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1. Introduction  

Reinforcement learning (RL) has a rich history tracing throughout the history of 

psychology. Already in the late 19th century Edward Thorndike proposed that if a 

stimulus is followed by a successful response, the stimulus-response bond will be 

strengthened. Consequently, the response will be emitted with greater likelihood upon 

later presentation of that same stimulus. This proposal already contains the two key 

principles of RL. The first principle concerns associative learning, the learning of 

associations between stimuli and responses. This theme was developed by John Watson. 

Building on the work of Ivan Pavlov, John Watson investigated the laws of classical 

conditioning, in particular, how a stimulus and a response become associated after 

repeated pairing. In the classical “Little Albert” experiment, Watson and Rayner (1920) 

repeatedly presented a rabbit together with a loud sound to the kid (little Albert); the 

rabbit initially evoked a neutral response, the loud sound initially evoked a fear response. 

After a while, also presentation of the rabbit alone evoked a fear response in the subject. 

In this same paper, the authors proposed that this principle of learning by association 

more generally is responsible for shaping (human) behavior. According to psychology 

handbooks John Watson hereby laid the foundation for behaviorism. The second principle 

is that reinforcement is key for human learning. Actions that are successful for the 

organism, will be strengthened and therefore repeated by the organism. This aspect was 

developed into a systematic research program by the second founder of behaviorism, 

Burrhus Skinner (e.g., Skinner, 1938). 

The importance of RL for explaining human behavior started to be debated from the late 
1940s. Scientific criticism toward RL arrived from two main fronts. The first was internal, 
deriving from experimental findings and theoretical considerations within psychology itself. 
The second derived from external developments, in particular, advancements in information 
theory and control theory. These criticisms led to a disinterest for RL lasting several 
decades. However, in recent years, RL has been revived, leading to a remarkable 
interdiscplinary confluence between computer science, neurophysiology, and cognitive 
neuroscience. In the current chapter, we describe the relevant mid-20th century criticisms 
and developments, and how these were considered and integrated in current versions of RL. 
In particular we focus on how RL can be used as a model for understanding high-level 
cognition. Finally, we link RL to the broader framework of neural Darwinism. 
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2. Internal criticisms to RL 

During the 40s, more and more data were piling up demonstrating the insufficiency of 
behaviorism to account for human and animal behavior. For example, Tolman and 
colleagues showed that animals can and do learn even without obtaining reinforcement 
(Tolman, 1948). They performed a series of experiments on maze learning in rats. It was 
shown that animals left free to familiarize themselves with the maze before the 
reinforcement experimental session, were afterwards able to find the food in the maze much 
more efficiently than completely naive animals. To explain these findings Tolman 
introduced the concept of the “cognitive map”, i.e. an internal representation of the maze 
that the rats used to find reinforcers more efficiently. Because of this and other 
demonstrations that animals hold some kind of internal representation of the environment 
(memory), Tolman formed part of what became known as “the cognitive revolution”. 
During the same period, but in the field of psychobiology, Donald Hebb wrote The 
Organization of Behaviour (1949), a seminal work in which for the first time a neurobiological 
theory of learning was proposed. Hebb suggested that the synaptic connection between two 
neurons improves its efficacy after repeated simultaneous activity of them. This law, 
properly called “Hebbian rule” and describing what was called “Hebbian Learning”, 
provided the first neural hypothesis on the basis of memory, thus opening the “black box”, 
which behaviorists considered not scientifically investigable. The depth of Hebb’s intuition 
can be better understood if we consider that the Hebbian rule has been experimentally 
proven almost twenty years after its formulation, with the discover of synaptic long term 
potentiation (LTP) in the rabbit hippocampus (Lømo, 1966). 
Another strong criticism came from psycholinguistics. In a famous review study, Noam 
Chomsky (1959) argued that the RL paradigm was not suitable to explain the generative 
feature of natural language (i.e. the possibility to express a quasi-infinite variety of verbal 
expressions). In the same work, Chomsky also provided a survey on research in animal 
behavior (e.g., imprinting) that seemed to be in striking contrast with key behaviorist tenets. 
Finally, and most importantly from the theoretical point of view, Chomsky showed that 
Skinner himself was obliged to introduce hypotheses about internal variables (e.g., internal 
self-reinforcements), in order to explain human verbal behavior. 

