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1. Introduction  

Nanoparticles synthesis by miniemulsion polymerization produces materials that are not 

obtainable by means of other techniques such as conventional emulsion polymerization. The 

reason is that, in miniemulsion polymerization, particles are mainly formed by droplet 

nucleation (Asua, 2002). However, the high energy requirement for preparation of nano-

emulsions by traditional methods (Mason et al., 2006; Solans et al., 2005) has precluded 

widespread use and commercialization. 

Nanoemulsions, also referred as miniemulsions or ultrafine emulsions, compose a particular 

class of emulsions consisting of colloidal dispersions, transparent or bluish for the smallest 

droplet sizes between 20–100 nm, or milky for sizes up to 500 nm (Solans et al., 2002). In 

opposition to microemulsions, these systems are thermodynamically unstable, and the 

droplet size tends to increase with time before phase separation. Nevertheless, the very 

small initial droplet size makes them kinetically stable (Tadros et al., 2004).  

As nanoemulsions are non-equilibrated systems, external energy is required for their 

preparation. Two generating processes are reported in the literature. In the first case, high 

mechanical energy is applied during emulsification, generally by using high shear stirring, 

high pressure homogenizers and/or ultrasound generators. On the contrary, the lower 

energy method, or condensation method, is based on the phase transitions taking place 

during the emulsification process (Lamaallam et al., 2005; Solans, et al., 2002; Tadros, et al., 

2004). These phase transitions result from changes in the spontaneous curvature of the 

surfactant and can be achieved (i) at constant composition by changing the spontaneous 

curvature of non-ionic surfactants with temperature, the well-known Phase Inversion 

Temperature, PIT, widely used in industry (Izquierdo et al., 2005; K. Shinoda & Saito, 

1968)or (ii) at constant temperature by varying the composition of the system by the 

Emulsion Inversion Point (EIP) method (Forgiarini et al., 2001; Pey et al., 2006; Porras et al., 

2008). 
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Thus, nanoemulsions are specially formulated heterophase systems where stable 
nanodroplets (with a diameter lower than 500 nm) of one monomer phase are dispersed in a 
second continuous phase before polymerization takes place, often following a radical 
mechanism. Since its introduction, this approach has extended the classical emulsion radical 
polymerization, as ideally each nanodroplet could be regarded as an individual batch 
reactor, a nanoreactor. Indeed, when (oligo) radicals are generated in the continuous phase, 
nanodroplets compete with micelles for their capture. In addition, the amount of surfactant 
added in the feed is usually adjusted so as to minimize (or avoid) the presence of micelles in 
the continuous phase (Anton et al., 2008; Antonietti & Landfester, 2002). 

In those conditions, it could be a good approximation to consider that each droplet behaves 
as an independent reaction vessel, a hypothetical bulk state where the continuous phase 
may still transport initiators, side products and heat. Thus, miniemulsion polymerization 
allows preparing water-based formulated polymers with high solid contents. Additionally 
this particular mode of design of nanoparticles becomes an advantage, since the chemical 
composition and colloidal characteristics of the initial nanoemulsion can be used to prepare 
polymer nanoparticles by ‘‘miniemulsion polymerization’’ of the monomer contained in the 
oil droplets. The nanoemulsions used for that purpose are mainly prepared by high-energy 
emulsification methods (Asua, 2002). The aim of this chapter is to show the EIP Method and 
the Near – PIT concept as a tool to produce miniemulsion templates for miniemulsion 
polymerization. 

2. Nanoparticles by Emulsion Inversion Point (EIP) method 

Studies showed that nanoemulsions with very small droplet sizes can be obtained through 
low-energy methods if, during the emulsification process, the oil is completely dissolved in 
a single phase, like a bicontinuous microemulsion or a lamellar crystalline phase (Mohlin et 
al., 2003; Rang & Miller, 1999).The further evolution of the system led to the dislocation of 
this continuous phase into small nanodroplets. For instance, in the EIP method, the addition 
of water to a system of water/oil/surfactant forming a lamellar phase increases the 
hydratation degree of the surfactant polar head thereby increasing its spontaneous 
curvature. The lamellar phase is disrupted, and the oil, which was initially dissolved, forms 
small droplets in the size order of the thickness of the hydrophobic layer (See Figure 1). Such 
methods of nanoemulsion preparation have received increasing attention (Maestro et al., 
2008), since even active molecule (i.e. lidocaïne) encapsulation in emulsions is achievable by 
these protocols (Sadurní et al., 2005). 

