Anisotropy of mechanical and geometrical properties of textile fabrics is 
caused by the pattern and non-isotropic arrangement of fibrous mass. Fabric structural 
pattern characteristics are important from point of view of fabric appearance uniformity and 
have huge influence on the surface roughness, which is an important part of mechanical 

comfort (Militký  Bajzík, 2001). The complex structural pattern depends on the appearance 
of warp and weft on their surface, very often, one group of threads dominates. Typical 
examples of patterned fabric are cords where the so called “rows” parallel with machine 
direction are created. In the so called non-patterned fabrics the surface appearance or 

roughness is usually dependent on the weave and uniformity of fabric creation (Militký  
Bleša, 2008). From a general point of view, the fabrics rough surface displays two basic 
geometrical features: 

1. Random aspect: the rough surface can vary considerably in space in a random manner, 
and subsequently there is no spatial function being able to describe the geometrical 
form, 

2. Structural aspect: the variances of roughness are not completely independent with 
respect to their spatial positions, but their correlation depends on the distance. 
Especially surface of woven fabrics is characterized by nearly repeating patterns and 
therefore some periodicities are often identified. 

Periodic fluctuations of surface roughness can be spatially dependent due to arrangements 

of weft and warp yarns. Non-periodic type of spatial dependence is subtler.  

The main aims of this chapter are: 

 Characterization of fabrics surface profile i.e. “surface height variation (SHV) trace” 
by using of techniques based on the standard roughness evaluation, spatial analysis, 
Fourier regression, power spectral density (PSD) and utilization of fractal 
dimensions. 

 Indication of micro and macro roughness by using of aggregation principle or by using 
of selected frequencies in PSD. 

 The characterization of roughness anisotropy by using of profile spectral moments. 
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 Description of approach for contact-less evaluation of surface relief (macro roughness). 
This approach is based on the image analysis of especially prepared fabric images.  

The simulated “teeth” profiles with variable height and thickness is used for identification 
of all kind of roughness parameters capability. These parameters are applied for 
characterization of some real patterned and non-patterned fabrics surface roughness. 

2. Measurement of surface profiles 

Surface irregularity of planar textiles can be identified by contact and contact-less 

techniques. For contact measurements the height variation (as thickness meter) or 

measurement of force needed for tracking the blade on the textile surface is applied (Ajayi, 

1992, 1994; Militký  Bajzík, 2001, 2004). Contacts less measurements are usually based on 

the image analysis of fabric surfaces (Militký  Bleša, 2008). The subjective assessment of the 

fabrics roughness can be investigated as well (Stockbridge H.C. et. al, 1957). 

KES for hand evaluation (Kawabata 1980) contains measuring device for registration the 

surface height variation (SHV) trace. This device (shown in the fig. 1) is a part of system KES 

produced by company KATO Tech.  

 

Fig. 1. Device for measurement of fabric surface characteristics 

The main part of this device is contactor (see. fig. 2) in the form of wire having diameter 0.5 
mm. The contact force 10 g is used.  

 

Fig. 2. KES contactor for measuring of surface roughness 

This contactor touches on the sample under the standardized conditions. The up and down 
displacement of this contactor caused by surface roughness is transduced to the electric 
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signal by a linear transformer put at up ends of the contactor. The signal from the 
transducer is passed to the high pass digital filter having prescribed frequency response 
(wavelength being smaller than 1 mm). The sample is moved between 2 cm interval by a 
constant rate 0.1 cm/sec on a horizontal smooth steel plate with tension 20g/cm and SHV is 
registered on paper sheet. The SHV corresponds to the surface profile in selected direction 
(usually in the weft and warp directions are used for SHV creation).  

The preprocessing of SHV traces, from images of paper sheet resulting form KES can be 
divided into the two phases.  

 Digitalization of trace picture by image analysis system 

 Removing parasite objects (grid, axes, base line etc.) 

First of all the low L and high H surface frequency bands have to be specified. These cut-

off frequencies are related to the wavelength limits lL and lH i.e. 2 /L Ll    and 

2 /H Hl   . The low pass cut-off is related to Nyquist criterion i.e. / 2Ll dp  and the high 

pass cut-off is dependent on the maximum intersecting wavelength. For non-regular SHV, 

Hl L  has to be selected. The results of digitalization and parasite object removing is set of 

“clean” heights R(di) of fabric in places 0 <d <L (L is maximum investigated sample length 

and i = 1…M is number of places). The distance between places dp = di+1 - di is constant. For 

the case of Kawabata device L = 2 cm and dp=2/(N-1) cm. 

For deeper evaluation of SHV from KES device the rough signal from transducer has been 

registered and digitalized by using of LABVIEW system (Militký, 2007). Result is output 

voltage U(d) in various distances d from origin of measurements. For calibration of this 

signal the mean value E(U) and variances D(U) were estimated. From KES apparatus the 

mean thickness R and corresponding standard deviation SR were obtained. The 

transformation form voltage U(d) to thickness R(d) was realized by means of relation  

 
( ) ( )

( )  
( )

R
U d E d

R d R S
D d

 
    

 
 (1) 

The result of this treatment is raw thickness R(d) in various distances d from origin.  

The technique of roughness evaluation will be demonstrated on the analysis of the surface 
trace SHV of twill fabric (see fig 3) in the machine direction. 

 

Fig. 3. Twill fabric used for roughness evaluation 
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The raw SHV trace of twill fabric is shown in the fig. 4. 
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Fig. 4. SHV trace from LABVIEW 

Similar approach is based on the measurement of R(d) by Shirley step thickness meter with 

replacement of measuring head by blade (Militký  Bajzík, 2001). The Shirley step thickness 

meter is shown in the fig. 5.  