3. External developments 

An important role in the demise of RL derived from advances in information theory and 
control theory in engineering. This happened during the 1940-50s with the publication of 
several seminal works like those of Shannon (1948), Turing (1936) and Wiener (1948). Their 
importance consisted in showing that it was possible to formulate rigorous mathematical 
theories and models to study information processing. In control theory (Wiener, 1948), for 
instance, the term “control” referred to the auto-correction of internal parameters of a 
system based on a feedback signal indicating the error between the wished (or the expected) 
value of an internal parameter and its real value, typically provided by the environment. 
This general theory of control (called cybernetics) (literally from ancient Greek: “the art of 
piloting”), did not refer to a particular system: instead, it provided mathematical models to 
study control phenomena occurring inside any system, being animal or artificial or even 
social. A similar story holds for information theory (Shannon, 1948), which provided the 
concept of “information”, a measure that did not refer to any directly measurable physical 
variable, but instead to the internal “surprise” of any system receiving an external signal. 
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These new disciplines showed that it was possible, and indeed a proficient and powerful 
approach, to investigate the internal functioning of systems (including biological 
organisms), by mathematical modelling of their hidden machinery that was not directly 
investigable. In this way, the philosophical-methodological assumption of behaviorism, 
according to which the scientific approach should be limited to strictly empirical 
investigation, was shown to be unnecessary for scientific progress. 

4. Precursors to the return of RL 

Because of these developments, behaviorism, and with it RL, was discredited for several 
decades. Instead an alternative paradigm became dominant, according to which the human 
mind could be construed as a computer that manipulates abstract symbols (e.g., Neisser, 
1967; Atkinson and Shiffrin, 1968). However, in recent years the RL framework became 
influential again. At least two developments in the second part of the 20th century prepared 
a renewed interest for RL. The first originated in human learning theory; the second from a 
new discipline called connectionist psychology, which proposed itself as an alternative to 
the then canonical symbol-manipulation paradigm for the study of cognition. 

4.1 Human learning theory and the Rescorla-Wagner model 

Important phenomena observed in the behavioral lab could not be accounted for with the 
standard behaviorist conceptualization (Rescorla and Wagner, 1972). For example, blocking 
(Kamin, 1969) refers to the fact that an organism only learns about the contingency between 
two events to the extent that one of the events is unexpected. To account for blocking, 
Rescorla and Wagner added a crucial ingredient to an associative learning framework, 
namely prediction error. Prediction error refers to the difference between an external 
feedback signal indicating the correct response or stimulus on the one hand, and the 
response or stimulus predicted by the organism on the other. Here it is worth noting the 
influence (and indeed similarity) of the cybernetic concept of feedback on the formulation of 
the concept of prediction error. Rescorla and Wagner proposed a formal model which 
learned by updating associations between events (e.g., stimulus and response) using 
prediction error (Rescorla and Wagner, 1972). This model formed the basis for many human 
learning theories (e.g., Kruschke, 2008; Pearce and Hall, 1980; Van Hamme and Wasserman, 
1994), and can be represented by the following  equations: 

 t t tV     (1) 

 1t t tV V     (2) 

where  is the prediction error, V is the prediction of the organism, and  is the actual 
outcome from the environment. Equation 2 shows how the new expectations are updated by 

the prediction error from time point t to t + 1;  is a learning rate parameter modulating the 
prediction error. 

4.2 The connectionist approach 

A second development preparing the cultural ground for reviving the field of RL was 

connectionist psychology. Here, the study of psychological phenomena was grounded on 

the construction of artificial neural networks, i.e. models simulating both the nervous 
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system and cognitive processes, providing what was called a sub-symbolic explanation of 

cognition. This new field was inspired by the fast developing  neurosciences; in particular, 

the scientists developing this new branch not only did not adhere to the dogma that 

theorizing should remain at the behavioral level, but they also attempted to bridge the 

explanatory gap between the biological level of neurons and synapses on the one hand, and 

the psychological level of language and other forms of high-level cognition on the other. 