As already mentioned, nanoemulsions can be used to prepare polymer nanoparticles by 

miniemulsion polymerization of the monomer contained in the oil droplets. The 

nanoemulsions used for that purpose are mainly prepared by sonifiers and high-pressure 

homogenizers (Asua, 2002). Only a few studies described the preparation of nanoparticles 

from nanoemulsions obtained by condensation methods (Calderó et al., 2011; Isabel Solè et 

al., 2010; Liat Spernath & Magdassi, 2007; L. Spernath et al., 2009). 

In this section the formation by EIP, of monomer-in-water nanoemulsions, followed by their 
conversion in polymer nanoparticles will be considered (Sadtler et al., 2010). For this 
purpose, the water/Brij 98/styrene system was chosen. Brij compounds are POE-based non 
ionic surfactants which are commonly used for biomedical applications. Water always 
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Fig. 1. Schematic representation of the polymer nanoparticles synthesis from nanoemulsions 
prepared by the EIP method (Adapted from Sadtler, et al., 2010) 

contained 0.1 M of NaCl and a small quantity of hexadecane was always solubilized in 

styrene (in the 5:95 ratio) to avoid Ostwald ripening after nanoemulsion formation 

(Kabal'nov et al., 1987; Marie et al., 2007). Because lamellar liquid crystalline phase and/or 

bicontinuous microemulsions are necessary to generate nanoemulsions, the partial phase 

diagram of the system was determined prior to the nanoemulsion preparation and its 

miniemulsion polymerization. The phase diagram has been carried out at 50°C due to the 

suitable temperature to styrene polymerization (Figure 2). 

The phase behaviour was found to be in good agreement with the one of other systems 

containing polyoxyethylene alkyl ether non-ionic surfactant of technical grade. A domain of 

liquid isotropic phase extends along the surfactant/styrene axis solubilizing up to 10 % 

water. According to the literature, the most probable structures are inverse micelles or W/O 

microemulsion (Om). Higher amounts of water (up to 20% approximately) led to the 

appearance of the lamellar crystalline phase (L) that coexists with the Om phase. A wide 

multiphasic region, with two or three phases comprising liquid crystalline phases 

(equilibrium not determined), occupies the centre of the diagram for water composition 

from 20% to 60%. The lamellar crystalline phase in equilibrium with water, (W + L) is 

observed at high-medium surfactant concentration. For the higher amounts of water (up to 

90%), the two phase region is present: oil-in-water microemulsion (Wm) and free oil (O). 

Above this area, by increasing the surfactant concentration, the oil is completely 
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incorporated in the oil-in-water microemulsion. Finally, at low Brij 98 concentrations (O:S 

ratio above 80:20), appears the three-phase region (Forgiarini, et al., 2001; I. Solè et al., 2006).  

 

Fig. 2. Partial phase diagram of the water/Brij 98/styrene system, at 50° C. Wm: direct 
micellar solution or O/W microemulsion; Om: reverse micellar solution or W/O 

microemulsion); L: anisotropic phase (lamellar liquid crystalline phase); W: water phase; 

O: oil phase. 2: two isotropic liquid phases; 3: three isotropic liquid phases. (Adapted from 
Sadtler, et al., 2010) 

The equilibrium phase diagram (figure 2), allows identifying a suitable region for 
nanoemulsion formation. This domain corresponds to the two-phase region, Wm + O, for 
O/S ratio between 30:70 and 80:20. The emulsification process path is schematically 
represented by an arrow on the phase diagram (figure 3). Thus, the addition of water at 
constant rate to different mixtures of Brij 98 and styrene (inside the suitable region), allowed 
the system to cross the multiphasic central region, with two or three phases comprising 
liquid crystalline phases, favouring nanoemulsion formation. The final water concentration 
was fixed at 80 wt. %, to keep a relatively high percentage of dispersed phase. These 
aqueous dispersions can be regarded as O/W nanoemulsions (and not microemulsions) 
because they are formed in the multiphase region (Wm + O). Bluish dispersions were 
obtained. After addition of KPS solution (the water soluble thermal initiator), miniemulsion 
polymerization was carried out at 50° C for 24 h.  