 

Fig. 5. The step thickness meter SDL M 034/1 

The principle of profile roughness evaluation by the simple accessory to the tensile testing 

machine is registration of the force F(d) needed for tracking the blade on the textile surface 

(Militký  Bajzík, 2004). Roughly speaking, the F(d) should be proportional to the R(d). In 

reality, the F(d) profile is different due to small surface deformation caused by the tracked 

blade. Based on the complex testing the following working conditions have been selected: 

Blade contact pressure 0.2 mN 
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Blade movement rate 0.6 mm/s 

Sampling frequency 50 s-1 (length between samples d = 0.013 mm) 
Investigated length T = 30 mm 

The arrangement of this accessory to the tensile testing machine is shown in fig. 6. 

 

Fig. 6. Accessory for roughness evaluation by the tensile testing machine 

Output from measurements is sequence of loads F(di). 

Variation of thickness R(di) or loads F(di) can be generally assumed as combination of 

random fluctuations (uneven threads, spacing between yarns, non uniformity of production 

etc.) and periodic fluctuations caused by the repeated patterns (twill, cord, rib etc.) created 

by weft and warp yarns. For description of roughness the characteristics computed from 

R(d) or F(d) in places 0< d< T (T is maximum investigated sample length and M is number of 

places ) are used. 

Profile of textile surfaces at given position along machine direction can be obtained by the 

analysis of especially prepared fabric images. The system RCM (Militký  Mazal, 2007) is 

composed from CCD camera, lighting system and special sample holder controlled by a 

personal computer (Fig. 7).  

 

Fig. 7. Details of RCM apparatus 
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For good image creation the suitable lighting (laser from the top) and fabric arrangement 
(bend around sharp edge) were selected (see fig. 8). 

  

Fig. 8. Details of lighting system 

Result after image treatment is so called “slice” which is the roughness profile in the cross 
direction at selected position in machine direction (the line transect of the fabric surface). 
The system RCM offers reconstruction of surface roughness plane in two dimensions. For 
this purpose, the sample holder is step by step moved in controlled manner. From set of 

these profiles, it is possible to reconstruct the surface roughness plane (Militký  Mazal, 
2007).  

A finished cord fabric with relatively good structural relief was selected for demonstration 
of relief creation system capability. The original fabric surface is shown in the fig. 9. 

 

Fig. 9. Roughness profile in the cross direction of tested fabric 

Individual relief slices were created by combination of threshold, set of morphological 

operations (erosion, dilatation) and Fourier smoothing to the 30 terms (Quinn  Hannan, 

2001). Result of these operations is vector of surface heights in cross direction at specified 

machine direction (see fig. 10). 

 

Fig. 10. Slice after morphological operations and cleaning 
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Output of data pre-treatment phase is array of slices i.e. array of vectors Rj(i) where index i 
corresponds to the position in jth slice. From this array it is simple to reconstruct whole 
surface relief (see. fig. 11). 

 

Fig. 11. Reconstructed roughness surface 

Above described devices are based on the measurements of surface height variation (SHV) 
or force needed for tracking blade across of surface in given direction. The analysis of 

surface images in two dimensions is based on the different principles (Militký  Klička, 
2007). These methods are not discussed in this chapter.  

3. Surface roughness 

There exists a vast number of empirical profile or surface roughness characteristics suitable 

often in very special situations (Quinn  Hannan, 2001; Zhang & Gopalakrishnan, 1996). 

Some of them are closely connected with characteristics computed from fractal models as 

fractal dimension and topothesy (Davies, 1999). A set of parameters for profile and surface 

characterization are collected in (Militký  Bajzík, 2003, Militký  Mazal, 2007). Parameters 

for profile and surface characterization can be generally divided into the following groups: 

 Statistical characteristics of surface profile distribution (variance, skewness, kurtosis)  

 Spatial characteristics as autocorrelation or variogram (denoted in engineering as 
structural function). Analysis is here in fact based on the analysis of random field 
moment characteristics of second order. 

 Spectral characteristics as power spectral density or Fourier analysis. 

 Characteristics of overall complexity based on random linear stationary processes, self-
affined processes, long-range dependencies and on the theory of chaotic dynamics or 
nonlinear time series.  

General surface topography is usually broken down to the three components according to 
wavelength (or frequency). The long wavelength (low frequency) range variation is denoted 
as form. This form component is removed by using of polynomial models or models based 
on the form shape. The low wavelength (high frequency) range variation is denoted as 
roughness and medium wavelength range variation separates waviness. The most common 
way to separate roughness and waviness is spectral analysis. This analysis is based on the 

Fourier transformation from space domain d to the frequency domain 2 / d  .  
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Data from contact based measurements of roughness often represents height variation on 
line transects of the surface. Usually, it is possible to obtain structural data for one direction 
of the fabric, whereas the results on the other direction do not give clear information about 
the respective structural patterns. Some contacts-less methods based on the image analysis 
are found to be capable for measuring fabric structural pattern in the whole plane.  

Standard methods of surface profile evaluation are based on the relative variability 
characterized by the variation coefficient - analogy with evaluation of yarns mass 
unevenness or simply by the standard deviation. This approach is used in Shirley software 
for evaluation of results for step thickness meter. 

Common parameters describing roughness of technical surfaces are given in the ISO 4287 
standard (Anonym, 1997). For characterization of roughness of textiles surfaces the mean 

absolute deviation MAD (SMD as per Kawabata) is usually applied (Meloun  Militký, 
2011). The descriptive statistical approach based on the assumptions of independence and 
normality leads to biased estimators, if the SHV has short or long-range correlation. There is 
therefore necessity to distinguish between standard white Gauss noise and more complex 
models. For description of short range correlation the models based on the autoregressive 
moving average are useful (Maisel, 1971). The long-range correlation is characterized by the 
fractal models (Beran, 1984; Whitehouse, 2001). The deterministic chaos type models are 
useful for revealing chaotic dynamics in deterministic processes where variation appears to 
be random but in fact predictable. For the selection among above mentioned models the 
power spectral density (PSD) curve evaluated from experimental SHV can be applied (Eke, 

2000; Quinn  Hannan, 2001).  