An important step was taken by McClelland, Rumelhart and colleagues  (Rumelhart and 

McClelland, 1986). Models similar to theirs had been developed by other researchers before 

(Grossberg, 1973) but Rumelhart and McClelland developed a series of applications that 

made these connectionist models almost instantly influential. At the core of these models is 

again the Rescorla-Wagner idea that learning consists of updating associations based on 

prediction errors. However, the authors proposed a generalized learning rule 

(backpropagation), which allowed learning also for so-called “hidden units”, that is, 

neurons that do not receive external feedback. In backpropagation, such neurons use as a 

prediction error a linear combination of prediction errors of other neurons that do receive 

external feedback. This development made the learning rule many orders more powerful 

than that of Rescorla and Wagner. With the more powerful learning rule, the connectionists 

were able to investigate linguistic phenomena such as past tense formation (Rumelhart and 

McClelland, 1987), naming aloud (Seidenberg and McClelland, 1989), and sentence 

comprehension (St. John and McClelland, 1990). 

4.3 The new RL approach 

With these important historical precedents, RL learning became influential again during the 

early 1990s partly because of its important contributions to Machine Learning, a branch of 

Artificial Intelligence. One of the main protagonists of this revival was Richard Sutton, who 

developed another generalization of the Rescorla-Wagner rule, called temporal-difference 

(TD) learning (Sutton, 1988). The original Rescorla-Wagner rule had a spatial limitation in 

the sense that not all neurons received feedback, and this problem was solved by 

backpropagation. Similarly, the Rescorla-Wagner rule also has a temporal limitation in the 

sense that feedback is not always available to the model – only when there is explicit 

supervisory feedback. The TD learning algorithm solved this latter problem, because it 

allowed learning by not only comparing a prediction with external feedback (which may or 

may not be available, depending on an appropriate teacher’s availability), but additionally 

by comparing a prediction with an earlier prediction (which is always available). In this case 

the learning signal is the TD error (here denoted as TD ), in which both the comparisons 

between previous prediction and external feedback and previous prediction and current 

prediction play a role. The TD error signal can be written as follows: 

 TD
1 1 1t t t tV V         (3) 

where  is the external feedback already defined in Equation (1) and  is a discount factor. 

The symbol V was used before to denote the organism’s prediction; in RL applications, it 

refers specifically to reward prediction. This rule is more powerful than the Rescorla-

Wagner rule: For example, Tesauro (1989) demonstrated that a neural network equipped 

with TD learning can learn to play backgammon at a worldmaster level. 
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Fig. 1. Shifting of dopaminergic activity from reward to predictor of reward (CS). Reprinted 
with permission from Schultz et al. (1997). 

www.intechopen.com



 
Neuroimaging – Cognitive and Clinical Neuroscience 

 

288 

A few years later, the RL paradigm received the decisive boost to come back to the attention 
of the broad scientific community. This derived from its official entrance into the domain of 
neurophysiology. In particular, with single-unit recording Wolfram Schulz and colleagues 
discovered dopaminergic neurons in the brainstem ventral tegmental area (VTA) and 
substantia nigra (SN) of macaque monkeys that exhibited a prediction error signature. In a 
classical conditioning experiment, Schultz et al. (1993) presented a conditioned stimulus (CS, 
e.g. a light), followed by an unconditioned stimulus (US, e.g. a drop of juice) some seconds 
later. Initially, dopaminergic neurons respond to the US only. After some trials, the 
dopaminergic neurons respond to the CS, but no longer to the US (Figure 1). This backward 
shift in time is exactly what was predicted by TD learning (Montague et al., 1996). Hence, 
this strongly suggested that the mammalian nervous system implements a RL (in particular, 
TD) algorithm to learn associations between stimuli. 

