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1. Introduction 

A fundamental subject leading to numerical simulations of Euler equations by the Finite 

Volume (FV) method, is the calculation of numerical fluxes at cells interfaces. The degree of 

accuracy of the FV numerical scheme, its ability to capture discontinuities and the correct 

prediction of the velocity of propagating waves, are all flow properties strongly dependent 

on the evaluation of numerical fluxes.  

In many numerical schemes, the fluxes between cells are computed using truncated series 
expansions which based only on numerical considerations. These considerations to be 
strictly valid, must account for some degree of continuity in the functions and in their 
derivatives, but clearly, these continuity conditions are not satisfied when discontinuous 
solutions as shock waves or contact surfaces are present in the flow. This type of flow 
problems nevertheless, were solved with relative success until 1959. In that year Godunov 
published his work “A finite difference method for the computation of discontinuous 
solutions of the equations of Fluid Dynamics” (Godunov, 1959) in which an alternative 
approach for solving the system of Euler equations is presented. This new approach, in 
striking difference to previous ones, is basically supported by physical considerations and 
the essential part of it is the so called Riemann solver. 

The excellent results obtained with the Godunov technique, prompted several researches to 

develop new FV numerical schemes for two and three dimensional applications, achieving 

second order accuracy and total variation diminishing (TVD) properties (Toro, 2009; LeVeque, 

2004; Yee, 1989). These new schemes were built around the use of Riemann solvers, making 

them generally very accurate but computationally expensive. Such high computational cost is 

attributed to the iterative technique required to solve the system of five nonlinear algebraic 

equations needed to find, in all cells, an exact solution of the Riemann problem. Alternative 

schemes computationally less demanding, although less accurate and less robust, were then 

built based on approximate solutions of the Riemann problem (Toro, 2009).  
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In this article, a new non-iterative way of solving the full Riemann problem, applicable to 

three-dimensional and time dependent Euler equations, is presented. This non-iterative 

solution requires at the beginning of the computation and only once, the generation in situ 

of tabulated exact Riemann solutions from which the information needed can be retrieved 

using multiple-linear interpolation. To reduce the time to access during successive 

calculations, the original five independent variables of the exact Riemann problem are, by 

way of dimensional analysis, reduced to only three thus allowing the build-up of an easiest 

to handle data-based matrix with three degrees of freedom.  

2. Description of the proposed Riemann Solver 

Compressible and inviscid flow problems are governed by the Euler equations. In one 

dimension (1D), these equations can be written as: 

   0t x
U F U   (1) 

   
 

2;

u

U u F U u p

E E p u

 
 

  
      
      

 (2) 

U is the vector of conservative variables, F the vector of convective flows, t and x are the 

temporal and spatial coordinates respectively,  is the density, u the velocity in the x 

direction, p the pressure and E the total energy per unit volume. The subscript means 

differentiation with respect to time and space. 

The Riemann problem solves de Euler equations in a 1D domain where initial conditions are 

given by two different constant states separated by a discontinuity. The solution of this 1D 

Riemann problem depends directly on the ratio x/t, and it will consist of three types of 

waves: two nonlinear, shock or expansion fan, and one linearly degenerate, the contact 

discontinuity. These waves are separating four constant states where the conservative vector 

U acquires from the left to the right the following values, UL, UL*, UR* and UR. The subscripts 

''L'' and ''R'' indicate left and right, respectively, and the symbol "*" identify points located in 

the state between the nonlinear waves (star region). 

To obtain the flow variations produced by the waves, the Riemann invariants technique for 

expansion and contact waves and of the Rankine-Hugoniot relationship for shock waves, 

must be implemented. In the Riemann problem, this generally leads to an algebraic system 

of nine equations with nine unknowns. The unknowns are the velocities of the three waves 

plus six variables necessary to characterize the states UL*, UR*. However, an analysis of the 

eigenstructure of the Euler equations allows to establish that both pressure p* and particle 

velocity u* between the left and right waves are constant, while the density take the two 

constant values ǒ*L and ǒ*R (Toro, 2009). Based on these considerations and after some 

algebraic calculations, the two equations listed below are obtained and used for solving the 

Riemann problem.  