Especially the fractal models (Mandelbrot  Van Ness, 1968) are widely used for rough 
surface description. For these models the dependence of log (PSD) on the log (frequency) 
should be linear. Slope of this plot is proportional to fractal dimension and intercept to the 
so-called topothesy. White noise has dependence of log (PSD) on the log (frequency), nearly 
horizontal plateau for all frequencies (the ordinates of PSD are independent and 
exponentially distributed with common variance). More complicated rough surfaces can be 
modeled by the Markov type processes. For these models the dependence of log (PSD) on 
the log (frequency) has plateau at small frequencies, then bent down and are nearly linear at 
high frequencies (Sacerdotti et. al, 2000). A lot of recent works is based on the assumption 
that the stochastic process (Brownian motion) can describe fabrics surface variation ( 
Sacerdotti et. al, 2000). It is clear that for the deeper analysis of rough surface, the more 
complex approach should be used. 

4. Simulated “teeth” profiles 

The surface of cord fabrics has typical “teeth” in the machine direction. For indication of the 
influence of geometry of teeth on the values of the roughness characteristics the simulated 
roughness profile in the cross direction was created. The standard pattern is composed from 
two parts (see. fig. 12). 

The top height of one tooth is selected as 1. Bottom height of one tooth is equal to the value 
of ym. The tooth size is therefore 1 – ym. The length of distance between teeth is equal to am 
and tooth thickness is equal 1- am. Total length of standard pattern equal to the 1 and 100 
individual values are generated, i.e. the standard pattern is characterized by 100 points with 
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constant increment. Teeth profile is then composed from 11 repetitions of standard pattern. 

The simulated teeth profiles were generated for the set of value 0.1  am   0.9,   

0.1  ym   0.9   with increment 0.1. The tooth profile for the case am = ym = 0.1 is shown 

in the fig. 13a and for the case of am = ym = 0.9 is shown in the fig. 13b. 

 

Fig. 12. Standard pattern 

  

a)      b) 

Fig. 13. Detail of teeth profile for a) am = ym = 0.1 and for b) 

It can be easily derived that the mean height Ra of teeth profile is equal to the  

  1 1aR am ym    (2) 

Corresponding standard deviation SD is equal to 

     2 2 21
100  100(1 ) 100

100
aSD ym am ym am R     (3) 

Some of the other characteristics can be analytically expressed as well but expressions are 

complicated. Generated teeth profiles were used for computation of profiles characteristics. 

The dependence of these characteristics on the am and ym are shown in subsequent 

paragraphs. 
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5. Basic assumptions testing 

Consider a series R(i). Let this series is one “spatial” realization of random process y = R(d). 
For analysis of this series it is necessary to know if some basic assumptions about behavior 
of underlying random process can be accepted or not. These basic assumptions are (Maisel, 
1971):  

 stationarity 

 ergodicity 

 independence 

In fact the realizations of random process are Rj(i), where index j correspond to individual 
realizations and index i corresponds to the distance di. In the case of ensemble samples there 
are values Rj(i) for i = const. and j = 1. M at disposal.  

For these data there is no problem to use standard statistical analysis of univariate samples 
for creation of data distribution e.g. probability density function p(R(i)) or computation of 
statistical characteristics as mean value E(R(i)) or variance D(R(i)). In majority of applications, 
the ensemble samples are not available and statistical analysis is based on the one spatial 
realization Rj(i) for j = 1 and i = 1.N. For creation of data distribution and computation of 
moments, some additional assumptions are necessary.  

The basic assumption is stationarity. The random process is strictly stationary if all the 
statistical characteristics and distributions are independent on ensemble location. The wide 
sense stationarity of g-th order implies independence of first g moments on ensemble 
location.  

The second order stationarity implies that: 

- mean value E(R(i)) = E(R) is constant (not dependent on the location di). 
- variance D(R(i)) = D(R) is constant (not dependent on the location di). 
- autocovariance, autocorrelation and variogram, which are functions of di and dj are not 

dependent on the locations but on the lag i jh d d   only.  

For example the covariance is ( ( ) ( )) ( )i i hc R d R d c h  . For ergodic process the “ensemble” 

mean can be replaced by the average across distance (from one spatial realization) and 
autocorrelation R(h) =0 for all sufficiently high h. 

Ergodicity is very important, as the statistical characteristics can be calculated from one 
single series R(i) instead of ensembles which frequently are difficult to be obtained. Given a 
R(i) series, the selection of the appropriate approach for its analysis is not a trivial task 
because the mathematical background of the underlying process is unknown. Moreover, the 
R(i) are corrupted by noise and consist of finite number of sample values. The task to analyze 
real data is often to resolve the so-called inverse problem, i.e., given a series R(i), how to 
discover the characteristics of the underlying process. Three approaches are mainly applied:  

 first based on random stationary processes,  

 second based on the self affine processes with multiscale nature, 

 third based on the theory of chaotic dynamics.  

In reality the multiperiodic components are often mixed with random noise.  
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Before choosing the approach, some preliminary analysis is needed mainly to test the 

stationarity and linearity. This is important as some kind of stochastic (self affine) processes 

with power-law shape of their spectrum may erroneously be classified as chaotic processes 

on the basis of some properties of their non-linear characteristics, e.g., correlation dimension 

and Kolmogorov entropy. In this sense, the tests for stationarity and linearity may be 

regarded as a necessary preprocessing in order to choose an appropriate approach for 

further analysis. Prior to selecting any method for data analysis, some simple tests are useful 

to apply on the series R(i). The first one may be to observe the R(i) distribution e.g. via 

histogram as simple estimator of probability density function (pdf) or by using kernel 

density estimator (Meloun  Militký, 2011). The histogram of series R(i) corresponding to the 

raw SHV trace of twill weave fabric (shown in the fig. 4) is shown in fig. 14. 
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Fig. 14. Histogram and pdfs of raw SHV for twill fabric  

In this figure, the solid line corresponds to the Gaussian pdf with parameters: mean = 

0.000524 and standard deviation = 0.0358. The dotted line is nonparametric kernel density 

estimator wit optimal bandwidth h= 0.0243. The bimodality pattern is clearly visible. 

