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1. Introduction 

CO is a tasteless, odorless and colorless gas. The existence of endogenous CO in the 

human body arises from heme catabolism (Meredith and Vale 1988; Ernst and Zibrak 

1998) and oxidation of organic molecules (Marilena 1997). Endogenous CO acts as a 

neurotransmitter for long-term potentiation, consequently playing a key role in memory 

and learning (Marilena 1997). It also plays a role in modulating inflammation, apoptosis, 

cell proliferation, mitochondrial biogenesis (Weaver 2009) and vascular relaxation 

(Marilena 1997).  

Exogenous sources of CO intoxication include smoking, forest fires, pollutants, and 

improper usage of heaters or furnaces (Weaver 2009; Kumar, Prakash et al. 2010). CO 

intoxication usually indicates exposure to exogenous sources and is considered one of the 

most common causes of poisoning worldwide (Prockop and Chichkova 2007; Weaver 

2009), with 1000 deaths annually in Britain (Meredith and Vale 1988), and 4000-6000 

deaths annually in the United States (Tibbles and Perrotta 1994; Ernst and Zibrak 1998; 

Weaver 1999). In Asia, the exact epidemiology remains unclear. In Japan, Hong Kong and 

Taiwan, a common CO etiology of intoxication is charcoal burning suicide (Lee, Chan et 

al. 2002). In Japan, poisoning by charcoal burning is the most lethal form of suicide and is 

a highly prevalent method among men aged 25-64 years of age (Kamizato, Yoshitome et 

al. 2009), in contrast to a high rate of drug poisoning as a method of suicide in women. In 

Hong Kong, the risk factors of suicide by charcoal burning are male and living alone with 

financial stress (Lee and Leung 2009). In Taiwan, charcoal burning was not a common 

method of suicide before 1998, with a rate of only 0.14 per 105 people per year (Lin and Lu 

2008). With the dissemination of media and the internet, the rate of charcoal burning 

suicides dramatically increased by 40-fold, reaching a rate of 5.38 per 105 people per year 

in 2005 (Lin and Lu 2008).  
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2. Mechanisms of CO intoxication 

2.1 Tissue hypoxia 

CO competes with oxygen in binding with hemoglobin to form carboxyhemoglobin. The 

affinity between CO and hemoglobin is 200 times higher than that of oxygen (Ernst and 

Zibrak 1998; Piantadosi 2002; Weaver 2009). The production of carboxyhemoglobin shifts 

the oxygen-hemoglobin curve to the left and dissociates oxygen from hemoglobin (Ernst 

and Zibrak 1998). These reactions consequently reduce oxygen delivery to tissues and result 

in a hypoxic microenvironment. 

2.2 Oxidative stress 

In brief, CO intoxication leads to oxidative stress through the following mechanisms:  
1. CO increases cytosolic heme levels leading to increased heme oxygenase-1 protein, 

causing intracellular oxidative stress and direct cellular injury (Ernst and Zibrak 1998; 
Weaver 2009). 

2. CO binds to cytochrome c oxidase and impairs mitochondrial function. Cytochrome c 
oxidase is one of the mitochondrial complexes involved in electric chain transport and 
is essential for energy production. Binding of CO to cytochrome c oxidase can lead to 
activation of hypoxia-inducible factor 1α or production of reactive oxygen species with 
direct cellular injury. Related downstream reactions include apoptosis, lipid 
peroxidation, lymphocyte proliferation, inflammation and necrosis (Weaver 2009).  

3. CO binds to platelet heme protein and induces biogenesis of nitric oxide peroxynitrite, 
consequently leading to enhanced adhesion of neutrophils to the vascular lining, 
neutrophil aggregation and release of myeloperoxidase. All of these reactions not only 
trigger inflammatory processes but also produce more reactive oxygen species (Ernst 
and Zibrak 1998; Weaver 2009). 

2.3 Reoxygenation injury 

H2O2 production has been noted to increase extensively in brain tissues during 

reoxygenation after CO intoxication (Zhang and Piantadosi 1992). Salicylate hydroxylation 

products and 2,3- and 2,5-dihydroxybenzoic acid are also significantly increased during 

reoxygenation. During this period, CO still binds to cytochrome c oxidase and inhibits the 

mitochondrial electron transport chain. If the reaction exists in iron-rich regions such as the 

basal ganglia, it causes persistent acidosis and active iron, which can further damage cells 

(Zhang and Piantadosi 1992).  

