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1. Introduction  

Solid particles have been identified as a new type of emulsifying agent in addition to 
surfactants and amphiphilic polymers since the pioneer studies by Ramsden in 1903 
(Ramsden, 1903) and Pickering in 1907 (Pickering, 1907). Such emulsions are later on named 
as Pickering emulsions. In Pickering emulsions, solid particles of intermediate wettability in 
the size range from several nanometers to several micrometers attach to liquid-liquid 
interfaces and provide emulsion stability. Recently, there has been growing interest in 
Pickering emulsions because they open new avenues of emulsion stabilization and have 
numerous practical applications. For instance, we have studied the fundamentals of particle 
assembly in Pickering emulsions (Dai et al., 2005; Tarimala and Dai, 2004) , utilized them as 
templates to investigate the dynamics of particles (Tarimala et al., 2004; Tarimala et al., 
2006), and developed microrheology at liquid-liquid interfaces (Wu and Dai, 2006; Wu and 
Dai, 2007; Wu et al., 2009). In this chapter, we further apply the concept of Pickering 
emulsions to synthesize core-shell composite nanoparticles. 

Organic-inorganic composites are vital in biological, medical, and chemical applications. 

Among them, core-shell composite nanoparticles are a unique class of materials which are 

attractive for wide applications. It is worthwhile to note that the composite nanoparticle 

structure in this study is opposite to the often reported core-shell structure in which 

inorganic particles serve as the core and polymer serves as the shell; here the polymer serves 

as the core and the inorganic particles serve as the shell. Such materials provide a new class 

of supramolecular building blocks and can “exhibit unusual, possibly unique, properties 

which cannot be obtained simply by co-mixing polymer and inorganic particles.”(Barthet et 

al., 1999) In comparison with the recently reported methods to synthesize core-shell 

composite particles, for example, post-surface-reactio (Ding et al., 2004; Lynch et al., 2005), 

electrostatic deposition (Dokoutchaev et al., 1999), and layer-by-layer self-assembly (Caruso, 

2001; Caruso et al., 1999; Caruso et al., 2001), we synthesize core-shell composite 

nanoparticles through a novel Pickering emulsion polymerization route (Ma and Dai, 2009; 

Ma et al., 2010). Figure 1 illustrates the polymerization route and its comparison with the 

conventional emulsion polymerization. 

Pickering emulsion polymerization is superior in several aspects: (1) no sophisticated 
instrumentation is needed; (2) a commercialized nanoparticle powder or solution can be 
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used without further treatment; (3) the synthesis can be completed in one-step; and (4) the 
produced particle dispersion is surfactant-free. Despite of these advantages, efforts to 
explore and utilize this approach are limited, although pioneer explorations have been 
initiated some approaches including miniemulsion polymerization (Bon and Colver, 2007; 
Cauvin et al., 2005), dispersion polymerization (Schmid et al., 2006; Schmid et al., 2007; Yang 
et al., 2008) inverse suspension polymerization (Duan et al., 2009; Gao et al., 2009), and 
inverse emulsion polymerization (Voorn et al., 2006) stabilized by fine solid particles.  

 

Fig. 1. Comparison between (a) conventional emulsion polymerization vs. (b) Pickering 
emulsion polymerization. 

2. Pickering emulsion polymerization and its possible mechanisms  

The general scope of Pickering emulsion polymerization is similar to that of emulsion 
polymerization, with the exception of using solid nanoparticles as emulsion stabilizers. Here 
we employ polystyrene (PS)-silica as a model system to illustrate its synthesis and explore 
possible mechanisms. 

2.1 Synthesis and characterization of polystyrene-silica core-shell composite 
particles through Pickering emulsion polymerization 

2.1.1 Materials and synthesis  

IPA-ST silica solution, obtained from Nissan Chemicals, is 10–15 nm silica nanoparticles 
dispersed in 2-isopropanol. The silica concentration is 30–31% by weight. Nonionic azo 
initiator VA-086 (98%, 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide)), styrene 
monomer (99.9%), and HPLC grade water were purchased from Wako Chemicals, Fisher 
Scientific, and Acro Organics, respectively. All materials were used as received.  

