
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1 

Modeling of Woven Fabrics  
Geometry and Properties 

B. K. Behera1, Jiri Militky2, Rajesh Mishra2 and Dana Kremenakova2 
1Department of Textile Technology, Indian Institute of Technology, Delhi,  

2Faculty of Textile Engineering, Technical University of Liberec,  
1India 

2Czech Republic 

1. Introduction 

There are many ways of making fabrics from textile fibers. The most common and most 

complex category comprises fabrics made from interlaced yarns. These are the traditional 

methods of manufacturing textiles. The great scope lies in choosing fibers with particular 

properties, arranging fibers in the yarn in several ways and organizing in multiple ways, 

interlaced yarn within the fabric. This gives textile designer great freedom and variation for 

controlling and modifying the fabric. The most common form of interlacing is weaving, 

where two sets of threads cross and interweave with one another. The yarns are held in 

place due to the inter-yarn friction. Another form of interlacing where the thread in one set 

interlocks with the loops of neighboring thread by looping is called knitting. The interloping 

of yarns results in positive binding. Knitted fabrics are widely used in apparel, home 

furnishing and technical textiles. Lace, Crochet and different types of Net are other forms of 

interlaced yarn structures. Braiding is another way of thread interlacing for fabric formation. 

Braided fabric is formed by diagonal interlacing of yarns. Braided structures are mainly 

used for industrial composite materials. 

Other forms of fabric manufacture use fibers or filaments laid down, without interlacing, in 
a web and bonded together mechanically or by using adhesive. The former are needle 
punched nonwovens and the later spun bonded. The resulting fabric after bonding normally 
produces a flexible and porous structure. These find use mostly in industrial and disposable 
applications. All these fabrics are broadly used in three major applications such as apparel, 
home furnishing and industrial. 

The traditional methods of weaving and hand weaving will remain supreme for high cost 
fabrics with a rich design content. The woven structures provide a combination of 
strength with flexibility. The flexibility at small strains is achieved by yarn crimp due to 
freedom of yarn movement, whereas at high strains the threads take the load together 
giving high strength. A woven fabric is produced by interlacing two sets of yarns, the 
warp and the weft which are at right angles to each other in the plane of the cloth 
(Newton, 1993). The warp is along the length and the weft along the width of the fabric. 
Individual warp and weft yarns are called ends and picks. The interlacement of ends and 
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picks with each other produces a coherent and stable structure. The repeating unit of 
interlacement is called the weave (Robinson & Marks, 1973). The structure and properties 
of a woven fabric are dependent upon the constructional parameters as thread density, 
yarn fineness, crimp, weave etc. 

The present chapter establishes some interesting mathematical relationships between these 

constructional parameters so as to enable the fabric designer and researcher to have a clear 

understanding of the engineering aspects of woven fabrics. This is an attempt to transform 

from an experience based designing into an engineered approach to model woven fabric 

constructions. 

1.1 Elements of fabric structure 

Plain weave has the simplest repeating unit of interlacement. It also has the maximum 

possible frequency of interlacements. Plain weave fabrics are firm and resist yarn slippage. 

Figure 1 shows plain weave in plan view and in cross-section along warp and weft. The 

weave representation is shown by a grid in which vertical lines represent warp and 

horizontal lines represent weft. Each square represents the crossing of an end and a pick. A 

mark in a square indicates that the end is over the pick at the corresponding place in the 

fabric that is warp up. A blank square indicates that the pick is over the end that is weft up. 

One repeat of the weave is indicated by filled squares and the rest by crosses. The plain 

weave repeats on two ends and two picks. 

 

Fig. 1. Plan (A), Weave representation (B) Cross-sectional view along warp (D) Cross-
sectional view along weft (C) for plain weave 

1.2 Regular and irregular weaves  

1.2.1 Regular weaves  

Regular weaves (Grosicki, 1988) give a uniform and specific appearance to the fabric. The 

properties of the fabric for such weaves can be easily predicted. Examples of some of the 

common regular weaves are given in figure 2. 
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Fig. 2. Regular weaves 

1.2.2 Irregular weaves  

Irregular weaves are commonly employed when the effect of interlacement is masked by the 

coloured yarn in the fabric. Such weaves are common in furnishing fabric. In such structures 

the prediction of mechanical properties is difficult. Examples of some of the common 

irregular weaves are given in figure 3.  

 

Fig. 3. Irregular weaves 

1.3 Mathematical representation of different weaves 

The firmness of a woven fabric depends on the density of threads and frequency of 

interlacements in a repeat. Fabrics made from different weaves cannot be compared easily 

with regard to their physical and mechanical properties unless the weave effect is 

normalized. The concept of average float has been in use since long, particularly for 

calculating maximum threads per cm. It is defined as the average ends per intersection in a 

unit repeat. Recently this ratio termed as weave factor (Seyam, 2002; Weiner, 1971) has been 

used to estimate tightness factor in fabric.  

1.3.1 Weave factor 

It is a number that accounts for the number of interlacements of warp and weft in a given 

repeat. It is also equal to average float and is expressed as:  
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E

M
I

   (1)  

Where E is number of threads per repeat, I is number of intersections per repeat of the cross-
thread.  

The weave interlacing patterns of warp and weft yarns may be different. In such cases, 
weave factors are calculated separately with suffix1 and 2 for warp and weft respectively.  

Therefore, 1
1

2

E
M

I
 ; E1 and I2 can be found by observing individual pick in a repeat  

and 2
2

1

E
M

I
 ; E2 and I1 can be found by observing individual warp end in a repeat. 

1.3.2 Calculation of weave factor 

1.3.2.1 Regular weaves 

Plain weave is represented as 
1

1
; for this weave, E1 the number of ends per repeat is 

equal to 1+1=2 and I2 the number of intersections per repeat of weft yarn =1+ number of 
changes from up to down (vice versa) =1+1=2. 