2.4 Mechanisms related to central nervous system (CNS) injury 
2.4.1 Acute CNS injury 

In animal models, an initial cerebral blood flow increment after CO exposure is thought to 

maintain the baseline energy state (MacMillan 1975). A change of blood flow depends on 

both the reaction of the cerebrovasculature and cardiac function in CO intoxication. In either 

failure of cerebrovasculature dilatation or impairment of cardiac pumping function, there is 

no compensatory blood supply increase in the status of acute carboxyhemoglobin elevation 

and oxyhemoglobin reduction. (Raub and Benignus 2002). After initially compensated 

hyperperfusion, focal hypoperfusion has been noted in several studies (Choi, Lee et al. 1992; 

Choi and Lee 1993) which might be related to clinical manifestation (Sesay, Bidabe et al. 

1996). Hypoperfusion over the basal ganglion (Sesay, Bidabe et al. 1996; Kao, Hung et al. 
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1998), cerebral cortical (Choi, Lee et al. 1992; Kao, Hung et al. 1998), and white matter (WM) 

(Sesay, Bidabe et al. 1996) areas have been noticed. Cerebral WM and the globus pallidum 

(GPi) were noted to have relatively low cerebral blood flow after acute CO intoxication in 

one animal study (Okeda, Matsuo et al. 1987). 

Hypoxia in the CNS induces decreased adenosine-5’-triphosphate, influx of Ca2+ and Na+, 
release of glutamate, noradrenaline and acetylcholine and causes cell swelling and death 
(Weinachter, Blavet et al. 1990; Kluge 1991). Increased glutamate with both neuronal 
necrosis and apoptosis was noted immediately after CO intoxication in one animal study 
(Piantadosi, Zhang et al. 1997). However, how hypoxia affects the CNS in the acute stage of 
CO intoxication has not been well established (Piantadosi, Zhang et al. 1997; Gorman, 
Drewry et al. 2003). Aside from changes of cerebral blood flow and hypoxia, increasing 
intracranial pressure and brain tissue necrosis have been noted in animals and humans after 
acute CO intoxication (Jiang and Tyssebotn 1997; Piantadosi, Zhang et al. 1997; Uemura, 
Harada et al. 2001; Lo, Chen et al. 2007).  

2.4.2 Chronic CNS injury 

The pathogenesis of delayed CNS injury in CO intoxication is complicated. Hypoperfusion  

(Sesay, Bidabe et al. 1996; Watanabe, Nohara et al. 2002; Chu, Jung et al. 2004) and hypoxia 

(Opeskin and Drummer 1994) still play an important role. Demyelination (Murata, Kimura 

et al. 2001; Kamijo, Soma et al. 2007; Ide and Kamijo 2008), cytotoxic edema (Kim, Chang et 

al. 2003; Chu, Jung et al. 2004; Kwon, Chung et al. 2004), hemorrhage (Ramsey 2001) and 

infarction (Schwartz, Hennerici et al. 1985; Sung, Yu et al. 2010) have also been associated 

with delayed neurological deficits. Hypoperfusion and cytotoxic edema in delayed CNS 

injury have been noted in WM areas and the cerebral cortex (Chu, Jung et al. 2004), and 

ischemia and necrosis have been noted in the globus pallidus (Chang, Han et al. 1992). 

Although demyelination and axonal damage might co-exist in CO intoxication, 

demyelination more than axonal damage is suggested in the literature (Chang, Han et al. 

1992; Murata, Kimura et al. 2001; Kamijo, Soma et al. 2007; Ide and Kamijo 2008). 

2.5 Other mechanisms 

CO also inhibits a number of proteins essential for cells. Myoglobin in the heart and skeletal 

muscle systems, neuroglobin in the brain, cytochrome P450 (Weiner 1986), dopamine and 

tryptophan oxygenase (Raub and Benignus 2002) have all been reported to be affected. A 

high CO concentration transforms xanthine dehydrogenase to xanthine oxidase and 

produces more free radicals in tissues (Piantadosi, Tatro et al. 1995). Inhibiting the normal 

function of these intracellular proteins causes further damage or systemic injury in CO 

intoxication. 

3. Clinical manifestation 

3.1 The diagnosis of CO intoxication 

The diagnosis of CO intoxication is based on the clinical history of exposure or elevated 
carboxyhemoglobin level (> 10%) (Handa and Tai 2005; Chang, Lee et al. 2009). There is 
currently no definition of clinical staging in CO intoxication in the literature, although the 
pathophysiology follows that of hypoxic–ischemic encephalopathy (Gutierrez, Rovira  
et al.). 
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3.2 Symptoms in the acute phase 

Tightness across the forehead, headache, throbbing in the temples, nausea, vomiting, 
dimness of vision, dizziness, general weakness, syncope, convulsion, and coma are 
commonly found in patients with CO exposure within one day (Choi 2001). Cortical 
blindness with initially normal visual evoked potentials has also been reported in a case 
(Katafuchi, Nishimi et al. 1985). The pathogenesis contributing to the clinical manifestations 
includes change of blood flow (Penney 1990; Lo, Chen et al. 2007), hypoxia (Lo, Chen et al. 
2007), and neurochemistry abnormalities (Penney 1990).  