First, water, IPA-ST and styrene were agitated mechanically at 600 rpm for 8 min using 
Arrow 6000 (Arrow Engineering) in an ice bath to emulsify. Second, the emulsion was 
degassed with nitrogen and kept in nitrogen atmosphere under magnetic stir. When the 
temperature was raised to 70 ◦C, the initiator solution was added to start the 
polymerization. The composite particles were sampled at different time intervals ranging 
from 3 h to 24 h. Before characterization, samples were washed twice by centrifuging -
redispersing cycles using an Eppendorf 5810R centrifuge. In each cycle, the sample was 
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centrifuged at 7000 rpm for 5 min, the supernatant was replaced with water and the 
sediment was redispersed by shaking manually. 

2.1.2 Characterization of the polystyrene-silica core-shell composite particles  

The synthesized polystyrene-silica core-shell composite particles through Pickering 

emulsion polymerization were characterized by various techniques. Figure 2(a) is a 

representative scanning electron microscope (SEM) image of the composite particles 

sampled at 5 hour reaction time. The roughness of the composite particle surfaces suggests 

that the particles are covered by silica nanoparticles. The core-shell structure can be clearly 

observed in the transmission electron miscroscope (TEM) image presented in Figure 2 (b). In 

many regions, the thickness of the shell is close to the size of one silica nanoparticle (10-15 

nm), which may suggest a monolayer coverage. Furthermore, we employed hydrofluoric 

acid (HF) to dissolve the silica shell which led to the smooth PS core in Figure 2(c). The PS-

silica composparticle size and its distribution agree well with the dynamic light scattering 

(DLS) measurement, as shown in Figure 2(d). Finally, we performed energy dispersive x- 

ray (EDX) spectrum to confirm that a substantial amount of Si and O exist, as shown in 

Figure 2(e). Note that the relative intensity of the peak does not necessarily correspond to 

the true atom ratio in the sample. One of the main reasons is that the penetration depth of 

the electron beam is unknown. The penetration depth depends on various factors, such as 

the electron beam voltage, the nature of the sample, and the Au/Pd coating thickness 

during the sample peparation. The EDX result only provides qualitative information 

regarding the existence of silica, which composes of Si and O, in the composite particles. 
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Fig. 2. Polystyrene-silica core-shell composite particles synthesized by Pickering emulsion 
polymerization: (a) a SEM image; (b) a TEM image of the cross-sectioned composite 
particles; (c) a SEM image of HF etched composite particles; (c) an overlay of DLS 
measurements of two batches; (d) an EDX spectrum. 
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It is worthwhile to note that we carefully selected VA-086 as the initiator. VA-086 is a water-

soluble nonionic initiator and no success has been reported in surfactant-free emulsion 

polymerization of styrene (Tauer et al., 1999). In order to verify the sole stabilizing effect of 

silica nanoparticles, emulsifier-free emulsion polymerization using VA-086 as the initiator in 

the absence of nanoparticles was performed. No polystyrene particle formation was 

observed in the product, evidenced by SEM experiments. These experiments show that the 

initiator VA-086 has little effect on stabilizing the system in emulsion polymerization and 

therefore silica nanoparticles are the only source of stabilizer when present. In addition, VA-

086 is neutral in charge thus is expected to minimize any electrostatic interactions with the 

negatively-charged silica nanoparticle surfaces which may complicate identifying silica 

nanoparticles as the sole stabilizer in emulsion polymerization. 