Table 1 gives the value of warp and weft weave factors for some typical weaves.  

 

Weave E1 I2 E2 I1 M1 M2 

1/1 Plain 2 2 2 2 1 1 

2/1 Twill 3 2 3 2 1.5 1.5 

2/2 Warp Rib 2 2 4 2 1 2 

2/2 Weft Rib 4 2 2 2 2 1 

Table 1. Weave factor for standard weaves  

E1 and E2 are the threads in warp and weft direction 
I2 and I1 are intersections for weft and warp threads 

1.3.2.2 Irregular weaves  

In some weaves the number of intersections of each thread in the weave repeat is not equal. 
In such cases the weave factor is obtained as under:  

 
E

M
I




  (2)  

Using equation 2 the weave factors of a ten-end irregular huckaback weave shown in figure 
4 is calculated below. 

Weave factor, M  
10 10 10 10 10 10 10 10 10 10 100

1.19
10 6 10 6 10 6 10 6 10 6 84

        
  

        
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Fig. 4. Ten-end Huck-a-back weave 

2. Geometrical model of woven structures 

The properties of the fabric depend on the fabric structure. The formal structure of a woven 

fabric is defined by weave, thread density, crimp and yarn count. The interrelation between 

fabric parameters can be obtained by considering a geometrical model of the fabric. The 

model is not merely an exercise in mathematics. It is not only useful in determining the 

entire structure of a fabric from a few values given in technological terms but it also 

establishes a base for calculating various changes in fabric geometry when the fabric is 

subjected to known extensions in a given direction or known compressions or complete 

swelling in aqueous medium. It has been found useful for weaving of maximum sett 

structures and also in the analysis and interpretation of structure-property relationship of 

woven fabrics. Mathematical deductions obtained from simple geometrical form and 

physical characteristics of yarn combined together help in understanding various 

phenomena in fabrics.  

2.1 Basic relationship between geometrical parameters 

The geometrical model is mainly concerned with the shape taken up by the yarn in the warp 

or weft cross-section of the fabric. It helps to quantitatively describe the geometrical 

parameters. The basic model (Pierce, 1937) is shown in figure 5. It represents a unit cell 

interlacement in which the yarns are considered inextensible and flexible. The yarns have 

circular cross-section and consist of straight and curved segments. The main advantages in 

considering this simple geometry are: 

 

Fig. 5. Peirce’s model of plain weave 
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1. Helps to establish relationship between various geometrical parameters 
2. Able to calculate the resistance of the cloth to mechanical deformation such as initial 

extension, bending and shear in terms of the resistance to deformation of individual fibers. 
3. Provide information on the relative resistance of the cloth to the passage of air, water or 

light. 
4. Guide to the maximum density of yarn packing possible in the cloth. 

From the two-dimensional unit cell of a plain woven fabric, geometrical parameters such as 
thread-spacing, weave angle, crimp and fabric thickness are related by deriving a set of 
equations. The symbols used to denote these parameters are listed below. 

d - diameter of thread  
p - thread spacing  
h - maximum displacement of thread axis normal to the plane of cloth ( crimp height) 
θ - angle of thread axis to the plane of cloth (weave angle in radians) 
l - length of thread axis between the planes through the axes of consecutive cross- threads 
(modular length) 
c - crimp (fractional)  
D = d1 + d2 

Suffix 1 and 2 to the above parameters represent warp and weft threads respectively. 

In the above figure projection of yarn axis parallel and normal to the cloth plane gives the 
following equations: 

 1
1

2

1
l

c
p

   (3) 

 1 1 1 12 ( )cos sinp D Dl θ θ θ     (4) 

 1 1 1 1 1( )sin (1 cos )D Dh l θ θ θ      (5) 

Three similar equations are obtained for the weft direction by interchanging suffix from 1 to 
2 or vice-versa as under: 

 2
2

1

1
l

c
p

    (6)  

 2 2 2 21 ( )cos sinp D Dl θ θ θ     (7) 

 2 2 2 2 2( )sin (1 cos )D Dh l θ θ θ      (8) 

Also,  d1+d2=h1+h2=D  (9)  

In all there are seven equations connecting eleven variables. If any four variables are known 
then the equations can be solved and the remaining variables can be determined. 
Unfortunately, these equations are difficult to solve. Researchers have tried to solve these 
equations using various mathematical means to find new relationships and also some 
simplified useful equations.  
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2.1.1 Relation between weave composition and structural parameters 

When the interlacement pattern is modified by changing the float length, the structure of the 
fabric changes dramatically. It has a profound effect on the geometry of the yarn 
interlacement and related properties in the woven fabric. The maximum weavability limit is 
predicted by extending the Peirce’s geometrical model for non-plain weaves by soft 
computing. This information is helpful to the weavers in avoiding attempts to weave 
impossible constructions thus saving time and money. It also helps to anticipate difficulty of 
weaving and take necessary steps in warp preparations. The relationship between the cover 
factors in warp and weft direction is demonstrated for circular and racetrack cross-section 
for plain, twill, basket and satin weave in later part of this chapter. Non plain weave fabric 
affords further flexibility for increasing fabric mass and fabric cover. As such they enlarge 
scope of the fabric designer and researcher. Figure 6 shows the relationship between warp 
and weft thread spacing for different weaves for a given yarn.  

 

Fig. 6. Relation between average thread spacing in warp and weft for different weaves 
(Circular cross-section, yarn tex=30, Ø=0.6, ǒ=1.52) 

2.2 Some derivatives 

2.2.1 Relation between p, h, θ and D  

From equations 4 and 5 we get: 

  1 1 12
1 1

1 1

sin (1 cos )

cos sin

p D Dθ h θ
Dl θ

θ θ
  

    

or  1 1 12(sec 1) tan 0pθ θ h   D  

Substituting 1
1

tan
 x

2

θ  

1 12
11 2we get, 0x x

2 2

h h
pD

     
 
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For real fabrics 

2 1
2 2 212

22 21
1 2

1 2

2
2  x

2 2

( )
tanθ

    
   

 

h
Dp h p p h D

p
D Dh h

 

Using value of x1, one can calculate θ, l and c and also other parameters.  