3.3 Symptoms in the late phase 

Following initial neurological deficits after acute CO intoxication, some patients experience 
progressive neurological deterioration, while others nearly complete recovery of symptoms. 
Some patients have a delayed onset of neurological deficits after an initial symptom-free 
period (Lee and Marsden 1994). The latter is often termed as delayed neuropsychiatric 
sequela in CO intoxication. The lucid interval after acute CO poisoning, on average, is 
around 20 days, varying from one to 240 days (Choi 1983; Lee and Marsden 1994; Ernst and 
Zibrak 1998; Pavese, Napolitano et al. 1999; Hsiao, Kuo et al. 2004), with a prevalence of 0.2-
40% (Hsiao, Kuo et al. 2004; Otubo, Shirakawa et al. 2007). Delayed neuropsychiatric 
sequelae include parkinsonism (Lee and Marsden 1994), chorea (Park and Choi 2004), 
akinetic mutism (Lee and Marsden 1994), increased irritability, verbal aggressiveness, 
violence, impulsiveness (Meredith and Vale 1988), mood disorders (Weaver 2009), dementia 
(Meredith and Vale 1988; Ernst and Zibrak 1998; Weaver 2009), psychosis (Ernst and Zibrak 
1998), sleep disturbances (Weaver 2009), cortical blindness (Quattrocolo, Leotta et al. 1987; 
Senol, Yildiz et al. 2009) and incontinence (Ernst and Zibrak 1998).  
The cognitive deficits are often very diverse (Hurley, Hopkins et al. 2001; Parkinson, 
Hopkins et al. 2002; Raub and Benignus 2002) including impairment in verbal or visual 
episodic memory, language, visuospatial ability, executive function and calculation (Chang, 
Chang et al. 2010). No specific neuropsychiatric battery has been designed for the cognitive 
deficits in CO intoxication. For general cognitive performance, most researchers apply the 
mini-mental state examination (Folstein, Folstein et al. 1975) or Wechsler Adult Intelligence 
Scale (Dorken and Greenbloom 1953) for evaluation. Chang et al. (Chang, Lee et al. 2009) 
used the clinical dementia rating scale (Morris 1997) to evaluate the functional capability of 
these patients since they may have physical disabilities. Tasks that have been used for 
evaluation are as follows: Alzheimer’s Disease Assessment Scale-Cognitive word-
recognition test (Rosen, Mohs et al. 1984) for verbal episodic memory; recollection of Rey-
Osterrieth complex figures for visuospatial ability (Boone 2000); Boston naming test for 
language ability (Boone 2000); digit span, digit-symbol, digit backward (Cronholm and 
Viding 1956; Sherman and Blatt 1968; Rudel and Denckla 1974); Trail Making Part A and 
Part B, block design, and design fluency (Gieseking, Lubin et al. 1956; Arbuthnott and Frank 
2000) for executive function; and neuropsychiatric inventory for behavioral changes 
(Cummings, Mega et al. 1994).  

4. Neuroimaging study results of CO intoxication by anatomical classification 

4.1 Basal ganglion lesions emphasized on the globus pallidus (GP) 

The basal ganglion includes the putamen, caudate nucleus, and GP. GP lesions are often 
considered as pathognomonic signs for patients with CO intoxication, however the 
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prevalence differs among studies (Silver, Cross et al. 1996; O'Donnell, Buxton et al. 2000). 
One study showed 63% of abnormal lesions in the GP with 26% in the rest of the basal 
ganglia (O'Donnell, Buxton et al. 2000). Another study with 73 patients revealed only one 
patient (1.4%) with basal ganglia lesions scanned two weeks after CO poisoning (Parkinson, 
Hopkins et al. 2002).  

4.1.1 Imaging features suggesting edematous change in the acute phase 

Low density GP lesions, commonly seen in computed tomography (CT), are considered as 
characteristic findings in patients with CO intoxication (Kanaya, Imaizumi et al. 1992; Gotoh, 
Kuyama et al. 1993; Uchino, Hasuo et al. 1994; Chu, Jung et al. 2004; Kinoshita, Sugihara et al. 
2005; Hopkins, Fearing et al. 2006). Low density lesions of the putamen and caudate nucleus, 
in contrast, have only been reported in one case (Ferrier, Wallace et al. 1994). The nature of GP 
lesions has been studied further by diffusion-weighted imaging (DWI) and apparent diffusion 
coefficient (ADC) mapping (Chu, Jung et al. 2004; Kinoshita, Sugihara et al. 2005). One case 
report interpreted low ADC values and high intensity GP lesions on DWI as restriction of 
water diffusion (i.e. cytotoxic edema) (Kinoshita, Sugihara et al. 2005). Vasogenic edema can 
also be visualized on ADC and DWI as increased signal intensity lesions (Chalela, Wolf et al. 
2001). The high signal on DWI is due to the T2 shine-through effect. 
 