Figure 4 shows the evolution of nanoparticle sizes as a function of O:S ratio for 
nanoemulsion containing 80 wt.% water. Results from Sadtler et al., (2010), showed that 
nanoparticle sizes were clearly dependent on O:S ratio and increased with O:S ratio. After 
polymerization, nanoparticle sizes varied between 36 nm (O:S ratio of around 0.5) and 
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Fig. 3. Schematic representation of the emulsification paths: stepwise addition of 80 wt. % 
water to different oil:surfactant ratios mixtures 

 

0

10

20

30

40

50

60

0 2 4 6

Oil:Surfactant ratio

N
a
n

o
p

a
rt

ic
le

 s
iz

e
 (

n
m

) 

 

Fig. 4. Polystyrene nanoparticle diameter as function of O:S initial ratio (water addition rate 
= 4.6 ml/h). (Adapted from Sadtler, et al., 2010) 

50 nm (O:S ratio = 4). The fact that the nanoparticle diameter progressively increased with 
the oil:surfactant ratio suggests that the styrene constituted the inner core of the 
nanodroplets, which was consistent with a direct O/W –type structure. It should be noticed 
that the polystyrene nanoparticles sizes obtained by this emulsification path, were 
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exceptionally small for the water/Brij 98/styrene system, compared to those reported in the 
literature from high-energy emulsification method (Antonietti & Landfester, 2002; Asua, 
2002; Bouanani et al., 2008; Marie, et al., 2007).  

Figure 5 shows the size of the nanoparticles synthesized from nanoemulsions prepared at 
different water flow rates, ranging from 4 ml/h to 150 ml/h, for a O:S ratio of 30:70 and final 
water composition of 80 wt. %. As predicted by Pey (2006), the polystyrene particle sizes 
increased with water addition rate. This could be related by the crossing rate of the phases 
along the emulsification paths, i.e. the kinetic of the whole emulsification process. 
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Fig. 5. Polystyrene nanoparticle size as function of the water addition rate (O:S ratio = 0.42). 
(Adapted from Sadtler, et al., 2010)  

To confirm this point, the same path was followed as in the first experiment by adding 

water at once. In the second experiment, the order of the addition was modified: the oil was 

added at once to the mixture of water and surfactant (the sample compositions were 

identical in the two cases). 

Figure 6 presents the particle sizes after polymerization obtained following these different 

pathways. Particles resulting from stepwise addition of water over the mixture of oil and 

surfactant were smaller than the one obtained by water addition at once (36 and 65 nm 

respectively).  

Phase transitions that take place during the emulsification process (as result of the change in 
the spontaneous curvature of surfactant), allow to low energy emulsification methods make 
use of stored chemical energy to get a small drop size distribution. However, when styrene 
was added to the water and Brij 98 mixture (at once), milky emulsions were formed and the 
polymerization of the oil droplets did not produced small nanoparticles. Hence the resulting 
polystyrene dispersion presented an average size of 420 nm (figure 6). The polymerization 
process might even be totally different in this case, switching from real miniemulsion 
polymerization to a "simple" emulsion polymerization process. Indeed, miniemulsion 
polymerization is only possible if the droplets are nucleated thereby leading to 
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polymerization inside the droplets. The smaller the droplet size, the higher the probability 
of radical entry into the droplets because of the higher interface area. When the emulsion 
droplets are bigger, the radical entry probability decreases while the micellar and/or 
homogeneous nucleation increased. Theses nucleation processes are found in the emulsion 
polymerization process. 

Concerning the emulsification protocol, internal phase addition should favour a proper 
mixing, to assure to reach the equilibrium with all the oil dissolved into the critical phases 
(i.e., cubic liquid crystal or lamellar phase) (Isabel Solè, et al., 2010). 

 

Fig. 6. Polystyrene nanoparticle diameter as function of the emulsification process. The 
nanoemulsions were prepared at 30:70 O:S ratio, with a final water concentration of 20 wt.%. 