Similarly, using equation 7 and 8, and by eliminating l and substituting x1 as above, we will 

arrive at a more complex equation as: 

 1 12 2 1
1 11 1

2 2

(1 ) 1x x x tan x
2 2

D Dc c

p p
      

It is difficult to solve this equation algebraically for x1. However one can substitute value of 

x1 obtained earlier to solve this equation just for an academic interest. 

These seven equations have been solved by soft computing in order to establish several 

useful relationships. However, at this stage, one can generalize the relationship as: 

 h1 = f (p2,c1) 

This function f can be obtained by plotting p and h for different values of c. 

2.2.2 Functional relationship between p, h, c 

Trigonometric expansion of equations 4 and 5 gives: 

2 3 4
1 11 1 1

12 2 3 24

Dl l
p l

            

2 3 4
11 1 1

1 1 1
2 6 8

D Dθ l θ θ
h l θ          

When θ is small, higher power of θ can be neglected which gives: 

2
1

11 1 1 1 2 12 2,  ,  ,  2h
2

θ
p ph l θ l c c     

and these equations reduce to: 

  1

1

21 2θ c   (10) 

  2

1

22 2θ c   (11) 

 1 12

4

3
ph c   (12) 
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 2 21

4

3
ph c   (13) 

These four equations are not new equations in this exercise. They are derived from the 
previous seven original equations. However they give simple and direct relationships 
between four fabric parameters h, p, c and θ. 

2.2.3 Jammed structures  

A woven fabric in which warp and weft yarns do not have mobility within the structure 
as they are in intimate contact with each other are called jammed structures. In such a 
structure the warp and weft yarns will have minimum thread spacing. These are closely 
woven fabrics and find applications in wind-proof, water-proof and bullet-proof 
requirements.  

During jamming the straight portion of the intersecting yarn in figure 5 will vanish so that in 
equation 4 and 5, l1–Dθ1 = 0  

1
1

l θ
D
  

Equations 4 and 5 will reduce to  

1 1(1 cos ) Dh  

12 sinθ Dp  

Similarly, for jamming in the weft direction l2 – Dθ2 = 0, equations 7 and 8 will reduce to the 
above equations with suffix interchanged from 1 to 2 and vice-versa. 

For a fabric being jammed in both directions we have:  

 1 2 1 2(1 cos ) (1 cos )θ θ     D D Dh h  

 or cosθ1+cosθ2=1  (14) 

 

2 2

1 21 1 1
p p

D D

   
      
   

  (15) 

This is an equation relating warp and weft spacing of a most closely woven fabric.  

2.2.4 Cross threads pulled straight  

If the weft yarn is pulled straight h2 = 0 and h1 = D,  

Equation 5 will give 1 1 1 1( )sin (1 cos )D D Dl θ θ     

1
1 1 1cos sin

lθ θ θ
D

   
 
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 1
1 1or cot

l
 θ θ

D
     (16) 

This equation gives maximum value of θ1 for a given value of l1/D  

The above equation will be valid for warp yarn being straight by interchange of suffix from 
1 to 2. 

However, the weft thread can be restricted in being pulled straight by the jamming of warp threads. 

In such a case,  

1 1 0Dl θ   

1
1or  

lθ
D

  

Equation 5 will become  

 1
2 1 1(1 cos ) cos

l
D D D Dh h θ

D
        (17) 

If the weft thread is pulled straight and warp is just jammed  

 1
1Then

2

l θ
D


    (18) 

These are useful conditions for special fabric structure. 

2.2.5 Non circular cross-section 

So far, it is assumed that yarn cross-section is circular and yarn is incompressible. However, 

the actual cross-section of yarn in fabric is far from circular due to the system of forces 

acting between the warp and weft yarns after weaving and the yarn can never be 

incompressible. This inter-yarn pressure results in considerable yarn flattening normal to 

the plane of the cloth even in a highly twisted yarn. Therefore many researchers have tried 

to correct Peirce’s original relationship by assuming various shapes for the cross-section of 

yarn. Two important cross-sectional shapes such as elliptical and race-track are discussed 

below. 

2.2.5.1 Elliptical cross-section 

Peirce’s elliptical yarn cross-section is shown in figure 7; the flattening factor is defined as  

b
e

a
  

Where b = minor axis of ellipse, a = major axis of ellipse 

The area of ellipse is (Ǒ/4)ab. If d is assumed as the diameter of the equivalent circular cross–
section yarn, then  
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d ab  

1 2 1 2 1 2h h d d b b      

 1 1 1 2 2 11 2

4

3
p pb b h h c c         (19) 

Yarn diameter is given by its specific volume, v and yarn count as under: 

mils 34.14
v

d
N

  , N is the English count. 

cm

f

Tex Tex

280280.2
d

ρ
  , assuming,   = 0.65, ρf = 1.52 for cotton fiber  

 

Fig. 7. Elliptical cross-section 

This can be used to relate yarn diameter and crimp height by simply substituting in 
equation 19 to obtain: 

 1 2
1 2 1 2

1 2

34.14
v v

Dh h d d
N N

 
       

 
  (20) 

1 2
1 2 1 2

1 2f1 f2

1

280.2

T T
h h d d ρ ρ 

 
      
 

 1 2
1

280
T T    

assuming,   = 0.65, ρf = 1.52 for cotton fiber  

These are useful equation to be used subsequently in the crimp interchange derivation. 