The silica content is quantitatively determined by thermalgravimetric analysis (TGA), as 
shown in Figure 3. Two samples were measured: the composite particles (solid line) and the 
composite particles after removal of the silica component by hydrofluoric acid etching, 
which is essentially polystyrene cores (dashed line). The polystyrene cores show a residual 
weight of approximately zero at 800 °C. Thus it is reasonable to assume that the major 
weight loss during heating is associated with the thermo-oxidative degradation of 
polystyrene and the residue close to 800 °C is solely silica. The silica content of the 
composite particles is approximately 20 wt%. Although some silica nanoparticles remain in 
the continuous phase and are washed off by centrifuging-redispersing cycles, the silica 
content of particles prepared via solid-stabilized emulsion polymerization using nonionic 
initiator VA-086 is significantly higher than that of particles (1.1 wt%) prepared via 
dispersion polymerization using nonionic initiator AIBN (Schmid et al., 2007). The 
improvement is likely due to the distinct polymerization mechanisms. In contrast to the 
dispersion polymerization in which the polystyrene monomers are dissolved in alcohols, the 
emulsion polymerization here contains distinguished liquid-liquid interfaces due to the 
immiscibility between the monomers and the aqueous continuous phase. Therefore the 
nanoparticles, even in the absence of electrostatic interactions, are thermodynamically 
favorable to self-assemble and remain at the liquid-liquid interfaces, following the same 
argument in Pickering emulsions (Dai et al., 2005; Tarimala and Dai, 2004). At the initial  
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Fig. 3. Thermogravimetric analysis of the PS-silica core-shell composite particle prepared 
usinVA-086 as the initiator before (solid line) and after (dashed line) HF etching treatment. 
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stage of polymerization, the nanoparticles provide stability to the monomer droplets. 
During the nucleation stage, silica nanoparticles are at the interfaces between the 
monomer phase and continuous phase. It is worthwhile to note that the role of silica 
nanoparticles described here is not the same as that in the polymerization involving 
oppositely charged initiator and nanoparticles (Schmid et al., 2007). In the latter case, the 
initiator molecules or residues adsorb onto the silica nanoparticle surfaces after initiation 
(Schmid et al., 2007) thus the silica nanoparticles function as the surface-active initiator 
residue. The mechanism of the core-shell structure formation in Pickering emulsion 
polymerization will be detailed later on. 

2.2 Possible mechanisms of Pickering emulsion polymerization 

The mechanism of conventional emulsion polymerization stabilized by surfactants has been 

under active discussion for over half a century and some consensus has been reached. 

Harkins proposed three loci of particle nucleation in 1947 (Harkins, 1947), which are later 

developed into at least three different nucleation mechanisms (Chern, 2006): the micellar 

nucleation, the homogeneous coagulative nucleation, and the droplet nucleation. Upon 

initiator addition and decomposition, free radicals form in the aqueous phase. The micellar 

nucleation (Chern, 2006; Tauer et al., 2008) begins with the capture of free radicals by 

micelles, proceeds with the continuous swelling and polymerization of monomers in the 

monomer-swollen particles, and finally terminates with the exhaustion of monomers. While 

some researchers believe that the micellar nucleation mechanism dominates at a surfactant 

concentration above the critical micelle concentration, doubts have also been raised (Tauer 

et al., 2008). In the absence of micelles, the homogeneous coagulative nucleation mechanism 

is likely dominant. In homogeneous coagulative nucleation (Chern, 2006; Feeney et al., 1984, 

1987; Yamamoto et al., 2004), monomers dissolve in water and undergo radical 

polymerization to form oligomers. The oligomers coagulate to form embryos, nuclei, and 

primary particles sequentially. These primary particles, stabilized by the adsorption of 

surfactant molecules, could grow either via swelling of particles by monomers or deposition 

of oligomers onto their surfaces (Yamamoto et al., 2006). Finally, droplet nucleation is 

another possible mechanism in conventional emulsion polymerization. Here the monomer 

droplets may be subjected to the oligomeric radical entry and solidify into particles, 

following the droplet nucleation mechanism. Droplet nucleation is usually minor in 

emulsion polymerization, except in miniemulsion polymerization when hydrophobic 

initiators are used. 