In most of the methods for data processing based on stochastic models, normal distribution 

is assumed. If the distribution is proved to be non-normal (according to some test or 

inspection), there are three possibilities:  

1. the process is linear but non-gaussian;  
2. the process has linear dynamics, but the observations are as a result of non-linear 

”static” transformation (e.g. square root of the current values)  
3. the process has non-linear dynamics. 

It is suitable to construct the histograms for the four quarters of data separately and inspect 

non-normality or asymmetry of distribution. The statistical characteristics (mean and 

variances) of these sub series can support wide sense stationarity assumption (when their 

values are statistically indistinguishable).  
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The simple nonparametric test of stationarity uses the reverse arrangement evaluation. Test 
is based on the computation of times that R(i) >R(j) with i < j for all i. If the sequence of R(i) are 
independent identically distributed (i.i.d) random variables, the number of reverse 
arrangements NR is random variable with mean E(NR) = N(N-1)/4 and variance D(NR) = 
N(2N+5) (N+1)/72. If observed number NR is significantly different from E(NR), the non-
stationarity (trend) is indicated. For rough SHV from fig. 4 reversation test statistic NT = 
2.328 and upper limit for P=95%, is 1.96 only. The stationarity is therefore not acceptable.  

The alternative “run test” can detect a monotonic trend in a series R(i) i = 1..N. A “run” is 
defined as a sequence of identical observations that is followed or preceded by a different 
observation or no observation at all. First the median med (R) of the observations R(i) is 
evaluated and the new series z(i) is derived from R(i) as 

z (i) = 0 if R(i) < med (R) 

z (i) = 1 if R(i) ≥ med (R) 

Then the member of runs in z(i) is computed. If R(i) is stationary random process, the 

number of runs NT is a random variable with mean E(NT) = N/2 + 1 and variance D(NT) = 

(N(N – 2)) /(4(N-1)). As observed number of runs NT is significantly different from E(NT). It 

indicates nonstationarity because of the possible trend. For rough SHV from fig. 4, NR= 

18.14 and upper limit for P=95% is 1.96 only. The stationarity is here not acceptable. 

Very simple check of presence of first order autocorrelation is creation of zero order 

variability diagram which is plot of R(i+1) on R(i). In the case of independence the random 

cloud of points appears on this graph. Autocorrelation of first order is indicated by linear 

trend.  

For characterization of independence hypothesis against periodicity alternative the 

cumulative periodogram can be constructed. Cumulative periodogram is unbiased estimate 

of the integrated spectrum 
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The function C(fi) is called the normalized cumulative periodogram (construction of I(fi) is 
described in par. 7). For white noise series (i.i.d. normally distributed data), the plot of C(fi) 
against fi would be scattered about a straight line joining the points (0, 0) and (0.5, 1). 
Periodicities would tend to produce a series of neighboring values of I(fi) which were large. 
The result of periodicities therefore bumps on the expected line. The limit lines for 95% 

confidence interval of C(fi) are drawn at distances 1.36 / ( 2) / 2N  . For rough SHV from 

fig. 4 cumulative periodogram is shown in fig. 15. 

6. Aggregation principle  

In the unevenness analysis, it is common to aggregate raw data. This is equivalent to cutting 
the material to pieces and measurement of variability between pieces only. In the case of  
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Fig. 15. Cumulative periodogram of raw SHV for twill fabric 
It is visible that the raw SHV is approximately periodic. 

roughness aggregation is tool for smoothing of roughness profiles and avoiding local (small 

scale) roughness. The principle of aggregation is joining of original data R(i) into non 

overlapping blocks or application of window of length L. By using of aggregation the 

resolution is decreased and roughness profile is created without local roughness variation. 

By averaging of original data Ri = R(i) in non overlapping blocks having L values the 

aggregated series are constructed. Aggregated series ( )( )LR i  are created according to 

relation  

  ( ) 1
( ) ( (  1) .. (  ))   1,  2,  3..LR i R i L L R i L L

L
       (5) 

For rough SHV from fig. 4, aggregate series for aggregation length L =2 and 10 are shown in 

fig. 16. 

It is known (Beran, 1984; Cox, 1984) that variance of aggregated series v(L) is connected with 
auto correlation structure of original series 

 
1

( )
2

1 1

2
( )

L s
L

s h

v
v c h

L L
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Here c(h) is autocorrelation function defined as ( ) cov( ( ) * ( ))c h R i R i h   and lag * ih L d . 

Very important is lag one autocorrelation function for aggregated series 
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Fig. 16. Aggregate series ( L =2 and 10) for twill fabric 

The nature of original random series can be explained by using of characteristics of 
aggregated series. There are three main groups of series: 

1. Series of random independent identically distributed (i.i.d.) variables. For this case are 
all c(h) =0, for lags h = 1,2,.. and data are uncorrelated. This is ideal case for roughness 
analysis and it is implicitly assumed as valid in computation of basic geometric 
characteristics. 

2. The short-range dependent stationary processes. In this case the sum of all c(h)  
h= 1, 2, … is convergent 

3. The long-range dependent stationary processes. In this case the sum of all c(h) 
h= 1, 2, … is divergent 

For short-range dependent stationary processes, the first order autocorrelation 
( )(1) 0  for  Lr L  . The same is valid for autocorrelation of all lags h. The aggregated 

series ( )( )LR i  therefore tends to the second order pure noise as L  . For large L variance 

( ) /Lv v L . The autocorrelation structure of aggregated series is decreased until limit of no 

correlation. Typical model of short-range processes are autoregressive moving average 
processes of finite order. For the higher L, data are approaching to the i.i.d. case. 

For long-range dependent processes, variance ( )   as LL v L  . 