2.2.5.2 Race track cross-section  

In race track model (Kemp, 1958; Love, 1954) given in figure 8, a and b are maximum and 

minimum diameters of the cross-section. The fabric parameters with superscript refer to the 

zone AB, which is analogous to the circular thread geometry; the parameters without 

superscript refer to the race track geometry, a repeat of this is between CD. Then the basic 

equations will be modified as under: 
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Fig. 8. Race track cross-section 

 '
2 22 2 ( )p p a b     (21) 

 '
1 1 2 2( )l l a b     (22) 

 
''

1 12 2'
1 '

2 222
( )

p pl c
c

p a bp


 

 
  (23) 

Similarly, 

 2 1'
2

1 11 ( )

pc
c

p a b


 
  (24) 

 ' '
1 12

4

3
ph c   (25) 

 ' '
2 21

4

3
ph c   (26) 

h1+h2 = B = b1 +b2 

And also if both warp and weft threads are jammed, the relationship becomes 

    2 2' '2 2
1 2p p BB B      (27) 

2.3 Prediction of fabric properties 

Using the fabric parameters discussed in the previous section it is possible to calculate the 

Fabric thickness, Fabric cover, Fabric mass and Fabric specific volume. 
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2.3.1 Fabric thickness  

Fabric thickness for a circular yarn cross-section is given by 

h1+d1 or h2+d2, whichever is greater.   

When the two threads project equally, then h1+d1 = h2+d2 

In this case the fabric gives minimum thickness =1/2(h1+d1+ h2+d2) =D; h1=D – d1 

Such a fabric produces a smooth surface and ensures uniform abrasive wear.  

In a fabric with coarse and fine threads in the two directions and by stretching the fine 

thread straight, maximum crimp is obtained for the coarse thread. In this case the fabric 

gives maximum thickness as under; 

Maximum Thickness =D + dcoarse , since hcoarse = D 

When yarn cross- section is flattened, the fabric thickness can be expressed as 

h1+b1 or h2+b2, whichever is greater 

2.3.2 Fabric cover  

In fabric, cover is considered as fraction of the total fabric area covered by the component 

yarns. For a circular cross-section cover factor is given as: 

f f280.2 28.02

d E T K

p ρ ρ 
   

1 is cover factor10K E T K   

T is yarn tex, E is threads per cm = 1/p suffix 1 and 2 will give warp and weft cover 
factors. 

for 1
d

p
 , cover factor is maximum and given by, 

max f28.02 ρK   

Fractional fabric cover is given by:  

1 2 1 2

1 2 1 2

d d d d

p p p p
  1 2

1 2
1

28.02 28.02

K K
K K
     

 

Multiplying by 28.02 and taking 28.02 ≈ 28 we get fabric cover factor as under: 

  1 2 1 2
Fabric cover factor K K – K K / 28    (28)  

For race track cross-section the equation will be  
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f

here /
4 1

1 1 28.02

a d
e b a

p
ρe p

e




 
    
 

 

f

4 1
1 1 28.02

K

ρe
e





    
 

  

For elliptical cross-section the equation will be; 

 
f f280.2 28.02ρ ρ

a d E T K

p e p e e 
     (29) 

Here and
b

e d ab
a

   

2.3.3 Fabric mass (Areal density) 

 gsm = [T1E1(1+c1)+T2E2(1+c2)]×10-1  (30) 

 gsm =√T1 [(1+c1) K1 + (1+c2) K2β]  (31) 

E1, E2 are ends and picks per cm. 
T1, T2 are warp and weft yarn tex 
Here K1 and K2 are the warp and weft cover factors, c is the fractional crimp and  
d2/d1= β. 

In practice the comparison between different fabrics is usually made in terms of gsm. The 
fabric engineer tries to optimize the fabric parameters for a given gsm. The relationship 
between the important fabric parameters such as cloth cover and areal density is 
warranted.  

2.3.4 Fabric specific volume  

The apparent specific volume of fabric, vF is calculated by using the following formula: 

 2

fabric thickness (cm)

fabric mass (g/ )cm
Fv    (32) 

Fabric mass (g/cm2) = 10–4 x gsm 

Fabric packing factor,  Φ = υf/ υF  (33)  

Here vf, vF are respectively fiber and fabric specific volume. 

A knowledge of fiber specific volume helps in calculating the packing of fibers in the fabric. 
Such studies are useful in evaluating the fabric properties such as warmth, permeability to 
air or liquid. 
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2.4 Maximum cover and its importance 

Maximum cover in a jammed fabric is only possible by keeping the two consecutive yarns 
(say warp) in two planes so that their projections are touching each other and the cross 
thread (weft) interlaces between them. In this case the weft will be almost straight and 
maximum bending will be done by the warp.  

d1/p1 = 1 will give K1 = Kmax 

and the spacing between the weft yarn, p2 =D sinθ1 = D (for θ = 900) , p2= d1+d2 

2 2
12

1 22

2
for  2

3

d d
d d

p d d
  


 

This will give K2 = 2/3 Kmax,  

If d1 = d2 then d1 = d2/p2 =0.5 and K2 =0.5 Kmax 

This is the logic for getting maximum cover in any fabric.  

The principles are as under: 

1. Use fine yarn in the direction where maximum cover is desired and keep them in two 
planes so that their projections touch each other and use coarse yarn in the cross direction. 

2. As in (1) instead of coarse yarn insert two fine yarns in the same shed. 

Both options will give maximum cover in warp and weft but first option will give more 
thickness than the second case. 

The cover factor indicates the area covered by the projection of the thread. The ooziness of 
yarn, flattening in finishing and regularity further improves the cover of cloth. It also gives a 
basis of comparison of hardness, crimp, permeability, transparency. Higher cover factor can 
be obtained by the lateral compression of the threads. It is possible to get very high values 
only in one direction where threads have higher crimp. Fabrics differing in yarn counts and 
average yarn spacing can be compared based on the fabric cover. The degree of flattening 
for race track and elliptical cross-section can be estimated from fabric thickness 
measurements to evaluate b and a from microscopic measurement of the fabric surface.  