Based on the fundamental understandings in conventional emulsion polymerization, we 
propose possible Pickering emulsion polymerization mechanisms, taking into account the 
differences between fine solid particles and surfactant molecules. Since the nanoparticles do 
not form micelles like surfactant molecules, micellar nucleation is excluded. Thus, there are 
two possible nucleation mechanisms involved in the initial stage of Pickering emulsion 
polymerization. Homogeneous coagulative nucleation is likely to be the dominating 
mechanism here, which yields the sub-micron-sized particles. The droplet nucleation might 
also occur, which yields micron-sized particles. The two mechanisms are illustrated in 
Figure 4. Upon initiator addition, monomers dissolved in the aqueous phase react with 
decomposed initiators and form oligomers with radicals. In homogeneous coagulative 
nucleation, the oligomers coagulate into nuclei, which subsequently become monomer 
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swollen particles. Nanoparticles self-assemble at the interfaces between monomer and the 
continuous phase to provide stability. With the continuous supply of monomer molecules 
from the monomer droplets through diffusion, the particle size growth is mainly achieved 
by monomer swelling followed by polymerization within the core. In contrast, in droplet 
nucleation, initiated oligomers with radicals enter monomer droplets and subsequently 
polymerize into solid cores without significant size growth.  

We use the hypothesized mechanisms to interpret the formation of polystyrene-silica 
nanocomposite particles prepared using VA-086 as the initiator. Figure 5 shows the 
dependence of particle size and surface coverage on reaction time and initiator 
concentration [Ma et al., 2010]. The composite particles are sampled from 3 h to 24 h reaction 
time and the initiator concentration relative to monomer is selected to be 0.83, 2.5, and 4.2 wt 
% respectively. At 3 h reaction time, well after the nucleation stage, composite particles with 
dense silica coverage are obtained. Since VA-086 initiator residues cannot provide sufficient 
stabilization to the monomer-swollen particles, silica nanoparticles would self-assemble at 
interfaces to provide stabilization and thus lead to high silica coverage. At initiator 
concentration 0.83 wt %, the silica coverage decreases with the particle size growth and the 
silica nanoparticles form patches on the nanocomposite particle surface with a low coverage. 
This might be an indication that the surface area of the polystyrene core increases with the 
particle growth without a significant increase of silica continuously attaching onto the 
polystyrene core. The particle growth mechanism is likely due to swelling of particles by 
monomers in the continuous phase. The same mechanism explains the surface coverage 
decrease in the system containing 2.5 wt % of initiator (images not shown) and from 3 h to 
11 h in the system containing 4.2 wt % of initiator. These observations suggest that the 
Pickering emulsion polymerization using VA-086 as the initiator mainly follows the 
homogeneous coagulative nucleation mechanism.  

 

Fig. 4. Schematic illustration for possible mechanisms of Pickering emulsion polymerization. 
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One remaining mystery is the unexpected silica coverage from 11 h to 24 h in the system 
with 4.2 wt % initiator. Although the origin is unclear, we tentatively attribute the unusual 
silica coverage increase to the deposition of oligomers on the polystyrene core [Yamamoto et 
al., 2006], which adsorbed onto silica nanoparticles in the continuous phase [Yamamoto et 
al., 2006]. Excess initiator molecules might generate a large number of oligomers in the 
continuous phase, which could possibly adsorb onto silica nanoparticles. Thus when the 
oligomers on silica nanoparticles attach to preformed polystyrene surfaces, the silica 
nanoparticles are anchored there. It is also possible that the surface coverage increase might 
be due to the adsorption of depleted or close to depleted monomer droplets with a size 
below that of particles. It is worthwhile to note that the continuous phase contains 
approximately 21% isopropanol. The existence of isopropanol might increase the solubility 
of the monomer and the degree of polymerization required for an oligomer to be insoluble 
in the continuous phase, however, the solubility of monomer in the continuous phase is still 
low enough to enable emulsification and subsequent emulsion polymerization. 