 

Fig. 1. Magnetic resonance imaging study in the acute stage of carbon monoxide intoxication.  

Six days after CO intoxication, a 42-year-old woman with a globus pallidus interna lesion 
with hyperintensity in diffusion weighted imaging (1A), hypointensity in apparent diffusion 
coefficient (1B), hypointensity in T1 weighted image (WI) (1C), hyperintensity in T2WI (1D), 
and hyperintensity in fluid-attenuated inversion recovery (1E). 

4.1.2 Imaging features suggesting necrosis 

Imaging studies showing cavity-changes by T1 or T2WI often suggest necrosis of the GP 
(Mendelsohn and Hertzanu 1983; Pulst, Walshe et al. 1983; Ko, Ahn et al. 2004). Autopsies of 
patients with CO intoxication have confirmed the histology of necrosis and/or neuronal 
degeneration of the GP (Jones, Lagasse et al. 1994). The pathogenesis of necrosis is believed 
to be due to edema-induced ischemia or hemorrhage transformation (Chang, Han et al. 
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1992). Follow-up GP images often show volume shrinkage (Vieregge, Klostermann et al. 
1989; Kanaya, Imaizumi et al. 1992).   
 

 

Fig. 2. Magnetic resonance imaging in the delayed stage of carbon monoxide intoxication.  

Four years after CO intoxication, a 41-year-old woman with a globus pallidus lesion showed 

hypointensity in T1 weighted image (T1WI) (2A) and cavity changes with hyperintensity in 

T2WI (2B). 

4.1.3 Imaging features suggesting hemorrhage 

Hemorrhage of the GP is seen both in the acute and delayed stages after CO intoxication 

(Silverman, Brenner et al. 1993; Bianco and Floris 1996), while only one case report has 

demonstrated putaminal hemorrhage by CT (Schils, Cabay et al. 1999). Temporal sequences 

in conventional MRI have been noted to be similar to intracranial hemorrhage (Bradley 

1993). Hemorrhage may occur within days after CO intoxication with high signal intensity 

in T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) (Bianco and Floris 1996). 

High T1WI and low T2WI signals have been observed up to two months after intoxication, 

suggesting delayed hemorrhage (Yoshii, Kozuma et al. 1998). One case report described 

abnormal signals in the GP, with shorter T1 characteristics and longer T2 characteristics 

suggesting a prior focal hemorrhage three years after CO intoxication (Silverman, Brenner et 

al. 1993). In one study, widespread multiple pin point hemorrhages in the thalamus and GP 

were found in 40% of postpartum autopsies (Mehta, Niyogi et al. 2001).  

  

 

Fig. 3. Computed tomography and gradient echo T2WI after carbon monoxide intoxication.  

Two days after CO intoxication, a 57-year-old woman with hemorrhage in the globus 
pallidus showed hyperdensity in CT (3A) and a follow-up one month later with low signal 
intensity on gradient echo (3B). 
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4.1.4 Imaging features suggesting calcification 
Calcification of the GP has also been reported in the literature (Illum 1980; Lugaresi, 
Montagna et al. 1990; Adam, Baulac et al. 2008). The clinical presentations included acute 
neurological deficits with loss of initiative and slowness of thinking and acting (Adam, 
Baulac et al. 2008), and delayed neurological deficits with personality changes and akinesia 
(Lugaresi, Montagna et al. 1990). However one case was free of any neurological sequelae 
after 48 years of follow-up (Illum 1980).  