     * *, , 0L L R Rf p U f p U u    (3a) 
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       * *

1 1
* , ,

2 2
L R R R L Lu u u f p U f p U       (3b) 

where Δu = uR - uL . Once Eq.(3a) is solved for p* the solution for u* is obtained from Eq.(3b) 
and the remaining unknowns are found by means of standard gas dynamic relations. The 
functions fL and fR represent relations across the left non-linear wave and across the right 
non-linear wave respectively, and are given by 

    * * *

*

, K
K K K K

K

A
f p U p p if p p

p B
   


 (4a) 
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2
*

* *

2
, 1
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K K K
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pa
f p U if p p

p









 
            

 (4b) 
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 

2

1
K

K
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 
 

1

1
K KB p





 


 (5) 

where Ǆ is the ratio of specific heats, K may be L or R depending on if the flow changes are 
evaluated across the nonlinear left or right waves, and aK is the speed of sound in the left or 
right states. The Eq.(3a) is an implicit algebraic nonlinear equation on the only unknown p*, 
and it must be solved using an iterative scheme. Once the pressure in the star region has 
been obtained, it is possible to calculate by means of explicit expressions the velocity u* and 
the density at each side of the contact discontinuity. 

In Eq.(3a), neither uL nor uR are explicitly written, but only its difference. Therefore the 
pressure in the star zone becomes only function of five variables: 

   * 1 , , , ,L L R Rp f u p p    (6) 

In this article, the dimensional analysis is used to reduce the number of independent 
variables necessaries for describing the gas-dynamics Riemann problem. From this point of 
view, it is possible to consider as reference variables the density and pressure from one side 
of the Riemann problem, for example, the right side. 

                      ref R ref Rp p  (7) 

The Eq.(6) represents a relationship between pressures, velocities and densities. By means of 
the dimensional analysis, the densities can be written in non-dimensional form using a 

reference value such as R, the pressures using as reference pR, and the velocities respect of 

(R pR)1/2. Then, the solution of a particular Riemann problem is determined by the 
following three parameters: 

 1 2 3                                    L L

R RR

R

pu

pp

   




    (8) 
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Different cases of Riemann problems with identical values of Ǒ1, Ǒ2, Ǒ3 must have similar 
behavior, and the calculated relation p*/pR must have the same value for all cases. To 
ascertain this behavior for the non-dimensional approach proposed, several numerical 
examples are analyzed. Seven Riemann problems whose left and right conditions are 

indicated in the following table, and all of them satisfying the parameters 1 = -0.78262, 2 = 

50, 3 = 10, were tested:  

 

L  Lu  Lp  R  Ru  Rp  

1.2250E+00 1.0000E+02 1.0000E+05 1.2250E-01 0.0000E+00 2.0000E+03 

4.9071E+01 8.4770E+02 8.7460E+06 4.9071E+00 6.9994E+02 1.7492E+05 

6.7304E+00 6.5231E+02 1.0554E+07 6.7304E-01 2.1402E+02 2.1108E+05 

4.1503E+00 7.8027E+02 1.1631E+07 4.1503E-01 1.9437E+02 2.3261E+05 

9.4504E+00 6.4262E+02 1.5976E+07 9.4504E-01 1.8756E+02 3.1952E+05 

3.0289E+01 2.9038E+02 2.9757E+06 3.0289E+00 1.8067E+02 5.9514E+04 

3.6284E+01 3.0129E+02 6.5687E+05 3.6284E+00 2.5420E+02 1.3137E+04 

Table 1. Test cases. 

The relation p*/pR is obtained solving Eq.(3), and for the seven test cases considered it is 
found p*/pR = 13.312, which proves that the proposed non-dimensional analysis works 

properly. Then, it is possible to write the Eq.(3) only as function of 1, 2, 3 and p*/pR. 

Since in solving the Eq.(3) there are involved only three independent variables, a data-base 

matrix with three degrees of freedom containing the values of p*/pR for N values of 1, M of 

2, and Q of 3 is, in situ generated. Then, to find the solution of a particular Riemann 

problem, it is only necessary to calculate the corresponding values of 1, 2, 3 and to 
interpolate for p*/pR in the NxMxQ matrix (from now, simply called A-matrix). Finally the 
pressure in the star zone can be calculated as:  

  

_______

*
* R

R

p
p p

p

 
  
 

 (9) 

where 
 
 
 

_______

*

R

p

p
 is the interpolated value from the A-matrix. After calculating the pressure in 

the star region, the rest of the variables can be explicitly calculated using the same equations 
of the exact solver (Toro, 2009). 

The previously described procedure involves the use of an interpolated value of pressure to 
calculate the density and velocity changes across each wave; however it is not the only 
possible procedure. Others alternatives are for instance, to develop arrangements with 
dimensionless density or dimensionless velocity variations across each wave.  