3. Nanoparticles by near-PIT method 

The formulation-composition map is the graphical representation of the so-called 

generalized formulation (see Figure 7). The middle shaded zone corresponds to the three 

phase behavior at or near the optimum formulation. The formulation variable scale is such 

that the hydrophilicity increases from top to bottom and the stair like bold line is the 

standard inversion frontier. This line separates the regions in which O/W and W/O 

emulsions are formed as the result of the stirring of an equilibrate surfactant–oil–water 

system (Salager, 2000b; Salager et al., 1983). The crossing over through the inversion frontier 

represents a dynamic phase inversion, since the curvature of the liquid–liquid interface 

swaps its bending from one way to the other. This change is the consequence of the 

variation in one of formulation variables (i.e., surfactant affinity) or composition variables 

(i.e., oil/water ratio) during the stirring process. 

If the change is rendered in the map as a vertical shift (crossing through the horizontal 
branch of inversion line), as for instance in the continuous change in temperature (in the 
case of non-ionic surfactant), the inversion will always take place under the same conditions 
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(at so-called optimum formulation). Such a dynamic inversion, which is found to be 
reversible, has been called transitional because it is linked to a phase behavior transition 
(Salager, 2000a). On the other hand, when the inversion takes place by crossing through a 
vertical branch of the inversion line, it is called catastrophic because it may be modeled by 
using catastrophe theory (Salager, 1988; Salager, et al., 1983).  

 

Fig. 7. Formulation – composition map. The bold line is the standard inversion frontier. At 

right side upper schema illustrates the minimum of interfacial tension obtained near to PIT 

value. Bottom schema show the regions near to PIT value where droplet size presents a 

minimum.  

The transitional phase inversion is based on the particular ability of emulsions stabilized by 

poly(ethylene oxide) (PEO)-based non-ionic surfactants to undergo a phase inversion upon 

temperature variation (Kõzõ Shinoda & Arai, 1964). A change of formulation (i.e. induced 

by temperature increase) along a vertical line, results in a minimum of both the interfacial 

tension and the emulsion stability at the optimum formulation (see Figure 5). The minimum 

of stability at optimum formulation has been attributed either to the percolation through 

liquid crystals located across the thin film, or to the trapping of all surfactant in the 

microemulsion (Antón et al., 1986). Thus as optimum formulation is approached (either 

from above or from below the standard inversion line) both the interfacial tension and the 

emulsion stability decrease. As far as the emulsion droplet size is concerned, the two 

resulting effects are opposite. The weakening of interfacial tension tends to enhance the 

efficiency of stirring-mixing process and thus produces smaller droplets, while the decrease 

in emulsion stability favors the occurrence of coalescence events, and thus results in larger 

droplets (Salager et al., 1996) (see Figure 7). 
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The use of the low-energy PIT method has been reported for miniemulsion polymerization 
by heating above PIT temperature to inverse the emulsion and then cooling to induce the re-
inversion followed sometimes by a rapid cooling in an ice bath to set droplet size within the 
submicronic range (Jahanzad et al., 2007; Liat Spernath & Magdassi, 2007; L. Spernath & 
Magdassi, 2010). In this section the Near - PIT method (Galindo-Alvarez et al., 2011), for 
which the strong decrease in interfacial tension near to optimum formulation is used to form 
submicronic droplets, will be discussed. In contrast to other protocols, Near-PIT method 
does not reach and cross temperatures aboves PIT, thus temperature sensitive molecules can 
be use through a carefully match of surfactant system. 

It has been reported that stable O/W nanoemulsions can be produced by the PIT method if 
the dispersed system is rapidly cooled by about 30°C away from its temperature of 
transitional phase inversion (Solans, et al., 2005). In those conditions, droplet coalescence 
becomes negligible because the non-ionic surfactant molecules provide an efficient steric 
barrier. Therefore the miniemulsion templates should exhibit a PIT value about 30 °C higher 
than the targeted polymerization temperature. PIT value results from interaction between 
overall surfactant concentration, surfactant mixing ratio and weight fraction oil (K. Shinoda 
& Arai, 1967). Thus, the PIT value of the studied system was tuned by the appropriate 
selection of the constituents.  