The classical example in this case is that of a poplin cloth in which for warp threads  

p1 = d1 and for d1 = d2 = D/2 and for jamming in both directions 

p1 = D sin θ2 

d = D/2 = D sin θ2 

θ2 = 30º = 0.5236 

0 '
1 1 21.4364(using cos cos 1)82 18      

p2 = Dsinθ1 = 0.991D ≈ 2p1 

l1 = Dθ1 = 1.14364 
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l2= Dθ2= 0.5236 

c1' = 0.45, c2' = 0.0472 

This is a specification of good quality poplin which has maximum cover and ends per cm is 
twice that of picks per cm.  

3. Application of geometrical model 

3.1 Computation of fabric parameters 

The basic equations derived from the geometrical model are not easy to handle. Research 
workers (Nirwan & Sachdev, 2001; Weiner, 1971) obtained solutions in the form of graphs 
and tables. These are quite difficult to use in practice. It is possible to predict fabric 
parameters and their effect on the fabric properties by soft computing (Newton, 1995). This 
information is helpful in taking a decision regarding specific buyers need. A simplified 
algorithm is used to solve these equations and obtain relationships between useful fabric 
parameters such as thread spacing and crimp, fabric cover and crimp, warp and weft cover. 
Such relationships help in guiding the directions for moderating fabric parameters.  

Peirce’s geometrical relationships can be written as  

 1 1 1
2

1(K )cos sin
p

θ θ θ
D

     (34) 

 1 1 1
1

1(K )sin (1 cos )
h θ θ θ
D

      (35) 

Where K1= l1/D and two similar equations for the weft direction will be obtained by 
interchanging the suffix 1 with 2 and vice versa. The solution of p2/D and h1/D is obtained 
for different values of θ1 (weave angle) ranging from 0.1– Ǒ/2 radians. Such a relationship is 
shown in figure 9.  

It is a very useful relationship between fabric parameters for engineering desired fabric 
constructions. One can see its utility for the following three cases 

1. Jammed structures 
2. Non-jammed fabrics 
3. Special case in which cross-threads are straight 

3.1.1 Jammed structures 

Figure 9 shows non linear relationship between the two fabric parameters p and h on the 
extreme left. In fact, this curve is for jamming in the warp direction. It can be seen that the 
jamming curve shows different values of p2/D for increasing h1/D, that is warp crimp. The 
theoretical range for p2/D and h1/D varies from 0-1. Interestingly this curve is a part of 
circle and its equation is:  

 

2 2
12 1 1

p h

D D

        
  

  (36) 
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Fig. 9. Relation between thread spacing and crimp height 

with centre at (0, 1) and radius equal to 1.  

For jamming in the warp direction of the fabric the parameters p2/D and corresponding 
h1/D can be obtained either from this figure or from the above equation.  

The relationship between the fabric parameters over the whole domain of structure being 
jammed in both directions can be obtained by using an algorithm involving equations from 
the previous section.  

Another useful relationship between the crimps in the two directions is shown in figure 10. 
It indicates inverse non-linear relationship between c1 and c2. The intercepts on the X and Y 
axis gives maximum crimp values with zero crimp in the cross-direction. This is a fabric 
configuration in which cross-threads are straight and all the bending is being done by the 
intersecting threads.  

Figure 11 shows the relation between h1/p2 and h2/p1. The figure shows inverse linearity 
between them except at the two extremes. This behavior is in fact a relationship between the 
square root of crimp in the two directions of the fabric. 

Other practical relations are obtained between the warp and weft cover factor and between 
cloth cover factor and fabric mass (gsm). 

Figure 12 gives the relation between warp and weft cover factor for different ratio of weft to 
warp yarn diameters (β). The relation between the cover factors in the two directions is 
sensitive only in a narrow range for all values of β. The relation between the cover factors in 
the two directions are inter- dependent for jammed structures. Maximum threads in the 
warp or weft direction depend on yarn count and weave. Maximum threads in one direction 
of the fabric will give unique maximum threads in the cross-direction. The change in the 
value of β causes a distinct shift in the curve. A comparatively coarse yarn in one direction 
with respect to the other direction helps in increasing the cover factor. For β = 0.5, the warp 
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yarn is coarser than the weft, this increases the warp cover factor and decrease the weft 
cover factor. This is due to the coarse yarn bending less than the fine yarn. Similar effect can 
be noticed for β =2, in which the weft yarn is coarser than the warp yarn. These results are 
similar to earlier work reported by Newton (Newton, 1991 & 1995; Seyam, 2003). 

 

Fig. 10. Relation between warp and weft crimp for jammed fabric 

 

Fig. 11. Relation between warp and weft crimp in jammed fabric 

The relation between fabric mass, (gsm) with the cloth cover (K1+K2) is positively linear 

(Singhal & Choudhury, 2008). The trend may appear to be self explanatory. Practically an 

increase in fabric mass and cloth cover factor for jammed fabrics can be achieved in several 

ways such as with zero crimp in the warp direction and maximum crimp in the weft 

direction; zero crimp in the weft direction and maximum crimp in the warp direction; equal 

or dissimilar crimp in both directions. This explanation can be understood by referring to 

the non-linear part of the curve in figure 11. 
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Fig. 12. Relation between warp and weft cover factor for different β in jammed fabric 

3.1.2 Non-jammed structure  

It can be seen that the relation between p2/D and corresponding h1/D is linear for 

different values of crimp. This relationship is useful for engineering non-jammed 

structures for a range of values of crimp. The fabric parameters can be calculated from the 

above non-jammed linear relation between p2/D and h1/D for any desired value of warp 

crimp. Then h2/D can be obtained from (1–h1/D) and for this value of h2/D one can obtain 

the corresponding value of p1/D for the desired values of weft crimp. Thus all fabric 

parameters can be obtained for desired value of p2/D, picks per cm, warp and weft yarn 

tex, warp and weft crimp. One can choose any other four parameters to get all fabric 

parameters.  