To increase the approximate solution accuracy, it is desirable that the variation range of the 

parameters 1, 2, 3 be as small as possible. One way is to reduce the range of 2 or 3 
avoiding unneeded storage of data in symmetrical Riemann problems. 
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Two Riemann problems will be symmetric if the following conditions are satisfied: 

                                        R L R L A BA BA B
p p u u       (10) 

Unnecessary storage in symmetrical cases can be avoided if it is adopted as the selection 

criterion of the reference variables (pref , ref) in Eq.(7), not the left or right pressure and 
density, but those of the higher pressure side. Thus, the reference state is the higher pressure 

initial state and the 2 value will always be less than or equal to one. 

To give a physical sense to the non-dimensional 1 variable it is convenient to re-define it as:  

  1

refref

ref

u u

ap

 




 



 (11) 

where aref is the sound velocity in the reference state and 1 would be like a Mach number 

change between the left and right states in the Riemann problem. However 1 is not strictly 
a change of the Mach number because aref is not the sound velocity neither that of the left 
state or that of the right. 

Finally, it is clear that no interpolation is necessary when the solution of the Riemann 
problem possesses left and right expansion waves, because in this case the Eq.(3) can be 
solved analytically. 

3. Comparison with other Riemann Solvers 

To analyze the accuracy and computational efficiency of the proposed Riemann solver, 
comparisons with others solvers available in the literature (Toro, 2009), are made. Three 
were selected: one that, iteratively searches for the exact solution of Eq.(3), and others two, 
that they try to solve the Riemann problem with approximate schemes. To build-up the 

comparison, Riemann problems were generated randomly with values of the parameters 1, 

2 and 3 ranging between the limits set below: 

 110.05 4.95     20.05 1   30.05 5.05  (12) 

The following sub-sections explain how each one of the solvers selected for comparison 
works. 

3.1 Iterative Riemann Solver 

This solver searches by means of an iterative process the solution of Eq.(3a). This equation 
for any value of p shall be written as: 

      , ,L L R Rf p U f p U u R p     (13) 

where R(p) is the residual to cancel; fL and fR, are calculated according to Eqs.(4 and 5). 

Usually to iteratively solve Eq.(13), the Newton-Raphson method is implemented. This 
method requires the calculations of the function as well as of its derivative, which should 
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increase the computational cost of the method, but this increase is not significant because 
the evaluation of the derivative demands simple computations once the function has been 
evaluated. Since the derivative of the residual function, Eq.(13), is calculated by means of the 
functions fL and fR without considering UR and UL that are constant, it can then be written as: 

 
                

, ,L L R Rd f p U d f p U d R p

dp dp dp
 (14) 

The derivatives 
 

'
,   L L

L

d f p U
f

dp
 y 

 
'

,   R R

R

d f p U
f

dp
 are calculated as:  

 

 

 

'

1

2

K K K

1 if
2

1
if

KK
K

K K

K

K

p pA
p p

B p B p

f

p
p p

a p






 




           


  
   

  

 (15) 

From the computational point of view it is noted that the most expensive steps involved in 
the numerical evaluation of Eq.(15) are the powers with fractional exponents. However, 
Eqs.(4a and 4b) and Eq.(15) show that these computational steps have already been made 
when the residual R(p) is computed, and as a result of this its derivative calculation is 
relatively fast. 

The Newton-Raphson algorithm applied to Eq.(13) can be written as: 

 
 

 
  1 ´

i

i

p

i i

p

R
p p

R
 (16) 

where pi and pi+1 are the pressure for the iteration i and i+1 respectively, R and R’ are the 
residual function and its derivative. 

In solving iteratively Eq.(13) difficulties may appears because, as Eq.(16) suggests, the pressure 
can becomes negative. To avoid this problem, the residual function is evaluated (considering p 
= pmin and p = pmax, where pmin = min[pL,pR] and pmax = max[pL,pR]. If both residuals are positive, 
the pressure which cancels the residual is less than pL and pR, and the Riemann problem has an 
explicit solution consisting of two rarefaction waves. If the residual corresponding to the 
maximum pressure is greater than zero and the corresponding to minimum pressure is less 
than zero, the Riemann problem have as solutions a shock wave and a rarefaction fan, and it is 
adopted as a first iteration the value of the minimum pressure (which will undoubtedly be 
lower than the pressure to cancel the residual). When both residuals are negative, the Riemann 
problem has two shock waves and the sought pressure will be greater than both, so as first 
iteration the maximum pressure value is adopted.  

Using the above described procedure, it is possible to know beforehand the kind of solution 
expected for the Riemann problem at each iterations, which allows an effective selection of 
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the function given by Eq.(4), and thus slightly shortening the time needed to reach the 
correct solution. 

3.2 Two-Rarefaction Riemann Solver (TRRS) 

A particular solution of the gas-dynamics Riemann problem is given when both non-linear 

waves are rarefaction waves. In this case the pressure in the star region can be obtained 
analytically. 