5. RL in high-level cognition: Conceptual and empirical advances 

Ever since the seminal findings of Schultz et al. (1993), the marriage between neuroscience 
and RL never stopped providing benefits for the study of learning and the nervous system. 
We here discuss a few highlights from the recent literature. 
One conceptual development of RL consisted in the discovery that besides reward value, 
other value dimensions can be estimated and used to discount reward value (e.g., effort, 
Kennerley et al., 2006, or delay, Rudebeck et al., 2006). More generally, not only value but 
also upcoming states of the world can be estimated (Sutton and Barto, 1998). This allows the 
organism to make more far-sighted actions than with immediate values estimates only. 
Further, RL models have been proposed with the same computational power as the 
benchmark backpropagation algorithm (O’Reilly & Frank, 2004; Roelfsema and Van Ooyen, 
2005), providing a biologically plausible alternative to backpropagation. 
At the empirical level, clever experimental paradigms in combination with modern imaging 
technology allowed demonstrating the validity of RL models for human cognition. Using 
fMRI, Seymour et al. (2004) identified a TD signal in the human brain, similar to what was 
found by Schultz and colleagues in the monkey brain. Seymour et al. used a cued pain 
learning paradigm, in which a first CS (CS1) predicted (statistically) a second CS (CS2), 
which then (deterministically) predicted the upcoming pain level. In the striatum (ventral 
putamen), they observed a pain prediction error signal which responded to CS1 onset, and 
to CS2 if it differed from CS1 (i.e., was unpredicted based on CS1). Similar paradigms were 
used using appetitive learning (O'Doherty et al., 2003). The TD learning framework has also 
been applied extensively to EEG data, in particular the error-related negativity, for example 
in the work of Holroyd and Coles (2002). These authors successfully compared the 
performance of a TD learning-based computational model with the dynamics of the error-
related negativity (ERN) from human volunteers. The model was aimed to clarify the roles 
of anterior cingulate cortex (ACC) and the ventral striatal structures in an instrumental 
conditioning paradigm. The authors proposed that the ventral striatum implements TD 
learning in order to estimate the value of external stimuli in terms of expected reward, while 
the ACC functions as a filter of several possible motor responses. In their proposal, the ACC 
would select the motor plans that are expected to be the most effective to achieve future 
rewards, based on the reward predictions computed by the ventral striatum. In this model, 
the ERN would be the result of ACC activity following the suppression of dopaminergic 
input from the ventral striatum. In a series of EEG experiments, Holroyd and Coles showed 
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that their model was indeed able to predict several effects linked to the ERN, for example 
the fact that this EEG component appears only when there is a violation of the reward 
prediction. 
Another example comes from the study of Parkinson’s disease, a neurological disorder 
whose pathological basis consists of the degeneration of the dopaminergic neurons in the 
substantia nigra pars compacta, source of the main brainstem input to basal ganglia. 
Parkinson patients are impaired in learning from positive outcomes (reward), while 
performance is preserved for learning based on negative outcomes (punishment) (Frank et 
al., 2004). A neural model was proposed representing the interactions between basal 
ganglia, cortex and substantia nigra (Frank, 2005). In this model, the basal ganglia consists of 
two neural populations;  “Go” neurons fire when an action planned in cortex is allowed to 
be implemented, whereas “No Go” neurons suppress the action planned in the cortex. Both 
Go and No Go populations learn by dopaminergic (i.e., reinforcement-related) bursts and 
dips coming from the substantia nigra. One of the advantages of the model consists in 
explaining several symptoms of Parkinson’s disease. For instance, with reduced 
dopaminergic input (simulation of the substantia nigra degeneration), the basal ganglia are 
impaired at learning in Go neural populations, and hence impaired specifically in learning 
by rewards, just like human Parkinson patients. In addition, the model successfully predicts 
that this distinction between Go versus No Go learning holds true in high-level cognition as 
well (Frank et al., 2004). 
Finally, it is worth describing briefly the work of Gläscher et al. (2010), which showed, by a 
combined computational and fMRI study, that the human brain also implements RL-like 
algorithms for creating abstract models of the environment. This study resembled the 
historical experiment of Tolman (1948). Volunteers were at first exposed to a simplified 
artificial environment, in which each single state was represented by an abstract figure (a 
fractal) (Figure 2). The subjects were asked to “navigate” inside this environment by 
performing binary choices (left or right). Each choice was followed by a transition to one of 
two possible states, each with some probability. In the first part of the experiment, subjects 
freely navigated in this environment, resembling Tolman’s latent learning phase. In the 
second part, subjects received a monetary reward in some of the final states. In this way they 
had to exploit the latent learning acquired during the first part of the experiment to 
maximize reward, again as in Tolman’s paradigm. Through a model-based analysis of the 
fMRI signal from both experimental phases, the authors localized the brain regions involved 
in both the latent learning (leading to a cognitive map or model of the environment) and the 
subsequent model-driven RL. While the RL-related areas were those typically found in the 
literature (ventral striatum and dopaminergic system), the areas involved in the formation 
of cognitive maps were the dorsolateral prefrontal cortex and intraparietal sulci. 
The merit of this work consisted not only in the localization of two separate circuits for RL 
and environment-model (cognitive map) learning, but also in the demonstration that the 
two processes can be based on very similar computational mechanisms. One is the already 
described “prediction error” (Equation (1)), the other the “state prediction error”. The latter 
is formally similar to the prediction error (comparison between predictions and real 
outcomes), but it deals with environmental state transitions. The mathematical form of the 

state prediction error (SPE) is the following (note the similarity with Equation (1)): 