Then the autocorrelation structure is not vanishing. For these processes, it is valid that for 
sufficiently large L  

 ( )( )  and Lc h h v L     (8) 

where 0 1   is valid for stationary series. For non-stationary case   can be outside of 

this interval. For the long-range processes correlation structure is identical for original and 
aggregate series. For strictly second order self-similar processes,  
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 ( ) (1 ) (2 ) 
2

v
c h h       (9) 

For the higher L the correlation structure remains the same and assumption of i.i.d. cannot 

be used. Instead of   the so-called Hurst exponent 1 0.5 *H    is frequently used. 

Where H = 0, this denotes a series of extreme irregularity and H = 1 denotes a smooth series.  

For rough SHV from fig. 4 dependence of log ( )Lv  on aggregation length L shown in fig. 17. 
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Fig. 17. Dependence of log ( )Lv  on L for twill fabric 

It is clear that for higher L this dependence is scattered and corresponding slope is over 1.  

The long range dependency is characteristic for self affine processes as well. Self similar 
processes are characterized by the fractal dimension FD. For self-affine processes, the local 
properties are reflected in the global ones, resulting in the well known relationship H + FD = 
2. Long-memory dependence, or persistence, is associated with the case H Є (0.5 ,1) and 
linked to smooth curves with low fractal dimensions. Rougher curves with higher fractal 
dimensions occur for antipersistent processes with H Є (0, 0.5).  

If 1 ( )   0c h h for    , the process has called fractal dimension 2 / 2FD   . 

Generally, the l-th central moment of aggregated long range dependent series is defined as 
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1

1
( ( ) )

/

N L
L L l

l
k

M abs y k y
N L 

   (10) 

The ( )L
lM  asymptotically behaves like power function ( ) ( 1)L l H

lM L  . If the series has finite 

variance and no long-range dependence, then H = 0.5 and the slope of the fitted line in log-

log plot of ( )L
lM  on L should be – l/2. It is assumed that both N and N/L are large. This 

ensures that both the length of each block and number of blocks is large. In practice the 
points at very low and high ends of the plot are not used for fitting least squares line. 
Indeed, short-range effects can distort the estimates of H if the low end of plot is used. 
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One of the best methods for evaluation of   or H is based on the power spectral density  

 
1

( ) ( ) exp(   )   - < <
2

h

g c h i h d     






   (11) 

For small frequency range, it is valid that 

 (1 )( )    0g       (12) 

and for very high frequency range  

 1( )    g       (13) 

The parameters   and   or are evaluated from empirical linear representation of 

dependence of the log of power spectral density (PSD) on log frequency in suitable range. 

The parameter   is often evaluated from empirical representation of the log of power 

spectral density 

 0 1log( ( )) (1 ) log( )  ..  p
pg a a a            (14) 

For long range processes, it is ideal to have all aj = 0, except a0. 

For rough SHV from fig. 4 dependence of log( ( ))g   on log frequency is shown in fig. 18. 
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Fig. 18. Dependence of log( ( ))g   on log frequency for twill fabric 

It is visible that the scatter of data is very big. The solid line in fig. 18 is regression line 

created for low frequency range data set. The slope is equal to - 0. 2831. Corresponding  = 

0.7169 and Hurst exponent is 0.6416. 
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7. Classical roughness characteristics 

Because the basic output form RCM is set of “slices” (roughness profiles in the cross 
direction at selected position in machine direction) it is possible to compute all profile 
roughness characteristics separately for each slice and show the differences between slices. 
Another possibility is to use the reconstructed surface roughness plane for evaluation of 
planar roughness.  

There are two reasons for measuring surface roughness. First, is to control manufacture and 
is to help to ensure that the products perform well. In the textile branch the former is the 
case of special finishing (e.g. pressing or ironing) but the later is connected with comfort, 
appearance and hand.  

From a general point of view, the rough surface display process which have two basic 
geometrical features: 

 Random aspect: the rough surface can vary considerably in space in a random manner, 
and subsequently there is no spatial function being able to describe the geometrical 
form, 

 Structural aspect: the variances of roughness are dependent with respect to their spatial 
positions and their correlation depends on the distance. Especially surface of textile 
weaves is characterized by nearly repeating patterns and therefore some periodicities 
are often identified. 

The random part of roughness can be suppressed by proper smoothing. In this case the only 
structural part will be evaluated. 

From the individual roughness profiles, it is possible to evaluate a lot of roughness 
parameters. Classical roughness parameters are based on the set of points R(dj ) j =1.. N 
(SHV) defined in the sample length interval Ls. The distances dj are obviously selected as 
equidistant and then R(dj) can be replaced by the variable Rj . For identification of positions 
in length scale, it is sufficient to know that sampling distance ds = dj - dj-1 = Ls/N for j>1.The 
standard roughness parameters used frequently in practice are (Anonym, 1997): 

i. Mean Absolute Deviation MAD. This parameter is equal to the mean absolute difference 
of surface heights from average value (Ra). For a surface profile this is given by, 

 
1

j
j

MAD R R
N

   (15) 

This parameter is often useful for quality control and textiles roughness characterization 
(called SMD (Kawabata, 1980)). However, it does not distinguish between profiles of 
different shapes. Its properties are known for the case when Rj’s are independent identically 
distributed (i. i. d.) random variables. For rough SHV from fig. 4, dependence of SMD on 
aggregation length L is shown in fig. 19. 

ii. Standard Deviation (Root Mean Square) Value SD. This characteristics is given by 

 21
( )j

j

SD R R
N

   (16) 
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Fig. 19. Dependence of SMD on the aggregation length L for twill fabric 

The influence of teeth profile parameters am and ym on MAD is shown in the fig. 20. 
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Fig. 20. Influence of am and ym on the MAD 

Its properties are known for the case when Rj’s are independent identically distributed (i.i.d.) 

random variables. One advantage of SD over MAD is that for normally distributed data, it 

can be simple to derive confidence interval and to realize statistical tests. SD is always 

higher than MAD and for normal data SD = 1.25 MAD. It does not distinguish between 

profiles of different shapes as well. The parameter SD is less suitable than MAD for 

monitoring certain surfaces having large deviations (corresponding distribution has heavy 

tail). 