  

 

1 1

2 2
* *

2

1

*

1 1

2 2

2 2
1 1 0

1 1

1

2

L R

L R

L R

L R

L R

p pa a
u

p p

a a u
p

a a

p p

 
 




 
 


 




 
 

 
 

 

    
   

    

   
                             



 
 

   
 
  
  

 (17) 

When the pressure exceeds the value of pmin, and the Eq.(4a) instead of Eq.(4b) to calculate 

the fK functions is used, there are no discontinuities in the residual function and in its 

derivatives. This particular behavior of the Eq.(4a) and of its first derivative implies that the 

error incurred is at most of second order if instead of Eq.(4a), the Eq.(4b) is utilized. 

However, if the Eq.(4b) is used to calculate the function fK the ability to obtain analytically 

the value p* , is lost. The TRRS method, suggests to calculate the pressure in the star region 

always using the Eq.(17), no matter what kind of Riemann problem is studied. The error of 

this method will be null for the Riemann problems with two rarefaction waves ( * minp p ) 

and will increase as p* becoming higher and moves away from pmin. 

3.3 Two-Shock Riemann solver (TSRS) 

The TSRS is the opposite case of the TRRS. In the TSRS the solution of the Riemann problem 

is obtained considering that both non-linear waves are shocks. Then the functions fK are 

given by the Eq.(4b) and the Eq.(3a) can be written as shown bellow: 

 

   
 
 

   
 
 

       

* *

* *

* * * *

2 2

1 1
0

1 1

1 1

, , 0

L R
L R

L R

L L R R

p p p p u

p p p p

p p g p U p p g p U u
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

 
 



   
      

 
   

 


      

 (18) 

where  
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     
 
 

 



 



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

2

1
,

1

1

K
K

K

g p U

p p

 (19) 

The TSRS does not provide an analytical solution for p*, and it is necessary an iterative 
process beginning with an approximation for p* called p0. p0 is used to calculate the value of 

 0 , Lg p U  and  0 , Rg p U . Then, assuming  0 , Lg p U  and  0 , Rg p U  constants the Eq.(18) is 
lineal and it is possible to obtain p* as: 

 
   

   
0 0

*

0 0

, ,

, ,
L L R R

L R

p g p U p g p U u
p

g p U g p U

   



  (20) 

Following the book (Toro, 2009) the approximation of *p  can be expressed as: 

 0
2 2 2 2

L R L R L R L Rp p u u a a
p

    
     (21) 

Although the TSRS scheme, even when applied to cases with two shock waves does not 
provide an exact solution, it is very robust and has become one of the more implemented 
approximated schemes to solve the Riemann problem. 

3.4 Approximate and Adaptive Riemann solver using the TSRS and TRRS 

The adaptive solver developed in this work is compared with an approximate Riemann 
solver that, as shown by Toro (2009), bind together the advantages of the TRRS and TSRS 
schemes. This Adaptive Riemann solver obtains the approximate p0 as given by Eq.(21), then 
compare this pressure with pmin and pmax , and the pressure in the star region will be: 

 

* 0 min

0 min 0*

* 0

   if            

          if  

    if            

TRRS

máx

TSRS máx

p p p

p p p pp

p p p



   





 (22) 

being *TRRSp  and *TSRSp  the pressures obtained using the TRRS and TSRS solvers 
respectively.  

The comparatives results are presented in Section 5 of this chapter. 

4. Description of the implemented schemes 

In order to test the usefulness of the proposed Riemann solver, four computer codes were 
developed based on broadly well-known formulations. Three of them solve one dimensional 
problem applying second order accurates TVD schemes, and the other one applies a first 
order method to solve two dimensional problems. These formulations were selected because 
they require that a Riemann solver be implemented. 
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To compare the impact of the proposed Riemann solver in terms of accuracy as well as 
computational efficiency, all the numerical codes built have two versions, one of them 
works with the exact iterative solver and the other with the one here proposed. 

The numerical schemes that the developed codes use are: the two-dimensional Godunov 
approach, the one-dimensional versions of the HLLC - Harten, Lax, van Leer Contact - 
(Toro, 2009), MUSCL - Monotonic Upstream-Centered Scheme for Conservation Laws - (van 
Leer, 1985 and Toro, 1994) and finally the RCM - Random Choice Method - method (Chorin, 
1977).  

The following sub-sections explain each one of them. 