In the case of non-ionic surfactant mixtures, it is well-known that increasing the length of 

the poly(ethylene oxide) chain results in higher HLB numbers and thus the increase in 

PIT. Two non-ionic surfactants, PEO stearyl ethers (Brij 78 and Brij 700), differing by the 

length of the PEO chain (20 and 100 repeat units, respectively) were used for formulating 

the nanoemulsions allowing a certain adjustment of the PIT value within the convenient 

range. Figure 8 shows the influence of surfactant mixing ratio and weight fraction of 

dispersed phase over PIT value. Thus a water/Brij 78 + Brij 700/styrene system 

containing 1%w/v of NaCl, a surfactant mixing ratio of 0.35/0.65 Brij 700/Brij 78 and 35 

wt% of dispersed phase with PIT value around 80°C has been chosen to carry out the 

miniemulsion polymerization at 50°C using potassium persulfate (KPS) as water-soluble 

initiator. 

On the basis of the previously selected formulation, the Near-PIT emulsification procedure 

is designed and compared to classical sonification and emulsion polymerization with regard 

to the final nanoparticle size obtained after reaction completion. For used conditions, a 

polymerization temperature of 50 °C ensures fast enough initiator decomposition so that no 

limitation by the polymerization reaction is considered. About particle nucleation 

mechanism, droplet size distribution of miniemulsion polymerization templates was similar 

to droplet size distribution of latex particles, suggesting predominance of droplet nucleation 

mechanism. 

Near-PIT protocol, as discussed at the beginning of this section, is based on the effect that 
droplet size decreases when PIT temperature is approached as the result of an enhanced 
stirring efficiency due to the very low interfacial tension. Nevertheless, in that 
temperature range, close to the PIT, resulting emulsions turn out to be very unstable; and 
no theoretical relationships are available to discriminate zones of minimum droplet size 
from unstable emulsion. In a general way, in Near-PIT protocol the system is heated until 
a temperature close to PIT value, equivalent to: -5°C or – 10°C below PIT temperature. As 
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this value is particular for each system formulation, Figure 9 illustrates the final average 
particle diameters obtained for suspensions resulting from miniemulsion polymerizations 
after Near-PIT protocols carried out at PIT-10°C, PIT-5°C and PIT-0.5 ◦C values. The used 

formulation was oil = 0.2, XBrij700 = 0.35 and the overall surfactant concentration equal to 
5.2 wt%. For the three examined conditions, particles with diameters lower than  
100 nm were obtained after polymerization. In addition, polydispersity indices were 
relatively low (<0.22) indicating reasonably narrow size distributions. Even if the average 
diameters were similar for the different temperatures, the better compromise was 
obtained for the experience carried out at PIT – 5°C, since its polydispersity index was the 
lowest.  

 

Fig. 8. a) Increase of PIT value as function of Brij® 700 content, XBrij700, oil = 0.5 and 8wt% 

of surfactant concentration. b) Variation of PIT value with the weight fraction of dispersed 

phase, oil, XBrij 700 = 0.25 and 8wt% of surfactant mixture.  

(Adapted from Galindo-Alvarez, et al., 2011) 

In miniemulsion polymerization, the use of an effective surfactant system may give very 

small (20–300 nm) monomer droplets with very large surface area and almost all the 

surfactant adsorbed at the droplet surface (the concept of critically “stabilized 

miniemulsion”). Particle nucleation occurs primarily via radical (primary or oligomeric) 

entry into monomer droplets, since little or no surfactant is present in the form of micelles. 

The reaction proceeds by polymerization of the monomer in these small droplets, since the 

loci of polymerization become the monomer droplets and ends when all monomer in 

droplet is consumed (Schork et al., 2005).  

