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1. Introduction 

Since its discovery in 1985, fullerene has been extensively investigated as a unique, 

“dissolvable,” and “modifiable” nanocarbon material. The most representative fullerene, 

C60, is a perfectly spherical molecule with a diameter of ca. 1 nm (0.7 nm when the distance 

between the furthest C–C bond is considered, and 1 nm when the -orbitals are included). It 

has many interesting electronic and biological properties owing to its spherical -

conjugation. While fullerenes satisfactorily dissolve in aromatic solvents such as toluene and 

o-dichlorobenzene as well as in carbon disulfide, they dissolve poorly in most common 

solvents such as hexane, chloroform, diethyl ether, ethyl acetate, tetrahydrofuran (THF), 

acetone, acetonitrile, ethanol, and even in benzene. This limitation has been one of the 

important issues hindering their practical application, especially in the field of life sciences.  

Although the single-crystal X-ray structural analysis of C60 has been successful, it is generally 
difficult to grow the crystal of fullerene derivatives. Such a poor crystallinity is because of the 
lack of molecular orientation and intermolecular interaction that are crucial for determining 
the molecular alignment in a crystal. The lack of molecular orientation and interaction is 
attributed to the unidirectional spherical shape of these derivatives, which is different from the 
shapes of other organic molecules such as cubic- or plate-shaped ones. For the same reason, 
the solid form of C60 is known to easily afford its nanoparticles with a top-down approach, in 
which the solid is reduced to small particles (as small as 20 nm) by applying mechanical forces; 
such particles can even be obtained by hand-grinding (Deguchi et al., 2006; Deguchi et al., 
2010). These small nanocarbon particles, so-called nC60 (Oberdörster, 2004; Brant et al., 2005) or 
nano-C60 (Fortner et al., 2005), can be dispersed even in neutral water, and they remain 
dispersed for a long time, especially in the presence of humic acid (Chen & Elimelech, 2007; 
Isaacson & Bouchard, 2010). On the other hand, the aggregate of fullerene can be easily 
obtained by a bottom-up approach in many solvents such as benzene (Ying et al., 1994), 
benzonitrile (Nath et al., 1998), N-methylpyrrolidone (Yevlampieva et al., 2002; Kyzyma et al., 
2010), and o-dichlorobenzene (Gun’kin & Loginova, 2006). The nanoparticle formation and 
aggregation behavior are among the outstanding features of fullerene in terms of both its 
practical application and the safe use of nanomaterials.  

Polyhydroxylated fullerenes, so-called fullerenols or fullerols, are a class of fullerenes that 
has many hydroxyl groups, formed by the chemical modification of covalent C–O bonds, 
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on their spherical surfaces. The chemical formula C60(OH)n represents an average 
structure that consists of a mixture of fullerenols having different number of hydroxyl 
groups, each with its own regioisomer. The solubility of a fullerene molecule is dependent 
on the number of hydroxyl groups introduced; i.e., the low-degree hydroxylated 
fullerenols C60(OH)10–12 (Chiang et al., 1994) can dissolve in some polar solvents, e.g., THF, 
dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and the medium-degree 
fullerenols C60(OH)16 (Wang et al., 2005) and C60(OH)20–24 (Li et al., 1993) are reported to 
dissolve even in water. However, these later fullerenols may be contaminated with Na 
salt because of the reagents used in synthesis, resulting in compositions with the formula 
Na+n[C60Ox(OH)y]n– and exhibiting high water solubility in spite of their small number of 
hydroxyl groups (Husebo et al., 2004). In contrast, the high-degree hydroxylated 
fullerenols C60(OH)36 and C60(OH)44, which are synthesized without using any Na salt, are 
completely water soluble by as much as 17 and 65 mg/mL, respectively (Kokubo et al., 
2008; Kokubo et al., 2010). Particle size analysis revealed that the high-degree fullerenols 
exhibited high dispersion properties at a molecular level (ca. 1 nm, which is as large as the 
molecular diameter). The behavior of water-soluble carbon particles in the single-nano 
region (1–10 nm) is less well understood in terms of their chemical and physical 
properties. 

This chapter focuses on the methods of synthesizing fullerenols, provides examples of 
applications, and describes the particle-size measurements of the high-degree fullerenols as 
water-soluble single-nano carbon particles.  

2. Synthesis of fullerenols 

2.1 Hydroxylation of fullerene 

Various types of fullerenols having different number of hydroxyl groups have been 
synthesized so far because of their promising water solubility and the expected bioactivities. 
In general, the structure of fullerenols is qualitatively identified by infrared spectroscopy as 

having a characteristic broad O–H band, along with three broad peaks assigned for C = C, 

sC–O–H, and C–O. The number of hydroxyl groups introduced is quantitatively 
determined by either elemental analysis or X-ray photoelectron spectroscopy (XPS). Such a 
quantitative analysis is founded on the hypothesis that the addend of a fullerene is 
composed of only hydroxyl group.  