4.1 One-dimensional HLLC TVD method 

Consider Figure 1, were the complete structure of the solution of the Riemann problem in 
terms of the slowest SL and fastest SR waves, and a middle wave of speed S* is contained. 
Note that the HLLC Riemann solver does not compute the speed of the waves, but in order 
to determine completely the numerical fluxes an algorithm for computing the wave speeds 
has to be provided.  

x

t

SL

FL FR

F*L F*R

SRS*

 

Fig. 1. Riemann problem for the HLLC method. 

By applying Rankine-Hugoniot conditions across each of the waves SL , S* , SR it can be 
obtained 

  * *. . L L L L LR H F F = S U U     (23a) 

   * * * * *. . R L R LR H F F = S U U     (23b) 

   * *. . R R R R RR H F F = S U U     (23c) 
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These are three equations for the four unknowns vectors U*L, U*R, F*L and F*R. The aim is to 
find the vectors U*L, and U*R, so that the fluxes F*L and F*R can be determined from Eq. (23).  

From Eq.(23a) and Eq.(23c), LF and RF can be written as: 

  L L L L LF = F + S U U   (24) 

  R R R R RF = F S U U    (25) 

Introducing these last two expressions in Eq.(23b), it can be re-arranged as: 

    * * * *R R L L L R R R L LU S S +U S S = F F + S U S U         (26) 

The Eq.(26) has three scalar equations and six unknowns, the components of U*L and U*R. 
The following new conditions are now imposed on the approximate Riemann solver 

  * * *R Lu = u = u  * * *R Lp = p = p  (27a) 

which are satisfied by the exact solution. In addition, it is justified and convenient, to set  

 S* = u* (27b) 

that is, the star zone velocity must be equal to the contact discontinuity velocity. 

Then, only one closure conditions remains to be set. In (Toro, 2009), the following is 
proposed:  

 *

*

K K
K K

K

S uǒ = ǒ
S S

 
  

 
 (28) 

Equation (27a) sets that the star zone velocity must be equal to the contact discontinuity 
velocity. To avoid confusion are called RHS1, RHS2 and RHS3 the first, second and third 
scalar components of the RHS vector of Eq.(26). It possible to show that to satisfy 
simultaneously the Eqs.(26 and 27): 

 *

2

1

RHS
S =

RHS
 (29) 

 
   

*

*

3 2
2 1

R L

S
RHS RHS

p = Ǆ
S S

 



 (30) 

To obtain Eq.(30) was used the relation 2

2 1

p
E u




 


. 

The complete scheme shall consist on obtaining an estimation of LS  and RS , on calculating 

S* and p* using Eqs.(29 and 30) respectively, and then determining *R and *L through Eq. 
(27). Finally the flow vectors F*L and F*R by means of the Eq. (24 and 25) are evaluated. 
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To estimate, either LS  or RS  when there is a rarefaction fan, it has been proposed to use the 

wave velocity in contact with the undisturbed state, and when there is a shock wave directly 
to use the shock velocity (Toro, 2009). 

The difference between a first order, second order and TVD schemes are inherent to the 
structure of the numerical fluxes at cells interfaces. Calling wave-1, wave-2 and wave-3 
those that separate the L and *L, *L and *R, *R and R states respectively; the algorithm in this 
paper implemented is 

    
3

1/2 1 1/2 1/2
1

1 1

2 2
j j

i i i+ j i i
j=

F = F + F sign S F      (31) 

being i and i+1 the left and right cells and 1/2
j

i   is the limiter function for the wave-j. In this 

work are shown only the results obtained using a Van Leer limiter function; however the 
scheme works efficiently with other limiters. 

Finally, the flow state vector is actualized at each time step by means of the explicit scheme: 

  1 1
1/2 1/2

n+ n+
i i i i

Δt
U = U + F F

Δx
   (32) 

4.2 MUSCL TVD one-dimensional method 

To construct discrete second-order accurate schemes the MUSCL method proposed by 

Hancock (van Leer, 1985) carries out the following steps: 

Step 1. Choice of a suitably slope vector i  and data reconstruction with boundary 

interpolated values. 

Step 2. For each cell the boundary extrapolated values are evolved by a half time interval  

Step 3. Solve the Riemann problem with data provided after Step 2.  

Step 4. Compute new inter-cell fluxes and state vectors to complete one time interval  

In the first step, using the flow solution from the previous time and applying some 

particular criterion, determine the slope on each cell, as shown in Figure 2.  

Next, considering the slope in each cell, the state vector or independent state variables are 

extrapolated from the cell center to the cell boundary, namely 

 
2

L i
i i

Δ
U = U   

2
R i
i i

Δ
U = U +  (33) 

In the second step, it is calculated the evolution of states variables by a time ½ ∆t (Fig. 3) 
according to:  

    2

2

t
L R

i i i

ΔtΔ = F U F U
Δx



   
 (34) 
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Fig. 2. MUSCL method data reconstruction. 
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Fig. 3. Half time evolution in the MUSCL method. 