In contrast for macroemulsion polymerization, polymerization starts with large monomer 

droplets (diameters higher than 10 m) stabilized by surfactant and coexisting with empty 

or monomer-swollen surfactant micelles. The water-soluble initiator forms oligoradicals 
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with the slightly water-soluble monomer molecules and these oligoradicals go inside the 

micelles (heterogeneous nucleation) or start nucleate particles in the continuous phase after 

reaching a critical degree of polymerization (homogeneous nucleation). During 

polymerization, the monomer diffuses from the large monomer droplets through the 

continuous phase to the polymer particles and sustain polymer particle growth until the 

monomer droplets have vanished (Antonietti & Landfester, 2002). Thus in miniemulsion 

polymerization latex particles size distribution are expected to correspond to the primary 

emulsion droplets. On the contrary, in macroemulsion polymerization the particle size 

distribution is established by the contribution of several nucleation processes leading to 

average diameters usually larger than 100nm and sometimes to the formation of several 

populations within the final sample. 

 

Fig. 9. Influence of polymerization temperature below PIT on final average particle size. 

Nanoemulsion formulation: oil = 0.2, XBrij700 = 0.35 and 5.2 wt% surfactant concentration. 
(Adapted from Galindo-Alvarez, et al., 2011) 

Figure 10 illustrates the particle size obtained from two miniemulsion polymerization 

methods (low energy Near-PIT and ultrasound emulsification) and one coarse–emulsion 

polymerization (standard mechanical emulsification) with various surfactant to oil weight 

ratios and composition of surfactant mixture. In macroemulsion polymerization protocol, 

coarse–emulsion is agitated at 800rpm as in Near-PIT method, but the system is heated 

only until polymerization temperature and not 25 ◦C beyond as in Near-PIT. As expected, 

macroemulsion polymerization from coarse–emulsion gave the highest particle diameters 

and polydispersity indices which indicate a large and probably multimodal particle  

size distribution (see figures. 10 and 11). Thus, the viability of Near-PIT method to 

produce submicronic droplets as templates for miniemulsion polymerization, with 

slightly better efficiency than that found for ultrasonic emulsification method, has been 

confirmed. 
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Fig. 10. Influence of emulsification process in particle size distribution, nanoemulsion 
formulation: ˚oil = 0.35, XBrij 700 = 0.4 and 5.2 wt% surfactant concentration. (Adapted from 
Galindo-Alvarez, et al., 2011) 
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Fig. 11. Influence of emulsification process in average particle size, miniémulsion 
formulation: ˚oil = 0.35 and 5.2 wt% surfactant concentration. (Adapted from Galindo-
Alvarez, et al., 2011) 

4. Conclusion 

This chapter has showed the viability to produce polystyrene nanoparticles by two different 
types of low energy emulsification methods: EIP, emulsion inversion point and Near-PIT, 
near phase inversion temperature.  
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The Emulsion Inversion Point technique was used on the water/Brij 98/styrene system to 
the formation of direct styrene-in-water nanoemulsions. After miniemulsion 
polymerization, particle sizes as low as 36 nm were obtained. These values are much lower 
than the one classically reached by high-energy emulsification methods. Thus Emulsion 
Inversion Point method is very attractive in industrial applications for nanoparticle 
synthesis, since the nano-emulsion formation does not require high concentration of 
surfactant, as in the case of microemulsion, or special high-shear equipments as in the case 
of most reported miniemulsion polymerization 

The Phase Inversion Temperature concept as a tool to produce miniemulsion templates for 
miniemulsion polymerization is a promising methodology in polymerization field to obtain 
monodisperse and aggregate-free nanoparticle suspensions. In this review a low-energy 
emulsification method has been designed and showed to allow the preparation of polymeric 
particles smaller than usual ultrasound miniemulsification methods (about 75 nm) in a 
water/Brij 78 + Brij 700/styrene system. The operating conditions were adjusted so as to 
conciliate particle size distribution, colloidal stability and polymerization kinetics. Contrary 
to usual PIT methods, the Near-PIT procedure did not imply heating the samples at 
temperatures higher than PIT. Final particles had comparable characteristics to those 
obtained by traditional PIT methods. In addition, we showed the relevance of temperature 

control (PIT or PIT-T) over nanoparticle size to obtain even slightly smaller particles than 
those obtained after ultrasound emulsification. Finally it is possible to vary the composition 
of the surfactant mixture, within a certain range, without strongly modifying nanoparticles 
final characteristics, but in way to control the thickness of the hydrophilic superficial layer. 
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