One of the most well-known fullerenols, C60(OH)12, was synthesized by L. Y. Chiang 
using oleum (H2SO4·SO3), followed by the hydrolysis of the intermediate cyclosulfated 
fullerene (Scheme 1a) (Chiang et al., 1994). The compound is soluble in an alkaline 
solution and some polar solvents such as THF and DMSO, but it is not soluble in neutral 
water because it has few hydroxyl groups. L. Y. Chiang also studied its antioxidant 
activity toward a superoxide, a reactive oxygen species (Chiang et al., 1995). Some other 
related methods of accessing the lower-degree fullerenols have been reported (Zhang et 
al., 2010).  

The most frequently used method for synthesizing the medium-degree fullerenol 
C60(OH)22–26 is the one reported by J. Li et al. (Scheme 1b) (Li et al., 1993). This method 
employs sodium hydroxide (NaOH) as a hydroxylation reagent, and molecular oxygen is 
required to neutralize the intermediate fullerenyl anion, which is formed by the attack of –
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OH to C60, in order to induce the successive attack of –OH. The fullerenols C60(OH)22–26, as 
well as C60(OH)16 synthesized by a similar method using NaOH and H2O2 (Scheme 1c) 
(Wang et al., 2005), exhibits sufficient solubility in neutral water. The fullerenol has also 
been known to have many bioactivities, including antioxidant activity similar to pristine 
C60 (Bosi et al., 2003; Bakry et al., 2007; Partha & Conyers, 2009). However, the practical 
use of these types of fullerenols might be restricted because of their unfavorable 
contamination by Na+ ions, which are inevitably introduced during treatment with 
NaOH, and the purification is rather difficult except when done by repeated gel column 
chromatography (Husebo et al., 2004). The relatively higher water solubility than that 
expected, given the number of hydroxyl groups, is reasonably explained by the corrected 
chemical formula Na+n[C60Ox(OH)y]n–. Such a Na salt form is attributed to the weak 
acidity of the phenolic O–H of the low-degree fullerenols, in contrast to the alcoholic  
O–H of the high-degree fullerenols. Therefore, there is a demand for the development of 
new, facile, and scalable methods for synthesizing highly water-soluble and pure 
fullerenols.  

 

Scheme 1. Synthesis of low- and medium-degree fullerenols 

2.2 Highly polyhydroxylated fullerenols 

To avoid contamination by Na+ ions, we examined the use of hydrogen peroxide (H2O2) as a 

hydroxylation reagent instead of NaOH. Thus, we have found a new and facile approach for 

synthesizing high-degree fullerenols that have high water solubility without using any Na 

salts (Kokubo et al., 2008). The reddish brown suspension of fullerenol C60(OH)12 in 30% 

aqueous H2O2 was stirred vigorously at 60 °C under air until it turned to a transparent 

yellow solution, which occurred within 2–4 days (Scheme 2a). To this solution, a mixture of 

2-propanol, diethyl ether, and hexane as an antisolvent was added to afford a yellowish 

brown to milky white precipitation of the desirable high-degree fullerenol C60(OH)36· 8H2O. 

A longer reaction time of up to two weeks gave the similar but more water-soluble 

fullerenol C60(OH)40· 9H2O.  
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This new approach using H2O2 to synthesize high-degree fullerenols was useful; however, 

the starting material was limited to C60(OH)12 and was not applicable to pristine C60. We 

then improved the method in order to provide a facile, one-step method for synthesizing 

fullerenol from pristine C60; we added an NH3 aqueous solution to the H2O2 aqueous 

solution to give similar water-soluble fullerenols, although they contained some 

undesirable nitrogen-containing groups, along with hydroxyl groups (Matsubayashi et al., 

2009). We further improved the method, synthesizing pure C60(OH)44· 8H2O fullerenol 

with no nitrogen in one step from pristine C60. To the best of our knowledge, this 

fullerenol has the largest number of hydroxyl groups per C60 among the fullerenols 

reported so far; this fullerenol was obtained by a two-phase synthesis in the presence of 

tetrabutylammonium hydroxide (TBAH) as a phase transfer catalyst (PTC) (Scheme 2b) 

(Kokubo et al., 2010). The fullerenol exhibits a very high water solubility of up to 64.9 

mg/mL.  