The influence of teeth profile parameters am and ym on the square of SD (i.e. variance) is 
shown in the fig. 21. 

It is visible that the MAD and SD have similar dependence on the tooth parameters am and 

ym. SD is always higher than MAD and for normal data SD = 1.25 MAD. It does not 

distinguish between profiles of different shapes as well. The parameter SD is less suitable 
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than MAD for monitoring certain surfaces having large deviations (corresponding 

distribution has heavy tail). 
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Fig. 21. Influence of am and ym on the variance (square of SD) 

iii. The Standard Deviation of Profile Curvature PC. This quantity called often as waviness 
is defined by the relation 

 

22

2

1 ( )

j j

d R x
PC

N dx

 
   

 
  (17) 

The curvature is characteristics of a profile shape. The PS parameter is useful in tribological 
applications. The lower the slope, the smaller will be the friction and wear. Also, the 
reflectance property of a surface increases in the case of small PC. 

For rough SHV from fig. 4 dependence of PC on aggregation length L is shown in fig. 22. 
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Fig. 22. Dependence of SMD on aggregation length L for twill fabric 

The influence of teeth profile parameters am and ym on the PS are shown in the fig. 23. 
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Fig. 23. Influence of am and ym on the PC 

It is visible that the growing of am (i.e. decreasing of tooth thickness) leads to the increase of 
PC. Lowest values of PC are around ym equal to the 0.5. This behavior is “inverse” to the 
behavior of MAD and SD. The PC parameter is useful in tribological applications. The lower 
the slope the smaller will be the friction and wear. Also, the reflectance property of a surface 
increases in the case of small PC. 

The MAD and PC characteristics for all slices for cord fabric (see fig. 11) are shown in  
the fig. 24. 

  

a)     b) 

Fig. 24. The a) MAD and b) PC values for all slices of cord fabric (fig. 11) 

In the case of MAD, a systematic trend is visible. The variation of PC is nearly random. 

For the characterization of hand, it will be probably the best to use waviness PC. The 
characteristics of slope and curvature can be computed for the case of fractal surfaces from 
power spectral density, autocorrelation function or variogram. 
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8. Spectral analysis 

The primary tool for evaluation of periodicities is expressing of signal R(d) by the Fourier 

series of sine and cosine wave. It is known that periodic function given by equally spaced 

values Ri, i = 0, ..., N – 1 can be generally expressed in the form of Fourier series at Fourier 

frequencies fj = j/N, 1 ≤ j ≤ [N/2]. If N is odd with N = 2m + 1, the Fourier series has form 

(Quinn  Hannan, 2001) 

  0
1

cos(  )  sin(  )     0,.. - 1
m

i k k k k
k

R a a i b i i N 


     (18) 

where 2  2  /   1,.. k kf k N k m      k = 1, ..., m are angular frequencies. The eqn. (17) is 

for known frequencies harmonic linear regression model with 2m + 1 parameters (intercept 

and 2m sinusoids amplitudes at the m Fourier frequencies). The sinusoid with the j-th 

Fourier frequency completes exactly j cycles in the span of the data. Due to selection of 

Fourier frequencies all regressors (sin(.) and cos(.) terms) are mutually orthogonal, so that 

standard least-squares method leads to estimates 0a R  and 

 

1 1

0 0

2  cos(  ) 2  sin(  )

       1,..

N N

i k i k
i i

k k

R i R i

a b k m
N N

 
 

   
 

 (19) 

Basic statistical characteristic in the frequency domain is power spectral density PSD defined 

as Fourier transform of covariance function. 

The simple estimator of power spectral density is called periodogram. The periodogram of 

an equally spaced series Ri, i = 0, ..., N – 1 is defined by equation 

 

2 21 1

0 0

1 1
( )  cos(  )  sin(  )

N N

i i
i i

I R i R i
N N

  
 

 

   
       

   
   (20) 

and can be expressed in the alternate form 

 
2 2( ) ( )   1,..

4
k k k

N
I a b k m     (21) 

For rough SHV from fig. 4 periodogram is shown in fig. 25. 

The periodogram ordinates correspond to analysis of variance decomposition into m 

orthogonal terms with 2 degrees of freedom each because, 

  
1 2

1 0

( ) 0.5 
m N

k i
k i

I R R


 
    (22) 

The normalized periodogram with ordinates 
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Fig. 25. Periodogram for twill fabric 

 2( ) / ( ) / ( )k k k i
k i

I I A R R       (23) 

is then simply interpretable. The k-th ordinate gives the proportion of the total variation due 

to sinusoidal oscillation at the k-th Fourier frequency, and thus is a partial correlation 

coefficient R2. The so called scree plot is in fact dependence of relative contribution to the 

total variance from individual Fourier frequencies arranged according to their importance. 

For rough SHV from fig. 4, scree plot is shown in fig. 26. 
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Fig. 26. Scree plot for twill fabric 

www.intechopen.com



 
Woven Fabrics Surface Quantification 

 

143 

The well-known trigonometric identity cos (t- s) = (cos t)(cos s) + (sin t)(sin s) allows to write 
each paired sinusoid term as 

 cos(  )  sin(  )  cos(  )k k k k k k ka t b t A t       (24) 

with 2 2
k k kA a b   and tan( ) /k k kb a  . Coefficients Ak creates amplitude spectrum and 

coefficients k  creates phase spectrum.  

The influence of teeth profile parameters am and ym on the amplitude A1 of most important 
Fourier term are shown on the fig. 27. 
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Fig. 27. Influence of am and ym on the A1 

It is visible that the growing of am (i.e. decreasing of tooth thickness) leads to the decrease of 
the amplitude A1. Highest values of the amplitude A1 are around ym equal to the 0.5 (similar 
behaviour as in the case of MAD). The influence of teeth profile parameters am and ym on 
the phase 1  of most important Fourier term are shown on the fig. 28. 