 

Fig. 5. Plot of particle size versus reaction time and representative SEM images with 
different initiator VA-086 concentrations: 0.83 wt % (▲, inset images a, b and c), 2.5 wt % (□) 
and 4.2 wt % (▼, inset images d, e and f). The error bars indicate the width of the particle 
size distribution and the scale bars represent 100 nm. 

3. Environmentally responsive core-shell composite nanoparticles from 
Pickering emulsion polymerization 

The Pickering emulsion polymerization opens a new and convenient way to synthesize 
core-shell composite nanoparticles. The simplicity enables further design and development 
advanced functional core-shell composite nanoparticles. One particular example to be 
illustrated here is the development of environmentally responsive core-shell composite 
nanoparticles from Pickering emulsion polymerization. By encapsulating drugs or 
chemicals, such nanoparticles enable controlled release upon environmental changes, as 
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shown in Figure 6. For example, other than the styrene monomer, we have incorporated 
NIPAAm (N-isopropylacrylamide) as co-monomer into the Pickering polymerization and 
synthesized temperature responsive PS/PNIPAAm-silica composite nanopariticles. 
PNIPAAm is a well-understood temperature sensitive gel, which undergoes volume 
shrinkage at a transition temperature of approximately 32 °C in pure water (Schild, 1992). 
The mechanism of this change is based on different solubility below and above the lower 
critical solution temperature (LCST) in aqueous media. Below the LCST, the polymer chain 
is hydrophilic as the hydrogen bonding between the hydrophilic groups and water 
molecules dominates; above the LCST, the polymer chain becomes hydrophobic due to the 
weakened hydrogen bonding at elevated temperature and the hydrophobic interactions 
among hydrophobic groups (Qiu and Park, 2001). Figure 7(a) is a representative SEM image 
of the composite particles sampled at 5-hour reaction time which shows that the particles 
tend to be spherical. The roughness of the composite nanoparticle surfaces suggests that the 
nanoparticles are covered by silica nanoparticles; this is contrasted by the smooth surface of 
the hydrofluoric acid (HF)-treated particles in Figure 7(b). HF dissolves the silica layer and 
leaves behind the smooth polymer surface. It is also evidenced by the blue line in the 
Fourier transform infrared (FTIR) spectrum in Figure 7(c) which shows that the composite 
nanoparticles have a characteristic strong peak at 1104 cm-1, corresponding to the 
asymmetrical vibration of the Si-O-Si bond. Such a peak is absent in the red line in Figure 
7(c) which represents the HF-treated composite particles. FTIR is a strong analytical tool 
which gives information about specific chemical bonds simply by interpreting the infrared 
absorption spectrum; here it is used to identify the presence of silica.  

Environmental

Stimulation

 

Fig. 6. Schematic illustration of environmentally responsive composite nanoparticles 
responding to an environmental change and releasing encapsulated materials such as a 
drug. 

During our experiments, we also incorporated different ratios of monomer/comonomer in 
the formulation of the PS/PNIPAAm-silica core-shell composite nanoparticles. It is found 
that when the concentration of the NIPAAm monomer is high, the volume change of the 
nanoparticles is significantly greater with change in temperature, as shown in Figure 8. 
Control experiments of polystyrene-silica nanoparticles did not show a size transition over a 
temperature range of 25-45°C (data not shown). The transition temperature is not shifted by 
the silica nanoparticle encapsulation. This is consistent with the recently reported composite 
microspheres with a PNIPAAm core and a silica shell which also show a volume transition 
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starting at 32°C (Qiu and Park, 2001). It is likely due to the fact that silica particles are 
physically adsorbed on the surfaces of PNIPAAm microspheres thus no chemical bond 
formation with silica occurs which might change the transition temperature. Moreover, the 
copolymerization with styrene has no significant effect on the transition temperature. One 
hypothesis is the relative phase separation of PNIPAAm and polystyrene within the core. 
Duracher et al. studied PNIPAAm-polystyrene particles and suggested a PNIPAAm-rich 
shell and a polystyrene-rich core structure (Duracher et al., 1998). Such phase separation 
may also occur in the core of the composite particles here although detailed morphology is 
unknown.  