4.1.5 Functional imaging features suggesting hypometabolism  
[18F]fluorodeoxyglucose (FDG) PET has been used to evaluate glucose metabolism activity. 
Decreased metabolism in the basal ganglion  and frontal lobe  has been frequently reported 
(Tengvar, Johansson et al. 2004; Hon, Yeung et al. 2006). The largest series on PET and CO 
intoxication with basal ganglion lesions included eight patients with their behavioral and 
MRI patterns (Laplane, Levasseur et al. 1989). Seven patients revealed hypometabolism of 
the prefrontal cortex in relation to other parts of the brain, leading to a concept of prefrontal-
pallidum circuit dysfunction. A functional study using [18F] F-DOPA showed presynaptic 
dopaminergic deficits in one case with parkinsonism symptoms after CO intoxication 
(Rissanen, Paavilainen et al. 2010). In this case, normal uptake of [11C] raclopride implicated 
normal postsynaptic dopaminergic function (Rissanen, Paavilainen et al. 2010).  
Single photon emission computed tomography (SPECT) provides perfusion patterns of GM 
and the basal ganglion (Chang, Liu et al. 2008) with tracers such as 99mTc-ethylcysteinate 
dimer and 99mTc-Hexamethylpropyleneamine oxime. (99mTc-ECD) brain SPECT is 
considered to be more sensitive than brain CT for the early detection of hypoperfusion 
status (Wu, Changlai et al. 2003). In the acute stage, 50% to 85% of the patients with CO 
intoxication have been reported to have basal ganglion hypoperfusion (Wu, Changlai et al. 
2003; Pach, Hubalewska et al. 2004).                   
 

 

Fig. 4. [18F]fluorodeoxyglucose positron emission tomography (PET) of two patients after 
CO poisoning. 

Two and a half months after CO intoxication, a 33-year-old patient’s CT showed low 
intensity of the globus pallidus (4A) on brain computed tomography (CT) while PET 
revealed a remarkably reduced uptake of FDG in bilateral striatum (arrows) and thalamus 
(4B). Five months after CO intoxication, another 36-year-old patient’s CT showed no 
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obvious lesions (4C, 4E) while PET revealed normal FDG uptake in bilateral striatum (4D, 4F 
arrows) and normal thalamic uptake. 

4.1.6 Imaging features suggesting pallidoreticular damage 

In CO intoxication, pallidoreticular damage specifically targeting the fiber tract along the 

pallidum and substantia nigra pars reticulata was first described by Auer and Benveniste 

(Auer and Benveniste 1996). One case report revealed cytotoxic edema of bilateral GP with 

concurrent substantia nigra pars reticulata involvement in a patient scanned 12 days after 

CO intoxication (Kinoshita, Sugihara et al. 2005). Two case reports revealed pallidoreticular 

distribution after one year showing hyperintensities on T2WI and hypointensities on T1WI 

(Kawanami, Kato et al. 1998; Gandini, Prockop et al. 2002). The authors suggested that these 

two iron rich regions had selective tissue vulnerability due to the high affinity of CO to 

heme molecules (Kawanami, Kato et al. 1998; Gandini, Prockop et al. 2002; Kinoshita, 

Sugihara et al. 2005).         

4.2 WM lesions 

An increasing number of studies have established that WM lesions are the most common 

findings in CO intoxication patients, either in the acute phase or in those with delayed 

neuropsychiatric sequelae (Miura, Mitomo et al. 1985; Chang, Han et al. 1992; Choi, Kim et 

al. 1993; Lee and Marsden 1994). The largest study included 129 patients, and 33% of them 

had WM lesions on brain CT (Choi, Kim et al. 1993). In patients with improvements of 

neurological deficits, resolution of WM changes have also been noted (Klostermann, 

Vieregge et al. 1993; Matsushita, Takahashi et al. 1996; Pavese, Napolitano et al. 1999). 

Lesions of the WM area are believed to be associated with clinical outcomes (Miura, Mitomo 

et al. 1985; Vieregge, Klostermann et al. 1989; Choi, Kim et al. 1993).  

4.2.1 Imaging features suggesting WM cytotoxic/vasogenic edema 

In a pathological series, cytotoxic and vasogenic edema after CO intoxication were often 

mixed within three months, and the presence of cytotoxic edema was often noted to be in 

the acute phase (Ginsberg, Myers et al. 1974; Ginsberg 1985; Thom, Bhopale et al. 2004). The 

presence of cytotoxic edema lesions can be detected as early as the first day of CO 

intoxication (Sener 2003) or during the delayed phase (Murata, Kimura et al. 2001; Kim, 

Chang et al. 2003; Chu, Jung et al. 2004). Imaging features suggesting cytotoxic edema of the  

 

 

Fig. 5. Diffusion weighted image (5A) and apparent diffusion coefficient (5B) in one case 
presenting as delayed neuropsychiatric sequelae after carbon monoxide intoxication. 
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WM area show low ADC values with high DWI intensities, while vasogenic edema shows 
high signals on both sequences.  
One month after CO intoxication, a 41-year-old woman with white matter hyperintensity in 
DWI (6A) and iso- to low-signal intensity in ADC (6B) indicating cytotoxic edema. 