3.1.3 Straight cross threads  

The intersection of horizontal line corresponding to h1/D=1 gives all possible structures 
ranging from relatively open to jammed configurations. In this case h2= 0, h1= D; This gives 
interesting structures which have stretch in one direction only, enabling maximum fabric 
thickness and also being able to use brittle yarns. The fabric designer gets the options to 
choose from the several possible fabric constructions. These options include jamming and 
other non jammed constructions. Using the above logic it is also possible to get fabric 
parameters for: 

1. fabric jammed in both directions.  
2. fabric with maximum crimp in one direction and cross-threads being straight. 
3. fabric which is neither jammed nor has zero crimp in the cross-threads. 
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3.2 Weavability limit 

The maximum number of ends and picks per unit length that can be woven with a given yarn 
and weave defines weavability limit (Hearle et al., 1969). This information is helpful to the 
weavers in avoiding attempts to weave impossible constructions thus saving time and money. 
It also helps to anticipate difficulty of weaving and take necessary preparations. (Dickson, 
1954) demonstrated the usefulness of theoretical weavability limit and found agreement with 
the loom performance. Most of the work in this area was done using empirical relationships. 
The geometrical model is very useful in predicting this limit for a given warp, weft diameter 
(tex) and any weave. Maximum weavability limit is calculated in the model by using jamming 
conditions for plain and non-plain weaves for circular and race track cross-sections. 

3.2.1 Yarn diameter  

Two important geometrical parameters are needed for calculating weavability for a general 
case. These are yarn diameter and weave factor. 

Yarn diameter in terms of linear density in tex for a general case is given as:  

 
f280.2 ρ

T
d


   (37) 

Where d = yarn diameter (cm), T = yarn linear density (tex, i.e. g/km),  

ρf = fiber density(g/cm3), ρy = yarn density(g/cm3), Φ is yarn packing factor. 

This equation for the yarn diameter is applicable for any yarn type and fiber type. The packing 
factor depends on fiber variables such as fiber crimp, length, tex and cross-section shape. 

Table 2 and 3 give the fiber density and yarn packing factor for different fiber and yarn type 
respectively. 

Acetate 1.32 

Cotton 1.52 

Lycra 1.20 

Nylon 6 1.14 

Nylon 66 1.13-1.14 

Polyester  1.38 

Polypropylene  0.91 

Rayon 1.52 

Wool 1.32 

Table 2. Fiber density, g/cm3  

Ring-spun 0.60 

Open-end-spun 0.55 

Worsted 0.60 

Woolen 0.55 

Continuous-filament 0.65 

Table 3. Yarn packing factor 
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For blended yarns, average fiber density is given by the following 

 i

1 f

1 n

t

p

pρ
    (38) 

where  = average fiber density  ,  

pi = weight fraction of the ith component, 

pft = fiber density of the ith component and 

n = number of components of the blend 

3.2.2 Effect of variation in beta (d2/d1) on the relation between warp and weft cover 
factor for jammed fabrics  

An increase in the value of beta from 0.5-2 increases the range of warp cover factors but 

raises the level for the weft cover factor. This means with an increase in beta higher weft 

cover factors are achievable and vice-versa. However it may be noted that for cotton fibers 

having higher fiber density the sensitivity range between the warp and weft cover factor is 

relatively large compared to polypropylene fiber as shown in figure 13a and 13b. This shows 

a very important role played by fiber density in deciding warp and weft cover factors for the 

jammed fabrics.  

 

Fig. 13a. Effect of β on the relation between warp and weft cover factor  

www.intechopen.com



 
Woven Fabrics 

 

22

 

Fig. 13b. Effect of β on the relation between warp and weft cover factor  

3.2.3 Equation for jammed structure for circular cross-section in terms of weave 
factor 

Weave factor is useful in translating the effect of weave on the fabric properties. For circular 
cross-section the general equation for jammed cloth is desired. 

Thread spacing Pt1 for a non-plain weave per repeat is shown in figure 14 and is given as:  

 1 2 1 2 11 ( )t p dP I E I     (39) 

Average thread spacing 
2 1 2 11

1
1

( )p dI E I
P

E

 
  

That means, 1 1 1
11

2 2

1
E P Ep d

I I

 
   

 
 

11 1 11 ( 1)pM M dP     

 1 11
1 1 1

p dP
M M

D D D
    

 
 111

1

1

1

p MP
M

D D 


 


  (40) 

where β = d2/d1 
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Fig. 14. Jammed structure for 1/3 weave (circular cross-section along warp) 

Similarly, interchanging suffix 1, 2 we get 

 2 22
2 2 1

p dP
M M

D D D
    

  22
2 2 1

1

p βP
M M

D D β
  


  (41) 

For a jammed fabric the following equation is valid: 

2 2
1 21 1 1

p p

D D

   
      
   

 

   2 2
1 21 2

1 2
1 1

1 1 1
1 1

βM MP P
M M

D β D β
    

               
 

This equation can easily be transformed in terms of warp and weft cover factor (K1 and K2) 

    
2 2

1 2f f
1 2

1 2

28.02 28.021
1 1 1 1 1

1 1

ρ ρM M β
M Mβ βK K

       
             
             

  (42) 

3.2.4 Relation between fabric parameters for circular cross-section for different 
weaves 

The effect of weave in the jammed structures is examined using the above equations for 

plain, twill, basket and satin weave. M, the weave factor value (average float length) for 

these weaves are 1, 1.5, 2 and 2.5 respectively for all the discussion which follows. 
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The relation between p1avg/D and p2avg/D is established and it is seen that with the increase 
in float length, the sensitivity of the curve decreases in general. Also the range of p1/D and 
p2/D values gets reduced. This means a weave with longer float length decreases the 
flexibility for making structures. 