 

(c) 

 

Fig. 7. (a) An SEM image of the composite particles; (b) SEM image taken after HF etching 
process (the scale bar represents 500 nm); (c) An FTIR spectrum of the composite 
nanoparticles where the blue line represents the composite particles and the red line is a 
sample of composite particles treated with HF. The box highlights the difference between 
the two spectra near 1104 cm-1 , which corresponding to the asymmetrical vibration of the Si-
O-Si bond the two spectra near 1104 cm-1 which corresponding to the asymmetrical 
vibration of the Si-O-Si bond.  

Figure 9(a) shows the dependence of average diameter of the composite particles on 

temperature with 15% NIPAAm. The average particle size at 25°C is approximately 92 nm. 

The size decreases sharply as the temperature reaches 32°C, around the LCST for 

homopolymer PNIPAAm and size change is nearly reversible upon cooling. In addition, we 

have encapsulated a drug, 17-(Allylamino)-17-demethoxygeldanamycin (17AAG), during 

the Pickering emulsion polymerization and performed cumulative drug release 

measurements. Figure 9(b) depicts the cumulative fractional drug release at 25 oC and 40 oC 

www.intechopen.com



 
The Delivery of Nanoparticles 

 

272 

of 17-AAG from the drug-loaded nanoparticles. No significant release of the drug was 

observed at room temperature (25oC). However, at a higher temperature of 40°C, the drug  

 

Fig. 8. Hydrodynamic diameters of PS/PNIPAAm-silica composite core-shell nanoparticles 
measured by DLS, decrease significantly near the transition temperature of PNIPAAm 
(32°C). The legend shows the various concentrations of NIPAAm, it is observed for higher 
concentrations of NIPAAm there is greater size change of nanoparticles. 
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Fig. 9. (a) The dependence of average diameter of composite nanoparticles on temperature. 
The error bars show standard deviations of particles made in three different batches.  
The transition temperature is around 32°C. There size transition is nearly reversible;  
(b) Cumulative fractional drug release versus time curve indicating release at room 
temperature and at 40 °C. There is minimum release at 25 °C which is below the transition 
temperature of the nanoparticles.  
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releases from the nanoparticles reached a maximum after 7 h. The cumulative fractional 
drug release is calculated as Mt/M∞, where t is the release time, Mt is the amount of drug 
released at a time t and M∞ is the amount of drug released at time infinity. Infinity is taken 
to be when the maximum amount of drug gets released and there is no subsequent release 
after infinity. The concentration of the drug in the sample solution was read from the 
calibration curve as the concentration corresponding to the absorbance of the solution. To 
determine the release mechanisms of the composite nanoparticle system an equation 
proposed by Yasuda et al. was used (Yasuda et al., 1968), which analyses the release 

behavior of a solute from a polymer matrix, nM(t)
kt

M( )



 where k is a constant related to the 

physical properties of the system, and the index, n, is the diffusional component that 
depends on the release mechanism. When n<0.5, the solute is released by Fickian diffusion; 
when 0.5<n<1.0, the solute is released by non-Fickian diffusion and when n=1, there is zero 
order release [Yasuda et al., 1968]. The calculated n value is 0.73 which indicates the non-
Fickian diffusion. The mathematical model indicates that the drug diffusion behavior is non-
Fickian and the rate of drug release is due to the combined effect of drug diffusion and 
polymer response due to increase in temperature.  

4. Conclusion  

In summary, polystyrene-silica core-shell composite particles were successfully synthesized 

by a novel one-step Pickering emulsion polymerization. The sole stabilizing effect of silica 

nanoparticles in the emulsion polymerization was verified. In addition, possible 

mechanisms of Pickering emulsion polymerization were explored and suggested that 

homogeneous coagulative nucleation is likely the dominating mechanism here. Finally, the 

temperature responsiveness of core-shell composite nanoparticles and drug release were 

validated by incorporating NIPAAM as a co-monomer into the Pickering emulsion 

polymerization.  
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