 

Scheme 2. Synthesis of high-degree fullerenols 

2.3 Structural characterization 

The structural characterization of the high-degree fullerenols was conducted by infrared 

spectroscopy (Fig. 1). The spectra of the fullerenols closely resembled each other, although 

their relative peak intensities differed somewhat, suggesting a difference in the number of 

introduced hydroxyl groups. Four characteristic broad bands were observed at 1080, 1370, 

1620, and 3400 cm–1 and were assigned to C–O, sC–O–H, C=C, and O–H, respectively. A 

small shoulder peak at 1720 cm–1 may imply the existence of a carboxylic acid group, O=C–

OH, which might have formed by the further oxidation of a hydroxyl group associated with 

C–C bond cleavage of the fullerene nucleus. However, such partial oxidation must not be 

crucial because the generally strong C=O absorption is much smaller than the other 

generally weak or medium C=C or C–O absorptions, which is consistent with the results of 

the elemental analysis.  
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The quantitative analysis to determine the number of hydroxyl groups was conducted by 

elemental analysis. As shown in Table 1, the average structure of the high-degree fullerenol 

C60(OH)44· 8H2O would be deduced to be C60(OH)52 if just the results of elemental analysis 

was used. However, the largest reported number of substituents in one C60 moiety is C60F48 

(Tuinman et al., 1992; Troyanov et al., 2010), and thus C60(OH)52 is unlikely to be formed due 

to the enormous strain energy. On the other hand, it is known that the tightly entrapped 

water molecules, the secondary bound water, in highly hydroxylated fullerenols cannot be 

dissociated by the usual method of heating the fullerenols to about 120–150 °C. Therefore, 

water content measurements using thermogravimetric analysis was conducted (Figure 2). 

With a water content of 9.4 wt%, as shown in Table 1, the average structure of fullerenol was 

deduced to be C60(OH)44· 8H2O, using both elemental analysis and water content 

measurements.  

 

Fig. 1. IR spectra of (a) C60(OH)12, (b) C60(OH)36�8H2O, and (c) purified C60(OH)44�8H2O. 

 

Average structure Elemental analysis (%) Water content Solubility 
 Found (Calcd)a (wt%)a,b (mg/mL)c 

C60(OH)36· 8H2O 
C: 48.06, H:3.61 (C: 48.79, 

H:3.54) 
8.9 (9.7) 17.5 

(C60(OH)44) (C: 49.06, H:3.02) (0)  

C60(OH)44· 8H2O 
C: 44.68, H:3.56 (C: 44.70, 

H:3.75) 
9.4 (8.9) 64.9 

(C60(OH)52) (C: 44.90, H:3.27) (0)  

aValues in parentheses are calculated data. bDetermined by TGA. cAt 25 °C in neutral water (pH = 7).  

Table 1. Average structure and water solubility of high-degree fullerenols 
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Fig. 2. Thermogravimetric analysis of fullerenol C60(OH)44· 8H2O under N2 flow.  

2.4 Reaction mechanism 

Possible reaction mechanisms for the formation of fullerenols are illustrated in Schemes 3 

and 4. For the reaction using NaOH, the attack of –OH to C60 followed by the oxidation with 

molecular oxygen via one electron transfer from the C60 anion gives the hydroxylated C60. 

The successive attack of –OH and repeated oxidation finally gives the medium-degree 

fullerenol (Scheme 3) (Husebo et al., 2004).  

 

Scheme 3. A possible reaction mechanism for medium-degree fullerenols using the NaOH 
method 

In contrast, for the reaction using H2O2, the basic hydroxide ion from TBAH initially induces 
the hydroperoxide ion –OOH because of the slightly higher acidity of H2O2 than that of H2O 
(Scheme 4) (Wang et al., 2005; Kokubo et al., 2011). The –OOH thus formed attacks C60 to 
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give fullerene oxide C60O, followed by the attack of –OH and protonation. The epoxidation 
process may be repeated to give C60O2, C60O3, and so on (Tajima & Takeuchi, 2002), which 
are more susceptible than C60O to the subsequent nucleophilic attack of –OH (or –OOH) 
because of the higher strain. These fullerene oxide intermediates were detected in the 
reaction mixture by liquid chromatography-mass spectrometry (LC-MS) (APCI; m/z = 736, 
752, and 768) and were proven to be the intermediates by their kinetic behavior. The role of 
the quaternary ammonium salt TBAH is that of the promotion of –OOH formation and its 
transfer from the hydrophilic aqueous phase to the hydrophobic fullerenyl sites in the 
organic phase as PTC.  