Notice, that after using Eq.(34) the discontinuities between cells are actualized, and the 
Riemann problems are calculated using the half time evolved state vectors. Thus, at the i+½ 
interface the right adjacent initial state for the Riemann problem is given by 
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    /2

2 2
R R t L Ri
i i i i i i

Δ Δt
U = U + Δ = U + + F U F U

Δx
      (35) 

and the left state by 

    /2 1
1 1 1 1 1 1

2 2
L L t L Ri+
i i+ i i+ i+ i+

Δ Δt
U = U + Δ = U + F U F U

Δx


 
      (36) 

Once solved the Riemann problems the new inter-cell fluxes and state vectors are calculated 
for the complete time step (step four). 

In this chapter, the following criterion to evaluate the slopes at the cells is used (Toro, 2009). 

    

   

1/2 1/2

1/2 1/2 1/2

1/2 1/2 1/2

1/2 1/2

max 0,min ,min       si 0 

min 0,max ,max       si 0 

i i

i i i

i i i i Δ Δ

i Δ i Δ Δ

Δ = ǃΔ ,Δ Δ ,ǃΔ Δ >

ǃΔ ,Δ Δ ,ǃΔ Δ

 

  

  

 

  
 



     

 (37) 

where: 

 1/2 1i i iΔ = U U   1/2 1i i+ iΔ = U U   (38) 

and  is a variable specifying the limiter function. Using Eqs.(37 and 38) the MUSCL scheme 
becomes TVD. 

The results presented in Section 5 has been obtained using the SUPERBEE limiter function 

(= 2). 

4.3 The TVD Random Choice Method (RCM) 

The RCM method can be seen as a modification of the Godunov method (Chorin, 1977). In 
the Godunov method, at the beginning of each time step, the state vector or independent 
states variables are considered constant within each cell. This piece-wise constant 
distribution of data at each time level, define local Riemann problems at the interface 
between neighboring cells. 

To advance to the next time level, the Godunov method utilizes an integral average of local 
solutions of Riemann problems. Then, new averaged state vectors for all the cells are 
calculated via integrals  

 

/2

( )/21

x

xxn+
i

U x
U =

x







  (39) 

where U(x) is the state vector solution within the i-cell, which has been obtained as solution 
of two adjacent Riemann problems (right i+½ , and left i–½).  

The RCM and Godunov methods are similar in the sense that both use the exact solution of 
the Riemann problem. However, the RCM, instead of averaging according to Eq.(39), 
advances to the next time level assigning to each cell a picked value U(x) of the state vector 

www.intechopen.com



 
Applied Aerodynamics 

 

168 

contained in the local solution. The picked up state depends on a point x randomly chosen 

within the sampling range / 2Δx  and / 2Δx .  

The RCM main advantage stands in its capacity to capture discontinuities separating 
constant states. It does not introduce artificial dissipation, shock waves and contact 
discontinuities are solved with infinite definition: the complete jump is produced in only 
one cell, and this accuracy does not get lost during time evolution.  

However, the scheme has some disadvantages:  

- The scheme introduces discontinuities in zones with smooth variations.  
- The discontinuity velocities are random variables, only their average is the correct 

velocity. Usually the discontinuity places are not determined correctly.  
- The scheme it is not strictly conservative. 
- The randomness is tolerable when solving homogeneous systems, i.e. no source terms. 
- The RCM can not be applied to solve multidimensional non linear problems via 

splitting techniques. 

4.4 Two-dimensional Godunov method 

It is well known that the original scheme (Godunov, 1959) is only first order accurate, which 

make it unsuitable for application to practical problems. Well resolved simulations will 
require the use of very fine meshes with the associated computing cost. Therefore, the 
original scheme was modified by incorporating concepts related to integral formulation of 

the Euler equations. These concepts have allowed substantial increments of computing time 
intervals.  

The theoretical foundations of updated Godunov schemes are based on characteristics of the 
Riemann problem solution. This solution depends on the ratio x/t, but it does not on time 
alone or position alone. At any cell interface (x = 0, for the local Riemann problem), the state 
vector remains constant until a coming wave from the neighbor cell reaches the interface. 
An integral analysis shows that the cell average state vector U can be calculated analytically 
using the flux vectors at the cell boundaries. However, it is necessary to solve two Riemann 
problems at the interfaces of the cell in question. The state vector change iΔU  in the i-cell 
and during one time interval ∆t can be evaluated as: 

    1/2 1/2
/ 0 / 0

i i
i x t x t

ΔtΔU = F U F U
Δx

 
 

    (40) 

were F(Ux/t=0) are the Godunov inter-cell numerical fluxes; and 1/2
/ 0

i
x tU 

  and 1/2
/ 0

i
x tU 

  are the 
similarity solutions evaluated at x/t=0 of the Riemann problems at the interface i–½ e i+½ 
respectively.  