  
SPE

1 , , 't tT s a s    (4) 

www.intechopen.com



 
Neuroimaging – Cognitive and Clinical Neuroscience 

 

290 

where the value 1 corresponds to the probability of being in the current state (s’; with 

probability 1), and  , , 'T s a s  is the expected probability of transition from previous state s 

(the previous state) to the current state given (chosen) action a. The expectation T is updated 

by means of the state prediction error: 

     SPE
1 , , ' , , 't t tT s a s T s a s     (5) 

In conclusion, this work showed that prediction error and state prediction error are similar 
computations but calculated in different brain circuits. This suggested a neurophysiological 
and computational basis of Tolman’s discoveries sixty years before. 
 

 

Fig. 2. Formal structure of state space in Gläscher et al.’s experiment. Reprinted with 
permission from Gläscher et al. (2010). 

6. A case study: RL, cognitive control, and anterior cingulate cortex 

One of the remaining mysteries of the human mind is executive functioning or cognitive 
control – the rapid modulation of behavior when called for by unexpected circumstances. In 
the symbol-manipulation paradigm, executive functioning was proposed to originate from a 
central executive endowed with two or more “slave systems” (typically the visuospatial 
sketch pad and the phonologic loop; Baddeley and Hitch, 1974). Detailed models have been 
developed of the slave systems (Burgess and Hitch, 1999), and in general great progress has 
been made in understanding them. However, the role of the central executive has remained 
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poorly understood. To tackle this issue, researchers have tried recasting executive 
functioning in neural models. We will describe these models and demonstrate how the 
union of RL and connectionist models provides steps toward understanding the neural basis 
of cognitive control. 

6.1 Associative models of cognitive control 

Working within the connectionist framework, Cohen et al. (1990) proposed a model of the 
Stroop task, a widely used index of cognitive control. In this task, subjects are shown a color 
word in a given ink color, with the color and word either congruent (e.g., the word RED 
written in red), or incongruent (e.g., the word RED written in green). The subject’s task is to 
name the ink color. Because word reading is automatic in literate adults, cognitive control is 
required to override the automatic tendency to read the word. Although subjects can do 
this, a congruency cost is typically observed,  with incongruent trials slower than congruent 
ones. The Stroop task is widely used in clinical contexts to assess executive functioning, and 
differentiates between healthy subjects and various patient groups suffering from 
impairments in cognitive control (e.g., ADHD, Willcutt et al., 2005; Parkinson’s disease, 
Bonnin et al., 2010). In the Cohen et al. model, a distinction is made between an input layer 
for the relevant dimension and an input layer for the irrelevant dimension, each projecting 
to a response layer. Crucially, Cohen et al. added task demand units which bias responding 
toward the relevant dimension (input layer). This brings top-down modulation in an 
associative model framework. 
Botvinick et al. (2001) further developed the model of Cohen et al. They argued that the 
earlier model did not specify when cognitive control is required. In particular, cognitive 
control is required only on incongruent trials (e.g., RED written in green), not on congruent 
ones. For this purpose, they introduced the notion of response conflict, measuring the extent 
to which responses are simultaneously active. They proposed the conflict monitoring model, 
according to which response conflict is calculated in anterior cingulate cortex (ACC). 
Conceptually, this was an advance over the previous model, because not only top-down 
modulation but also the trial-by-trial cognitive control could be captured in an associative 
learning framework. In addition, it has been highly influential and allowed accounting for 
many data. For example, using fMRI Botvinick et al. (1999) demonstrated that human ACC 
was more active on incongruent trials following a congruent trial than on incongruent trials 
following an incongruent trial. This finding contradicted the popular notion that ACC 
activity reflects executive control itself (because the subject should be more “controlled” 
after an incongruent trial), but was in line with the conflict monitoring model because there 
should be more conflict after a congruent trial. Note that this model is also a control model 
in the cybernetic sense mentioned before: It detects when something goes wrong, and when 
so, it leads to adaptation in the system. 
Verguts and Notebaert (2008, 2009) further developed this line of work. They started from 
the fact that the conflict monitoring model specifies when control should be exerted, but not 
where (see also Blais et al., 2007). To confront this issue, the authors proposed a neural 
model in which the implementation of cognitive control was based on an error signal 
modulating the Hebbian learning between active model neurons. This error signal was, like 
in Gläscher et al.’s work, borrowed from the RL domain. The new measure, which could be 
called “conflict prediction error”, was computed by comparing the actual amount of conflict, 
evoked by a stimulus, with the expected mean amount of conflict. This model successfully 
predicted that cognitive control should not extend across different task input dimensions 
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(Notebaert and Verguts, 2008) or even across task effectors (Braem et al., in press). 
Consistent with the model, it was recently demonstrated that ACC responds to item-specific 
congruencies, not block-level congruencies (Blais and Bunge, 2011). 