Figure 15 shows the relationship between the warp and weft cover factor for circular cross-
section. It is interesting to note that the behavior is similar for different weaves. However 
with the increase in float, the curve shifts towards higher values of weft cover factor. It 
should be borne in mind that the behavior shown in this figure is for virtual fabrics. In real 
fabrics jammed structure is unlikely to retain circular cross-section. 

 

Fig. 15. Relation between warp and weft cover factor for jammed fabric (circular cross-
section) 

3.2.5 Equation for jammed structure for a race track cross-section in terms of weave 
factor 

In jammed fabrics, the yarn cross-section cannot remain circular. The cross-section will 
change. It is easy to modify the geometry for circular cross-section by considering race track 
cross-section. Figure 16 shows the configuration of jammed structure for 1/3 weave for race 
track cross-section along weft direction of the fabric.  

 

Fig. 16. Jammed structure for 1/3 weave (race track cross-section along warp) 
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Here, 1 1

2

a b
A

   
 

  

Thread spacing Pt1 for a non-plain weave per repeat is given as: 

 1 1
1 2 1 2 11 ( ) 4

2
t

a b
p aP I E I

      
 

  (43) 

Simillarly, 

  2 2
2 1 2 1 22 ( ) 4

2
t

a b
p aP I E I

      
 

  (44) 

Where, p1 and p2 are horizontal spacing between the semi-circular threads in the intersection 

zone. Here, a and b are the major and minor diameters of race track cross-section. 

The average thread spacing 

  
1 11

1 1
21 1 1

1 4
1

2

p a b
aP

M M M I

         
  

  (45) 

Similarly, 

 
2 22

2 2
12 2 2

1 4
1

2

p a b
aP

M M M I

         
  

  (46) 

As such analysis of circular thread geometry can be applied for the intersection zone of the 

race track cross-section. 

 
2 2

1 2 1 12 14 ( )
2

a b
a lL E I I

      
 

  (47) 

Total warp crimp in the fabric is given by: 

1
1

t2

1
L

C
P

   

p1 and p2 can be calculated from the jamming considerations of the circular thread geometry 

using: 

2 2
1 21 1 1

p p

B B

   
      
   

 

It should be remembered that p/B corresponds to the semi-circular region of the race track 

cross-section and is similar to p/D for circular cross-section. As such the values of p/D ratio 

can be used for p/B  
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2 2

1 21 1 1 2 2 2
1 1 2 2

2 1

4 4
1 ( 1) 1 ( 1) 1

2 2
a b a a b aP P

M M M M
B B B B B BI I

                               
 

This equation can be simplified to the following usable forms. 

2 2

1 21 2
1 2

2 1

2(1 )2(1 ) ( 1) ( 1)
1 1 1

(1 ) (1 ) (1 ) (1 )

e βe M MP P
M M

B e β e β B e β e βI I

     
                   

 

It is assumed that e1 = e2 = e 

where e = b/a 

The above equation can easily be transformed in terms of warp and weft cover factor as 
under: 

2

1f 1

1

28.02 4 1 2(1 ) ( 1)
1 1 1

(1 ) (1 ) (1 )

ρ M e M

β e e β I e βK




              
 

 

2

2f 2

2

28.02 2(1 ) ( 1)4 1
1 1 1 1

(1 ) (1 ) (1 )

ρ βM e β βM

β e e β I e βK




                
  (48) 

3.2.6 Relationship between fabric parameters in race track cross-section 

The relationship between fabric parameters such as p2 and p1, p1 and c2 for the race track 
cross-section in jammed condition is discussed below. 

The parameters are similar to that for the circular cross-section but it shifts towards higher 
values of thread spacing.  

Figure 17 shows the relationship between warp and weft cover factors for different weaves. 
As discussed above in real fabrics the weaves show distinct differences between them unlike 
in circular cross-section. Increase in float length decreases the scope of cover factors. 

From these equations crimp and fabric cover can be evaluated using the above two 
equations along with:  

 22 2

1

1
1 and

4

b βd b
e b

         
  (49) 

3.3 Square cloth 

A truly square fabric has equal diameter, spacing and crimp. 

1 2 1 2 1 2 1 21 2, ,  ,  / 2,  p p Dc c d d h h         

From the basic equations of the geometrical model from the previous section we have: 
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2

2
tan / 2 0.75

3

p pθ
DD

         
   (50) 

 

Fig. 17. Relation between warp and weft cover factor for jammed fabric (race track cross-
section) 

This is valid for all values of (p/D) 2 ≥ 0.75 or p/D ≥ 0.866 

p/d ≥ 1.732; d/p ≤ 0.5773  

Also D = 2d = h1 + h2 = 2×(4/3)p√c 

f

3 0.75

4 280.2

d Tex
c

p p ρ
    

 

2

0.02677

f

K
c

ρ

 
 
 
 

  (51) 

Crimp in % can be calculated from, 
2

%
3.57

K
c

   
 

 

For jammed square cloth  

cos θ1 + cos θ2 = 1 will give 

cos θ = ½ and θ = 600 
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2 sin , 1 2
3

θ
p d θ Dθ d    

1
2

3

θ
d

   

3 1.732
p

d
   

0.5773
p

d
   

1
crimp 1 0.2092 20.9%

d

p d
     

Therefore complete cover is not possible with square cloth. 

4. Crimp in the fabric 

The crimp in fabric is the most important parameter which influences several fabric 

properties such as extensibility, thickness, compressibility and handle. It also decides 

quantity of yarn required to weave a fabric during manufacturing. Therefore control of 

crimp is vital for geometrical analysis of fabric structure. 