4.2.2 Imaging features suggesting WM demyelination or axonopathy 
The prevalence of imaging features suggesting WM demyelination or axonopathy range 
from 12% to 100% in CO intoxication (Chang, Han et al. 1992; Parkinson, Hopkins et al. 
2002). The largest MRI study focusing on WM included 73 patients scanned on day 1, 2 
weeks and 6 months after CO intoxication (Parkinson, Hopkins et al. 2002). Semiquantitative 
scores were rated on bilateral periventricular and centrum semiovale areas (Parkinson, 
Hopkins et al. 2002). Twelve percent of the patients had WM hyperintensities on T2WI on 
day 1 (Parkinson, Hopkins et al. 2002) with significantly more periventricular, but not 
centrum semiovale distributions as compared with age-matched controls. The WM lesions 
in the CO group did not change from day 1 to 6 months follow-up, however the 
hyperintensities in the centrum semiovale were related to worse cognitive performance. The 
study revealed no correlation between WM hyperintensities and carboxyhemoglobin level, 
or duration of CO exposure at any of the three scan times (Parkinson, Hopkins et al. 2002).  
Hyperintensities in T2WI and fluid-attenuated inversion recovery (FLAIR) and 
hypointensities in T1WI often suggest WM demyelination or axonopathy (Chang, Han et al. 
1992; Pavese, Napolitano et al. 1999; Parkinson, Hopkins et al. 2002). From a pathological 
perspective, myelin damage is constant and can vary from discrete perivascular lesions to 
extensive periventricular demyelination and/or axonal destruction (Funata, Okeda et al. 
1982; Prockop and Chichkova 2007). An autopsy study after CO intoxication showed that 
diffuse WM hyperintensities reflected apoptosis of oligodendrocytes (Akaiwa, Hozumi et al. 
2002). Another autopsy study of brains three days after CO intoxication revealed a normal 
cortex and injured WM with disrupted myelin and pyknotic oligodendroglia, whilst the 
axons, astrocytes and capillaries were normal (Foncin and Le Beau 1978). 
 

 

Fig. 6. A wide spectrum of white matter hyperintensities in fluid-attenuated inversion 
recovery after carbon monoxide intoxication with cognitive deficits. 
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Focal white matter hyperintensities (WMHs) over bilateral frontal horns in a 29-year-old 
woman, two years after CO exposure (6A). Diffuse and confluent WMHs in a 42-year-old 
woman, one and a half months after CO exposure (6B). Prominent subcortical U fiber 
hyperintensity with globus pallidus hyperintensity in a 35-year-old man, one and a half 
months after CO exposure (6C). A 31-year-old woman presented in a confused state without 
obvious WMHs four days after CO intoxication (6D). Extensive subcortical WMHs with 
globus pallidus hypointensity two years later (6E).  
A study by Weaver (Weaver, Valentine et al. 2007) suggested that cognitive sequelae at six 
weeks benefited from hyperbaric oxygen (HBO) in patients aged 36 years and older, or who 
were exposed to CO for a duration of 24 hours or more. Two studies explored changes of 
fractional anisotropy (FA) in CO intoxication after HBO. Both studies revealed lower FA 
values in the patient group compared to that of controls three months after HBO (Lo, Chen 
et al. 2007; Chang, Lee et al. 2009). The mini-mental state examination scores completely 
recovered after three months of follow-up in all evaluated patients in one study (Lo, Chen et 
al. 2007), while another study showed that HBO treatment may not reverse the damage 
caused by CO intoxication (Chang, Lee et al. 2009). A longitudinal study used diffusion 
tensor imaging (DTI) and compared the changes of diffusion measurements in CO 
intoxication patients including mean diffusivity, axial diffusivity and radial diffusivity with 
follow-up scans three months and 10 months later. Extensive changes found in the FA maps 
at both three and 10 months in the CO group were attributed to initial increments of radial 
diffusivities, while a decrement of axial diffusivities were found at 10 months follow-up 
(Chang, Chang et al. 2010). The study suggested that changes in diffusion parameters might 
reflect WM demyelination at three months followed by subsequent axonopathy.  
 

 

Fig. 7. An example of Tract Based Spatial Statistics with decreased Fractional Anisotropy 
(FA) (blue) overlaid on the mean FA skeleton (green) in a sample of carbon monoxide 
intoxication (n=30) as compared with age-matched controls. Diffuse white matter damage 
was detected including the subcortical areas, brain stem and cerebellum.  

White matter insults after CO intoxication lead to transient or permanent injuries, which 
consequently lead to decreased WM volumes. Diffusion indices including mean diffusivity, 
axial diffusivity and radial diffusivity reflect WM injuries earlier than volume reduction, 
while the major regions of WM atrophy in one study were in the periventricular WM areas 
(Chang, Chang et al. 2010). 
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4.2.3 Imaging features suggesting WM hemorrhage 

In the acute phase, petechial hemorrhages of the WM, particularly the corpus callosum, are 

common (Funata, Okeda et al. 1982; Finelli and DiMario 2004; Weaver and Hopkins 2005). 