 

Scheme 4. Proposed reaction mechanism for high-degree fullerenols using the H2O2 method 

3. Measurement of particle size distribution 

3.1 Dynamic light scattering method 

Although a fullerenol seems to completely dissolve in a solution, it may be aggregated in the 
nano-size region, as seen for many fullerene derivatives and some fullerenols (Mohan et al., 
1998; Husebo et al., 2004; Brant et al., 2007; Chae et al., 2009; Su et al., 2010). The particle size 
of medium-degree fullerenol C60(OH)24 in aqueous solution is reported as between ca. 20 
and 450 nm depending on the measurement conditions. Even such a high number of 
hydroxyl groups results in the formation of aggregation due to the large hydrophobic and 

– interactions between fullerenyl cores. 

In order to investigate the dispersant behavior, the particle size measurement of high-degree 
fullerenols in the 0.1 wt% aqueous solution was carried out using the common dynamic 
light scattering (DLS) method (Berne & Pecora, 1976). The narrow particle-size distributions 
around 1–2 nm in terms of the number of C60(OH)36 and C60(OH)44 molecules are essentially 
the same, indicating the highly dispersed nature of the fullerenols at a molecular level 
(Figure 3) (Kokubo et al., 2008; Kokubo et al., 2011). The average particle size of C60(OH)44 
was determined to be 1.46 ± 0.38 nm (N = 8). The particle size by intensity was not 
applicable to the fullerenol solution because of the interference from the intensity of 
contamination in the range of 60–130 nm.  
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Fig. 3. DLS analysis of (a) C60(OH)36 and (b) C60(OH)44 in water (0.1 wt%) expressed by size 
distribution in number.  

3.2 Induced grating method 

Recently, the induced grating (IG) method was developed to improve the reproducibility of 

particle size measurements, especially in the single-nano region (Wada et al., 2006). DLS 

measurements provide the diffusion coefficient D, which is converted to the diameter by 

monitoring the fluctuations in scattering intensity due to the Brownian motion of particles. 

However, because the efficiency of DLS is proportional to the sixth power of the particle 

diameter (Kerker, 1969), the detection sensitivity strongly depends on the particle size and 

thus the presence of impurities. The IG method also determines the diffusion coefficient D 

given by the following Einstein‒Stokes equation:  

経 噺 倦喋劇ぬ講穴 

where kB is the Boltzmann’s constant, T is the temperature in Kelvin,  is the viscosity of the 
medium, and d is the diameter of the particles. When the radio frequency voltage is turned 
off, the diffraction light intensity I begins to decrease according to the following equation:  荊 噺 荊待結捲喧岫伐に経圏態建岻 

where I0 is the initial intensity and q is the value of 2 divided by the pitch of the grating. 
However, the measurement also includes an activation procedure induced by 
dielectrophoresis to form a particle grating (Pohl, 1978). Dielectrophoresis first generates a 
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periodic density modulation of the particles, which are then relaxed to a diffuse state until 
they reach a steady state. Thus, the diffraction light is less affected by the presence of 
impurities as compared with DLS.  

We therefore also conducted particle size measurements of high-degree fullerenols using the 
IG method (Kokubo et al., 2011). In the diffusion region, sufficient photointensity was 
observed for the C60(OH)44 aqueous solution (0.1 wt%) and the logarithmic value of the 
relative photointensity correlated well linearly with the time scale (Fig. 4).  

 

Fig. 4. Time course of relative photointensity I of C60(OH)44 aqueous solution (0.1 wt%) 
measured by the IG method.  

The particle size distribution was narrow, in the range of 0.7–1 nm, and the average particle 

size was determined to be 0.806 ± 0.022 nm (N = 8), which was fairly consistent with the DLS 

results (Fig. 5). Therefore, it was confirmed that the high-degree fullerenols have high 

dispersion properties in water on a molecular level around their diameter of ca. 1 nm. It is 

remarkable that the reproducibility of the data measured over eight runs was 10 times 

higher for the IG method than for the DLS method.  

3.3 Other methods 

The particle size measurements by the DLS and IG methods were verified by a scanning 

probe microscope (SPM, Kokubo et al., 2011). We directly measured the particle size of the 

fullerenol as a function of protrusion height observed on a mica plate on which a highly 

diluted aqueous solution of fullerenol was applied and dried. As shown in Fig. 6, the 

protrusions were clearly observed as scattered spots, whereas a mica plate without the 
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fullerenol treatment, used as a control, did not show any spots at all. From the height of 

eight spots, the average particle size was determined to be 1.03 ± 0. 28 nm (N = 8).  

 
 

 

Fig. 5. IG analysis of (a) C60(OH)36 and (b) C60(OH)44 in water (0.1 wt%) expressed by size 
distribution in number. 