It is visible that the growing of am (i.e. decreasing of tooth thickness) have the small 
influence on the phase 1 The influence of ym on the phase 1 is more important with 

minimum at ym = 0.5.  

The periodogram is unbiased only in case of Gaussian noise. The variance of periodogram 
does not decrease with increasing N and has the form  

 

2
2 sin(  )

( ( )) ( ) 1
 sin( )

N
D I I

N

 


      
   

 (25) 
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In some cases, it is useful to express Fourier series in the complex exponential form (Quinn 
 Hannan, 2001). 

  
1

exp(   )   0,.. - 1
m

i k k
k

R C i j i N


   (26) 

where j is imaginary unit and complex coefficients Ck have real and imaginary part 

Re Imk k kC j  . The values Ck creates the complex discrete spectrum. 
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Fig. 28. Influence of am and ym on the 1  

For discrete data the Fast Fourier Transform (FFT) leads to transformed complex vector 

DRF. The vector DRF can be decomposed to the high and low frequency component. After 

back transformation into original, the SHV part corresponding to noise (high frequencies) 

and to waviness (low frequencies) can be separated.  

For rough SHV from fig. 4 SHV component is corresponding to waviness in fig. 29 and SHV 

component corresponding to noise is in fig. 30. The number of high frequency components 

equal to 20 was selected.  

Some other techniques for separation of roughness, waviness and form are based on 

smoothing or digital filtering (Raja et. al, 2002). The smoothing by neural network can be 

used as well. For estimation of smoothing degree, the minimization of the mean error of 

prediction is usually applied (Meloun  Militký, 2011). 
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Fig. 29. SHV component corresponding to waviness for twill fabric 
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Fig. 30. SHV component corresponding to noise for twill fabric 

Vector DRF may be used for creation of power spectral density (PSD) 

 2 2 2( )  ( ) / ( ) /g DRF conj DRF T abs DRF T    (27) 

where conj(.) denotes conjugate vector. The g() is estimator of spectral density function and 
contains values corresponding to contribution of each frequency to the total variance of R. 

The periodogram and power spectral density are primary tool for evaluation of periodicities. 

Frequency of global maximum on the ( )   or   ( )I g   graphs is corresponding to the length of 

repeated pattern and height corresponds to the nonuniformity of this pattern.  
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Spectral density function is therefore generally useful for evaluation of hidden periodicities. 

The statistical geometry of an isotropic random Gaussian surface could be expressed in the 

terms of the moment of power spectral function called spectral moments (Zhang  

Gopalakrishnan, 1996). 

 ( )
L

H

k
km g d




     (28) 

The mo is equal to the variance oh heights and m2 is equal to the variance of slopes between 

bound frequencies. The frequencies H  and L  are high and low frequency bounds of 

integration of the spectrogram. These frequency bound can be converted to the wavelength 

limits. The long wavelength limit is 2 /H Hl    and the short wavelength limit is 

2 /L Ll   . For rough SHV from fig. 4, the selected spectral moments have the following 

values: 

 zero moment = 0.0006234. 

 first moment = 0.2755. 

 second moment = 0.0865. 

 fourth moment = 6.387e-006. 

Corresponding spectral statistical characteristics are: 

 spectral variance = 0.010637. 

 spectral skewness = -0.0006368. 

 spectral kurtoisis = 0.000342. 

The roughness Rq = SD (standard deviation) is simply 0Rq m and the density of summits 

is defined as 

 4

2 6  3

m
DS

m 
  (29) 

9. Analysis in spatial domains 

A basic statistical feature of R(d) is autocorrelation between distances. Autocorrelation 

depends on the lag h (i.e. selected distances between places of force evaluation). The main 

characteristics of autocorrelation is covariance function C(h)  

 ( ) cov( ( ), ( )) (( ( ) ( ( )) ( ( ) ( ( ))))C h R d R d h E R d E R d R d h E R d        (30) 

and autocorrelation function ACF(h) defined as normalized version of C(h).  

 
cov( (0) ( )) ( )

( )
(0)

R R h c h
ACF h

v c
   (31) 

ACF is one of main characteristics for detection of short and long-range dependencies in 

dynamic series. It could be used for preliminary inspection of data. 
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The computation of sample autocorrelation directly from definition for large data is tedious. 
The spectral density is the Fourier transform of covariance function C(h)  

 
0

1
( ) ( ) exp(   )

2
g C t i t dt 





   (32) 

The ACF is inverse Fourier transform of spectral density.  

 
0

( ) ( ) exp(   )ACF h S i h d  


   (33) 

These relations show that characteristics in the space and frequency domain are 
interchangeable.  

For rough SHV from fig. 4 is ACF till lag 320 component in the fig. 31.  
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Fig. 31. ACF for twill fabric  

The dashed lines in fig. 31 are the approximate 95% confidence limits of the autocorrelation 
function of an IID process of the same length. Sample autocorrelations lying outside the 95% 
confidence intervals of an IID process are marked by black circles. The slow decrease of ACF 
for large lags indicates long-range correlation, which may be due to non-stationarity and/or 
dynamic non-linearity. 

In spatial statistics variogram is more frequent (Kulatilake et. al, 1998) which is defined as 
one half variance of differences (R(d) - R(d+h))  

 ( ) 0.5 [ ( ) ( )]h D R d R d h     (34) 

The variogram is relatively simpler to calculate and assumes a weaker model of statistical 
stationarity, than the power spectrum. Several estimators have been suggested for the 
variogram. The traditional estimator is 
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1

1
( ) ( ( ) ( )

2 ( )

M h

j j h
j

G h R d R d
M h




   (35) 

where M(h) is the number of pairs of observations separated by lag h. Problems of bias in 
this estimate when the stationarity hypothesis becomes locally invalid have led to the 
proposal of more robust estimators. It can be summarized that simple statistical 
characteristics are able to identify the periodicities in data but the reconstruction of “clean” 
dependence is more complicated.  