Gradient echo T2WI uses a shorter repetition time than spin-echo T2WI and can detect metal 

material such as ferritin and ferritin-containing substances such as hemosiderin, thus 

detecting hemorrhages and microbleeds (Atlas, Grossman et al. 1988; Bradley 1993). 

Susceptibility-weighted imaging (SWI) is a heavy T2*-weighted gradient-recalled 3-D fast 

low-angle shot sequence with full flow compensation in all three directions (Sehgal, 

Delproposto et al. 2005). Microhemorrhages have been reported in patients with CO 

intoxication with the complimentary information provided by gradient echo T2WI and SWI 

(Finelli and DiMario 2004; Weaver and Hopkins 2005). In gradient echo T2WI, hemorrhages 

along the nerve fibers are distributed predominantly over the posterior WM (Finelli and 

DiMario 2004). 

 

 

Fig. 8. Microhemorrhage shown on susceptibility-weighted imaging. 

Four months after carbon monoxide intoxication, a 53-year-old woman with a low signal 

intensity lesion on susceptibility-weighted imaging (8A, arrow) suggesting 

microhemorrhage of white matter which was invisible on T1 (8B), T2 (8C), and fluid-

attenuated inversion recovery (8D). 

4.3 Cortex 
4.3.1 Imaging features suggesting cortical injury and atrophy 

Pure cortical involvement without concurrent WM lesions in CO intoxication is not 

common (Choi, Kim et al. 1993). Using DWI, imaging features suggesting cortical 

cytotoxic edema were described in bilateral posterior temporal lobes and bilateral 

occipital lobes in one patient, bilateral posterior temporal lobes and left parietal lobe in 
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another patient, and right frontal, temporal and parietal lobes in another (Hon, Yeung et 

al. 2006). Hippocampal involvement has been linked with anterograde amnesia, with 

pathological findings of necrosis and apoptosis (Uemura, Harada et al. 2001; Mahmoud, 

Mestour et al. 2009). 

 

Fig. 9. Cortical injuries after CO intoxication.  

Four days after CO intoxication, a 37-year-old woman with hyperintensities in bilateral 
hippocampi in a T2-weighted image (9A). Six days after CO intoxication, a 42-year-old 
woman with hyperintensities in bilateral superior frontal gyrus in fluid-attenuated inversion 
recovery (9B). Another 28-year-old female five days after CO intoxication showed bilateral 
medial temporal region high signal intensity lesions (9C, diffusion weighted image, arrows) 
with corresponding low intensity lesions on apparent diffusion coefficient map (9D, arrows) 
suggesting cytotoxic edema. 
Cortical volume reduction is a late consequence of CO intoxication. Significant ventricle and 
sulcus dilatation in comparison with the controls were found in all 34 patients evaluated 
during the chronic phase of CO intoxication in a study by Kono et al. (Kono, Kono et al. 
1983), with a 19-year interval from CO intoxication. In a case report several months after CO 
intoxication, brain MRI revealed bilateral atrophy of lateral temporal lobes and the clinical 
deficits included severe cognitive impairment and a transient Klüver-Bucy-like behavior 
(Muller and Gruber 2001). Voxel based morphometry (Ashburner and Friston 2001) enables 
the quantification of grey and WM volume changes between groups. In one study using 
voxel based morphometry, no significant differences in the GM were found in the patient 
group compared to age-matched controls ten months after CO intoxication (Chang, Chang 
et al. 2010), while atrophy of WM was evident in the periventricular areas. In another study 
of 13 patients with brain MRI studies 25 years after CO poisoning, the parieto-occipital 
region was most frequently involved, and six of the 13 patients had dilated temporal horns 
(Uchino, Hasuo et al. 1994).                   
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Fig. 10. Cortical atrophy after carbon monoxide intoxication revealed in T1-weighted image. 

A 47-year-old woman with rapid cortical atrophy after CO intoxication as revealed in T1WI 

three months (9A) and 20 months (9B) after CO exposure.                           

4.3.2 Imaging features suggesting cortical hemorrhage 

Hemorrhage in the cortical areas has also been reported in CO intoxication. One 28-year-old 

man had achromatopsia five months after CO intoxication (Fine and Parker 1996). Brain 

MRI revealed hemorrhage in the bilateral temporal and occipital lobes (Fine and Parker 

1996). Another case demonstrated a 7-year-old boy who had generalized convulsions, coma 

and right hemiparesis on the day of CO intoxication (El Khashab and Nejat 2009). Brain CT 

on the same day revealed a left temporal hemorrhage (El Khashab and Nejat 2009). Micro-

vascular impairment and brain reperfusion injury were the suspected pathogenetic 

mechanisms causing the damage (El Khashab and Nejat 2009).      