6.2 New evidence on ACC function: Insights from RL-based neural modelling 

Besides conflict monitoring, several other functions have been attributed to the ACC. In 
humans, evidence using EEG and fMRI pointed toward a role in error processing (Gehring 
et al., 1993), error likelihood (Brown and Braver, 2005), or volatility (Behrens et al., 2007). 
Moreover, in the single-cell literature, no direct evidence has been found for conflict 
monitoring (Cole et al., 2009), while, on the other hand, there is strong evidence for 
reinforcement processing  (Rushworth and Behrens, 2008). More specifically, single-cell 
recording studies revealed the presence in ACC of three different types of neural units. One 
population codes for reward expectation, discharging as a function of the expected reward 
following the presentation of an external cue or the planning of an action. A second 
population codes for positive prediction error (i.e. when the outcome was better than 
predicted). Finally, another population codes for negative prediction errors (i.e. when the 
outcome was worse than predicted). We recently attempted to integrate these different 
levels of data and theories from the point of view of the RL framework. The model we 
proposed (Silvetti et al., 2011), the Reward Value Prediction Model (RVPM) demonstrated 
that all these findings can be understood from the same computational machinery which 
calculates values and deviations between observed reinforcement and expected values in an 
RL framework. The global function of the ACC however, remained similar to that in the 
conflict monitoring model and later versions of it: it is to detect if something is unexpected, 
and if so, to take action and adapt the cognitive system. 
The evolution sketched here, from abstract cybernetic control models to the RVPM, 
represents a general trend in RL, in which computational, cognitive, and neuroscience 
concepts are increasingly integrated. Despite this success, not all features of RL have 
received appropriate attention in the literature. In the final section, we look at an aspect of 
RL that has been underrepresented. 

7. RL and neural Darwinism 

Despite the variety in levels of abstraction and purpose of the different models that we 
described, most of them implement what is sometimes called a triple-factor learning rule 
(Ashby et al., 2007; Arbuthnott et al., 2000). This means that three factors are multiplied for 
the purpose of changes in model weights: the first two factors are activation of input and 
output neurons, constituting the Hebbian component. The third factor is a RL-like signal, 
which provides some evaluation of the current situation (is it rewarding, unexpected, etc; 
henceforth, value signal). The value signal indicates the valence of an environmental state or 
of an internal state of the individual. It can be both encoded by dopaminergic signals 
(Holroyd & Coles, 2001) or by noradrenergic signals (e.g., Gläscher et al., 2010; Verguts & 
Notebaert, 2009). 
This general scheme of Hebbian learning modulated by value provides an instantiation of 
the theory of Neural Darwinism (ND; Edelman, 1978). ND is a large scale theory on brain 
processes with roots in evolutionary theory and immunology. The basic idea of ND consists 
in the analogy between the Darwinian process of natural selection of individual organisms, 
and the selection of the most appropriate neural connections between a large population of 
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them. The general learning rule described above implements such a scheme. Because of the 
Hebbian component (input and output cells active together), individual synapses (which 
connect input and output neurons) are selected; and because of the value signal, the most 
appropriate synapses are chosen. 
Just like in Darwinism applied to natural evolution, one key ingredient of ND is variation 
(called degeneracy by Edelman, 1978), or exploration when the unit of variation is not the 
individual synapse but rather responses (Aston-Jones & Cohen, 2001). From this variation, a 
selection can be made, based on an appropriate value signal. Computationally, Dehaene et 
al. (1987) demonstrated that temporal sequence learning can be achieved by such a 
variation-and-selection process. In neuroimaging, Daw et al. (2006) demonstrated that 
frontopolar cortex was used when subjects were in an exploration (rather than exploitation) 
phase of learning. Besides a few exceptions, however, variation and selection remain poorly 
studied. Given that it is a key component of RL, we suggest that its further exploration will 
learn us much more about high-level cognition and its implementation in the human brain. 
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