10. Roughness anisotropy 

Above-mentioned roughness characteristics have implicitly assumed that surface roughness is 
isotropic phenomenon. This assumption can be accepted in the cases when surfaces have the 
same micro geometric properties no matter what direction they are investigated in. Majority of 
textiles structures have anisotropic nature. Surface of woven fabric is clearly patterned due to 
nearly regular arrangements of weft and warp yarns. The special non-random patterns are 
visible on knitted structures as well. It is well known that anisotropy of mechanical and 
geometrical properties of textile fabrics are caused by the pattern and non-isotropic 
arrangement of fibrous mass. Periodic fluctuations of surface heights can be spatially 
dependent due to arrangements of yarns. Non-periodic complexity spatial dependence is 
subtler. The roughness characteristics computed from SHV trace are therefore dependent on 
the direction of measurements i.e. angle of transect line according to fabric cross direction 
(perpendicular to machine direction). In KES system, it is possible anisotropy treated by 
averaging of roughness parameters in weft and warp directions only. This approach is 
generally over simplified and can lead to under or over estimation of surface roughness. 

For anisotropic surfaces the so called surface spectral moments mp,q can be used (Longuet-
Higgins, 1957) 

 , 1 2 1 21 2   ( , ) d  dp q
p qm S         (36) 

where 1 2( , )S   is bivariate power spectral density of surface. Necessary condition for the 

case of degenerated spectrum (one dimensional) is 

 2
2,0 0,2 1,12(  ) 0m m m   (37) 

For degeneration to more dimensions, similar conditions can be derived (Longuet-Higgins, 

1957). The profile spectral moment ( )rm  in the direction   defined by eqn. (27) is 

connected with surface moments mp,q by relation 

 1
,0 1,1 0,( )  cos cos  sin .. sin

1
r r r

r r r r

n
m m m m    


 

    
 

 (38) 

The second profile spectral moment 2( )m  , which is equal to the variance of profile slope 

PS2, is function of three surface moments m2,0, m1,1 and m0,2 only. This dependence has the 
simple form derived directly from eqn. (36).  
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 2 2
2 2,0 1,1 0,2( )  cos 2  cos  sin  sinm m m m        (39) 

The surface moments play central role in description of surfaces topography. The 
parameters m2,0 and m0,2, which are the 2nd surface spectral moments, denote the variance 
of slope in two vertical directions along cross direction and machine direction. The 
parameter m1,1 represents the association-variance of slope in these two directions. These 
parameters are generally dependent of the selected coordinate system. From the known 

values of 2( )im  for selected set of directions i  i = 1,..n it is possible to estimate the surface 

moments m2,0, m1,1 and m0,2 by using of linear regression. The maxima and minima of eqn. 
(37) are  

 2 2
2max 2min 2,0 0,2 2,0 0,2 1,1( , ) 0,5 * [( ) {( ) 4 }]m m m m m m m      (40) 

These occur in the angle p called principal direction given by relation  

 1,1
p

2,0 0,2

2
tan  

m

m m
 


  (41) 

As one measure of anisotropy the so-called long-crestedness 1/g has been proposed 
(Longuet-Higgins, 1957), where  

 2min

2max

m
g

m
   (42) 

For an isotropic surface is g = 1 and for degenerated one-dimensional spectrum g = 0. The 

better criterion of anisotropy has been proposed in the form (Thomas et. al, 1999) 

 

2
2,0 0,2 1,1

2,0 0,2

2 * *
1

m m m
AN

m m


 


 (43) 

For AN = 0 surface perfectly is isotropic and for AN = 1 surface is anisotropic. Lower AN 
characteristic indicates low degree of anisotropy.  

For investigation of surface roughness anisotropy the twill fabric (see fig. 3) and Krull fabric 
were selected. The R(d) traces have been obtained by means of KES apparatus in the 
following directions: í   0o (weft direction), 30o, 45o, 60o and 90o (warp direction). The 

Kawabata SMD of individual profiles of twill fabric at chosen directions í  is plotted as 

polar graph in fig. 32 and for Krull fabric in fig. 33. 

The surface moments m2,0, m0,2 and m1,1 were computed from eqn. (37) by using of linear 

least squares regression. Estimated surface moments and AN anisotropy measure are given 

in the table 1.  

The proposed technique is capable to estimate roughness characteristics of anisotropic surfaces 

typical for textile structures. Beside the anisotropy measure AN the direction p  and values of 

m2max will be probably necessary for deeper description of textiles surface roughness. 
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Fig. 32. Kawabata SMD of individual profiles at chosen directions í for twill fabric 
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Fig. 33. Kawabata SMD of individual profiles at chosen directions í for Krull fabric 

The angular dependence of profile slope variance 2( )m   and experimental points for twill 

are shown on the fig. 34 and for Krull are shown in fig. 35. 
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Fig. 34. Angular dependence of profile slope variance for twill fabric 
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Fig. 35. Angular dependence of profile slope variance for Krull fabric 
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Pattern Weave m2,0 m1,1 m0,2 AN-anisotropy 

 

Twill 0.0020481 -0.0250585 0.229335 1 

 

Krull, surface 
loops 

0.7671 0.0613 0.1506 0. 728 

Table 1. Surface moments and anisotropy of samples  

11. Conclusion 

There exists a plenty of other roughness characteristics based on standard statistics or 

analysis of spatial processes which can be used for separation of noise and waviness (macro 

roughness). For evaluation of suitability of these characteristics it will be necessary to 

compare results from sets of textile surfaces.  

For deeper analysis of SHV traces from KES device the rough signal registration and 

digitalization by using of LABVIEW system is beneficial. 

The analysis of SHV can be more complex. The other classical roughness characteristics and 

topothesy can be computed as well and many other techniques of fractal dimension 

calculation can be included. The analysis can be extended to the chaotic models and 

autoregressive models. With some modifications it will be possible to use these techniques 

for characterization of the SHV or surface profiles obtained by other techniques. 

The contact less measurement of fabric images by using of RCM device is useful for 

description of relief in individual slices and in the whole fabric plane.  
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