4.3.3 Imaging features suggesting cortical hypoperfusion and hypometabolism 

Six studies have reported SPECT findings in the evaluation of cortical blood flow after CO 

intoxication (Choi, Lee et al. 1992; Choi, Kim et al. 1995; Watanabe, Nohara et al. 2002; Pach, 

Hubalewska et al. 2004; Huang SH, Chang Chiung Chih2 et al. 2005; Pach, Urbanik et al. 

2005). The largest one included 20 cases with 85% of the patients showing hypoperfusion 

over the frontal-parietal cortex (Pach, Hubalewska et al. 2004). In a study on follow-up 

SPECT in patients with CO intoxication, six of seven patients had improvement of 

hypoperfusion throughout the cortex, while their clinical conditions also improved 

concomitantly (Choi, Kim et al. 1995). In a comparison between those with delayed 

neuropsychiatric sequelae and those without sequelae, significant hypoperfusion was noted 

over bilateral frontal lobes, bilateral insula and right temporal lobe in patients with delayed 

neuropsychiatric sequelae, whilst only bilateral frontal lobe hypoperfusion was noted in 

those without neuropsychiatric sequelae (Watanabe, Nohara et al. 2002).  

To date, there have only been a limited number of reports on [18F] FDG-PET in the evaluation 

of metabolic dysfunction in the cortical areas of patients with CO intoxication (Tengvar, 

Johansson et al. 2004; Senol, Yildiz et al. 2009). One case report of a middle-aged man revealed 

hypometabolism of bilateral frontal lobes and anterior cingulate cortices (Tengvar, Johansson 

et al. 2004), and his neurological deficit of akinetic mutism was regarded as the consequence of 
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the hypometabolism state of the involved regions (Tengvar, Johansson et al. 2004). In a study 

of serial [18F] FDG-PET follow-up scans, persistent hypometabolism of bilateral frontal lobes 

was found in a 29-year-old woman who demonstrated impaired responsiveness to stimuli for 

one year after CO poisoning (Shimosegawa, Hatazawa et al. 1992). In another case report on a 

21-year-old woman who had coma, seizure and cortical blindness within three days after CO 

poisoning, the neurological deficit of cortical blindness remained. A subsequent [18F] FDG-PET 

four years later still showed hypometabolism of bilateral posterior temporal and occipital 

lobes (Senol, Yildiz et al. 2009). 
 

 

Fig. 11. [18F]fluorodeoxyglucose positron emission tomography of two patients after carbon 
monoxide intoxication. 

One month after CO intoxication, a patient’s (age: 30) PET revealed reduced uptake of FDG 
in bilateral temporal and occipital lobes (11A, arrows), while the brain CT (11B) did not 
detect any hypodense lesions over the corresponding areas. One month after CO 
intoxication, another patient’s (age: 58) PET revealed reduced uptake of FDG in bilateral 
frontal and parietal lobes (11C, arrows) with negative findings on the CT scan (11D). 

5. Nerves and muscles 

Although peripheral neuropathy has been reported in CO intoxication (Choi 1982), only 
electrophysiological studies but not neuroimaging studies are available (Choi 1982).  
Skeletal muscle injuries have been reported in CO intoxication. In one case report, skeletal 
muscle MRI was performed showing hyperintensity lesions in T2WI of the thigh muscles 
three months after CO intoxication (Chen, Huang et al. 2010). The muscle biopsy in this 
patient proved the diagnosis of heterotopic ossification selectively involving the iliopsoas, 
the tensor fascia lata, rectus femoris, sartorius and quadriceps muscles. Another study using 
Tc99m-sestamibi SPECT to evaluate the skeletal muscular injuries in 25 patients after CO 
intoxication showed decreased uptake in the patient group as compared with the controls 
(Huang, Chang et al. 2011). The low uptake was related to mitochondrial dysfunction. 
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Fig. 12. Planar view of technetium-99m-sestamibi (99mTc-MIBI) in the evaluation of muscle 
injury in a patient with carbon monoxide intoxication. 

Compared with muscle 99mTc-MIBI of a normal control (12A), a 59-year-old man showed 
decreased 99mTc-MIBI uptake in the thigh muscles two months after CO intoxication (12B). 

6. Conclusion 

Damage to the neurological system after CO intoxication includes the basal ganglia, cerebral 
WM, cortex and muscles. The mechanisms of damage can be identified by MRI and 
correlated with clinical features. Apart from MRI, functional imaging can provide 
information about brain perfusion and metabolism in CO intoxication. With muscle MIBI, 
mitochondrial function can be assessed in patients with CO intoxication. 
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