The fluid dynamics fundamentals of the Gudonov method applicable to two dimensional 

problems, are similar to those explained above. However to account for the physical two-
dimensionality of non Cartesian geometries, some changes must be introduced. These are: 

- The flux balance must be extended to all sides of two-dimensional cells  
- To solve the Riemann problems, the direction of an outward unit vector normal to each 

side of multilateral shaped cell has to be determined.  
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Assuming that the local Riemann problems, in a system of coordinates aligned with the 
normal unit vector to each side of the cell have been solved, and the corresponding 
numerical fluxes have been obtained, then the alternative expression to Eq.(40) for non 
Cartesian geometries becomes 

  1/2
/ 0

1

k
i

i j jx t
j

t
U F U n s

A






      (41) 

here k is the numbers of cell sides, and F  the flux vector. jn  is the outward unit normal 
vector ,   expresses the interior product and jΔs  is the side length. 

5. Results 

Results obtained using the approximate TRRS, TSRS and Adaptive RS, are in the next sub-
section presented and compared with the new scheme proposed in this article. Comparison 
with results produced by HLLC, MUSCL and RC methods are presented, in the following 
after sub-section.  

5.1 Results using approximate Riemann solvers 

To analyze the behavior of the approximate solvers with randomly chosen values of the 

parameters i within the range given by Eq.(12), 106 cases of Riemann problems are studied. 
Of them, 65% were cases with two shock waves, 6% with one shock and one rarefaction 
wave and the remaining 29% with two rarefaction waves.  

To systematized the analysis, in all Riemann problems the following initial conditions to the 
right state are established 

 
3 2

1      0      1R R R

Kg m Nǒ = u = p =
m s m

 (42) 

The initial conditions for the left states are calculated using values of the parameters 1, 2 

and 3 picked-out from the intervals defined in Eq.(12) :  

 1 2 3                                    R
L L R L R

R

p
u = Ǒ Ǆ p = Ǒ p ǒ = Ǒ ǒ

ǒ
      (43) 

To heighten the behavior of the approximate Riemann solvers, in the following table are 
listed the worst approximate test values for the TRRS, the TSRS, the adaptive RS and the 
new proposed scheme. 

 

Solver L uL pL R uR pR 
Solver 

prediction 
Exact 

solution 

TRRS 4.9733 11.8082 0.0507 1 0 1 998.7362 81.2775 

TSRS 4.9182 11.8582 0.0564 1 0 1 31.8961 81.6784 

Adaptive 4.9182 11.8582 0.0564 1 0 1 31.8961 81.6784 

Proposed 0.0739 11.8752 0.9274 1 0 1 9.5344 9.6541 

Table 2. Worst approximated solutions after solving Riemann test cases. 

www.intechopen.com



 
Applied Aerodynamics 

 

170 

Note that for the three first solvers, the worst results appear when there are relatively strong 
shock waves. Also, it is noted that the most poorly test case predicted is the same for the TSRS 
and the Adaptive Riemann solvers. This is so because when the star pressure is highest that 
both initial pressures, the Adaptive solver uses the same calculation scheme that the TSRS. 

The percent error for each tested Riemann solvers is: 

 

TRRS TSRS Adaptive New scheme 

1128.80% 60.95% 60.95% 1.24% 

Table 3. Percent error for Riemann solvers. 

The CPU time used by each approximate solver given as a percentage of the necessary CPU 
time for the exact Riemann solver is: 

 

TRRS TSRS Adaptive New scheme 

38.62% 25.93% 31.60% 34.57% 

Table 4. Percent of CPU time. 

It is probable that the comparison between Riemann solvers based only on worst test results 
may not be considered representative and in consequence objectionable. Therefore, another 
variable based on the average error of all the pressures computed in the star region for the 
approximate solvers, is introduced. The results (in N/m2) are shown below: 

 

TRRS TSRS Adaptive New scheme 

37.371 7.1504 7.0931 0.0019 

Table 5. Average error. 