The size distribution of fullerenols has also been investigated using flow field-flow 

fractionation (FFF) technique (Assemi et al., 2010) and transmission electron microscopy 

(TEM) (Wang et al., 2010). The FFF is an elution technique that analyzes ensembles of the 

sample that have a similar property and produces a size distribution rather than an average 

size. They found that the size of medium-degree fullerenol C60(OH)24 nanoparticles was 

ranging from about 1.8 nm (0.001 M NaCl) to 6.7 nm (0.1 M NaCl). However, this result is in 

contrast to some DLS data that reports sizes on the order of 100 nanometers for fullerenol 

nanoparticles. This is because of the fact that the impurities and the large aggregation are 

separated from the monodispersed fraction eluting from the FFF channel. The TEM 

observation revealed that the aggregation form of the low-degree fullerenol 

C60(OH)12(ONa)2 in the solution with a particle size of 50–250 nm.  
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Fig. 6. SPM analysis of C60(OH)36 applied as a diluted solution and dried on a mica plate.  

4. Application of fullerenols 

4.1 Biochemical application 

The water-soluble medium-degree fullerenols have been demonstrated to be useful as free-

radical scavengers for the absorption of superoxide radicals generated by in vitro xanthine 

and xanthine oxidase in aqueous solution, suggesting potential use of fullerenols in 

biochemical or pharmaceutical applications (Chiang et al., 1995). Since then, much research 

has been devoted to studies on the antioxidant (Dugan et al., 1996; Djordjevic et al., 2004; 

Bogdanovic et al., 2008), antimicrobial (Aoshima et al., 2009), anti-cancer (Chaudhuri et al., 

2009; Krishna et al., 2010), antitumor, and antimetastatic activities of medium-degree 

fullerenols (Jiao et al., 2010).  

Recently, N. Miwa et al. reported the antioxidant activity (Kato et al., 2009) and related 

bioactivities (Saitoh et al., 2010; Saitoh et al., 2011) of high-degree fullerenols. Some reviews 

relevant to the biochemical application of fullerenes and fullerenols have also been reported 

(Nielsen et al., 2008; Rade et al., 2008; Partha & Conyers, 2009). Fullerenes are not considered 

to have highly significant acute toxicity and genotoxicity, although some toxicological 
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results have also been reported. In contrast, fullerenols are considered to be less toxic than 

C60 due to the introduction of hydrophilic groups that reduce their cytotoxicity.  

4.2 Industrial application 

Because of a 1 nm grain size, high water dispersibility on a molecular level and metal-free 
material, the high-degree fullerenol has been proposed as a chemical mechanical polishing 
(CMP) slurry for use during planarization in the Cu damascene process for the fabrication of 
next-generation semiconductors. Y. Takaya et al. found that the Cu-surface roughness was 
improved from 20 to 0.6 nm root mean square (RMS) by using C60(OH)36 as functional 
molecular abrasive grains to achieve better polishing performance than could be achieved 
using conventional processes (Takaya et al., 2009). The etching ability of C60(OH)36 for a Cu 
surface evaluated in static etch was also found to be high in relation to the achievement of a 
highly planar surface by polishing experiment. Very recently, further XPS analysis and SEM 
observation revealed that the chemical effect of fullerenol plays a key role in high polishing 
performance; i.e., the fullerenol chemically reacted with the copper surface to form a 
complex brittle layer that was fragile enough to be removed by rubbing with a polishing 
pad (Takaya et al., 2011).  

4.3 Other applications 

Other examples of applications using low- to medium-degree fullerenols have been 
reported, such as polymer-based solar cells (Cao et al., 2001; Rincón et al., 2005), drug 
delivery and MRI contrast agents using endohedral metallofullerenol (Sitharaman et al., 
2004), macromolecular materials and polymer nanocomposites (Goswami et al., 2003; 
Ouyang et al., 2004), proton conductors (Hinokuma et al., 2001; Maruyama et al., 2002), and 
electrodeposited films (Wang et al., 2010). Following these applications, water-soluble high-
degree fullerenols will open the new pathways for the new fullerenol chemistry.  

5. Summary 

Fullerenols are one of the most important and promising fullerene derivatives that can be 
easily synthesized with tunable properties by varying the number of hydroxyl groups 
introduced. Their water solubility, high dispersing nature as single-nano carbon particles, 
and varied biochemical properties are extremely attractive from the viewpoint of materials 
chemistry as well as life science applications. The analytical methods for particle size 
measurement of single-nano particles will continue to be improved by the further 
development of these kinds of nanocarbon materials.  
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