4.1 Crimp interchange equation 

Normally crimp interchange equation is used to predict the change in crimp in the fabric 

when it is extended in any direction by keeping the ratio of modular length to the sum of 

thread diameter ( l1/D and l2/D)constant. An attempt is made by soft computing to 

exploit the crimp interchange equation in a different way instead of keeping the usual 

three invariants l1, l2 and D and the relationship between warp crimp (C1 ) and weft crimp 

(C2 ) is determined by varying l1/D and l2/D. Such a strategy enables bias of crimp in a 

preferred direction. This is a new concept and entirely a different use of crimp 

interchange equation.  

Following equation gives a useful relationship between the two directions of the fabric.  

 D = h1+h2= / /
1 2h h   

Superscript represents changes in the fabric parameter after modification 

' ' ' ' ' '
1 2 2 1 1 2

' '
1 1 2 2

1 2

4

3

4

3 1 ' 1 '

D h h p c p c

l c l c
D

c c

      
 
  
  
 
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3
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D Dc c
 

 
  (52) 

www.intechopen.com



 
Modeling of Woven Fabrics Geometry and Properties 

 

29 

The above equation is called crimp interchange equation. It gives the relationship between 
the warp and weft crimp for the new configuration after the application of stretch in 
warp/weft direction. It may be noted that the parameters l1, l2 and D are invariant; they 
have the same value in the original fabric and in the new configuration. This basically 
means it is assumed that the geometry in deformed fabric is same as in undeformed 
fabric.  

In the crimp interchange equation one of the parameter /
1c  or /

2c  is determined based on 

the requirement of modification and the other parameter is calculated.  

The most general manner of solving crimp interchange problems is getting relation between 

1

1

C

1 C
and 

2

2

C

1 C
 for constant l1/D and l2/D. 

4.2 Crimp balance equation 

Textile yarns are not flexible as assumed in Peirce’s geometrical model. They offer resistance 
to bending. The elastica model demonstrates the existence of inter yarn force at the 
crossover points during fabric formation. The crimp balance equation is an offshoot of this 
analysis. It shows the importance of bending rigidity of warp and weft yarns in influencing 
the ratio of crimp in both warp and weft directions. 

The analysis using the rigid thread thread model [R] gives the value of inter yarn force  

V= 16 M sinθ/p2 

The balance of inter yarn force in two direction gives  

V1=V2 

M1 sinθ1/ p22 = M2sinθ2 p12 

Since sinθ  C  

 

2
1 2 2

2 1 1

C M p
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 
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 
   (53) 
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      

     
  (54) 

The solution for C1 and C2 for this equation is obtained in terms of M2/M1 and l1/D and 
L2/D using special algorithm in MATLAB. 

4.3 Interaction of crimp interchange and crimp balance equations 

The interaction of crimp interchange and crimp balance equations for given values of l1/D , 
l2/D and M2/M1 (ratio of bending moment of warp and weft) gives desired C1 and C2. It is 
impossible to solve these equations mathematically however soft computing facilitates 
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solutions using iterations. It is the aim of this paper to facilitate fabric engineer in 
determining the fabric parameters for a given value of warp and weft crimp. This approach 
gives another alternative to engineer fabrics. The important variables of crimp balance 
equations are M2/M1, l1/D and l2/D. For a given crimp interchange equation in terms of 
l1/D and l2/D, the crimp balance equation gives intersections. The scales are also calibrated 
in terms of crimp. 

Figures 18, 19 and 20 show the interaction of crimp interchange and crimp balance equation 

corresponding to l1/D = l2/D, l1/D> l2/D and l1/D < l2/D respectively. It is interesting to 

note that in all these curves with the increase in M2/M1, warp crimp increases and weft 

decreases. Another interesting result can be seen from these figures when l1/D not equal to 

l2/D. l1/D > l2/D or l1/D < l2/D causes a reduction in a range and shift towards lower 

values for both C1 and C2 

 

Fig. 18. Interaction of crimp interchange and crimp balance equations (l1/D = l2/D) 

These three curves show very interesting ways in which the values of crimp in warp and 

weft can be varied in a wide range. Therefore the three parameters M2/M1, l1/D and l2/D 

can influence the crimp in warp and weft in a wide range and this is what gives 

maneuverability to the fabric designer. 
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Fig. 19. Interaction of crimp interchange and crimp balance equations (l1/D > l2/D) 

 

Fig. 20. Interaction of crimp interchange and crimp balance equations (l1/D < l2/D) 
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5. Conclusion 

An attempt has been made to optimize engineering attributes of plain and non-plain weave 
fabrics as per requirement. Soft computing is used to solve fabric geometrical model 
equations and relationships between useful fabric parameters such as thread spacing and 
crimp, fabric cover and crimp, warp and weft cover are obtained. Such relationships help in 
guiding the direction for moderating fabric parameters. The full potential of Peirce fabric 
geometrical model for plain weave has been exploited by soft computing and the same is 
extended for non-plain constructions. The inter-relationships between different fabric 
parameters for jammed structures, non jammed structures and special case in which cross 
threads are straight are obtained using suitable computing techniques. It is hoped that the 
fabric designer will be benefited by the flexibility to choose fabric parameters for achieving 
any end use with desired fabric properties. This information is helpful to the weavers in 
avoiding attempts to weave impossible constructions thus saving time and money. It also 
helps to anticipate difficulty of weaving and take necessary steps in warp preparations. The 
relationship between the cover factors in warp and weft direction is demonstrated for 
circular and racetrack cross-section for plain, twill, basket and satin weave. Non plain weave 
fabric affords further flexibility for increasing fabric mass and fabric cover. As such they 
enlarge scope of the fabric designer. 

Soft computing can successfully provide a platform to manoeuvre crimp in warp and weft 
over a wide range with only three fabric parameters; yarn tex, modular length of warp and 
modular length of weft yarn. This has enabled solutions by interaction of crimp interchange 
and crimp balance equations. This exercise offers several solutions for fabric engineering by 
varying the above three parameters. 
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