Repeating the previous analysis, but adding the restriction that the exact pressure p* in each 
case is bounded to 0.1 pL < p* < 10 pL and 0.1 pR < p* < 10 pR,, and in this manner avoiding the 
formation of high-intensity shocks and near-vacuum conditions, the worst computed cases 
for each solver are: 

 

Solver L uL pL R uR pR 
Solver 

prediction 
Exact 

solution 

TRRS 2.4112 4.2348 0.9999 1 0 1 12.5554 9.9950 

TSRS 0.8759 5.3169 1.0013 1 0 1 6.7847 9.9618 

Adaptive 0.8759 5.3169 1.0013 1 0 1 6.7847 9.9618 

Proposed 0.0712 11.7759 0.9424 1 0 1 9.2260 9.3234 

Table 6. Worst approximated solutions after solving Riemann test cases with restrictions in p*. 

The percent error for each of the tested Riemann solvers using a bounded p* are: 

 

TRRS TSRS Adaptive New scheme 

25.62% 31.89% 31.89% 1.05% 

Table 7. Percent errors. 
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5.2 Results obtained using different numerical schemes 

To compare the goodness and shortcoming of the HLLC, MUSCL, RCM and two-
dimensional Godunov numerical schemes, an identical test case for all of them is 
implemented. The two-dimensional software inclusive, it is compared solving the same one 
dimensional test case.  

The selected test case is a 2 meters length shock tube (and for the two-dimensional 
simulations 0.067m in height). The shock tube was selected because it is possible to reach an 
exact solution, and is a very popular benchmark for compressible computational fluid 
dynamics. 

The shock tube has two sections of equal length separated by a diaphragm (discontinuity on 
the initial condition), and both sections are filled with air at the same temperature. Initially, 
the velocities along the tube are null. Inside the right section, the initials pressure and 
density are 5 210 /p = N m , 31.225 /kg m   respectively, and in the left section are 

4 210 /p = N m , 30.1225 /kg m  . For these initial conditions, the solution after the 
diaphragm is broken is known. It is composed by a shock wave traveling to the right at 
543.4m/s, and one contact surface also moving to the right at 277.6m/s. There is also, a 
rarefaction fan traveling to the left, its wave tail is moving at 338.1m/s (the sound speed of 
the stagnant gas in the left section) and its front at 4.9m/s. 

The flow properties at the four states limited by the above described discontinuities and the 

continuous wave are: 

 

 L *L *R R 

 1.225 0.4995 0.2504 0.1225 

u 0 277.6 277.6 0 

p 100000 28482 28482 10000 

Table 8. Shock tube states flow properties. 

In all tests the mesh has 200 cells evenly distributed along the tube. In the two-dimensional 
simulations a structured mesh possessing 2400 triangles is used (see Figure 4)  

 

Fig. 4. Mesh for two-dimensional simulations. 
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The obtained results are presented in Figures 5 to 8. In each figure there are three lines; one 
represents the exact solution (blue), another the solution using the exact Riemann solver  

 

Fig. 5. Two-dimensional Godunov method. Blue line: theoretical solution. Red squares: exact 
solvers. Black triangles: approximate solver. 

 

Fig. 6. One-dimensional HLLC method. Blue line: theoretical solution. Red squares: exact 
solvers. Black triangles: approximate solver 
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Fig. 7. One-dimensional MUSCL method. Blue line: theoretical solution. Red squares: exact 
solvers. Black triangles: approximate solver 

 

Fig. 8. One-dimensional RCM method. Blue line: theoretical solution. Red squares: exact 
solvers. Black triangles: approximate solver 

(red with squares), and finally the third line shows the results obtained using the 
approximated Riemann solver proposed in this work (black with triangles). The two 
dimensional Godunov results shown are computed values along the tube center line. 
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From Figures 5 to 8 it can be deduced that the results calculated using, either the exact 
Riemann solver or the new proposed approximation, are practically identical, except for the 
RCM method. The differences between the numerical results presented in Figures 5 to 7 are 
less than 1%. For the RCM, the differences are greater; however it is believe that such 
differences are mainly due to the method randomness, and not to the Riemann solver itself. 

In Figure 9 are plotted percentages of the computing time spent for each of the considered 
numerical schemes to complete a determined percent of the given task, either using the 
exact Riemann solver or the proposed approximation. Note that in Figure 9, the one 
hundred percent value has been assigned to all the results that the numerical schemes have 
produced using the new approximation in solving the Riemann Problem, while the other 
ones also plotted in percentages, are obtained through the same numerical schemes, but 
using now the exact Riemann solver.  

 

Fig. 9. CPU times evaluation. 

It can be seen that using the proposed new approximate Riemann solver, less computing 
time is needed. In terms of CPU time, the percentages of savings achieved are listed bellow  
 

GODUNOV 2D HLLC MUSCL RCM 

41.8% 20.0% 50.2% 22.1% 

Table 9. Percent of CPU time. 

6. Conclusions 

After comparing the accuracy of the new proposed non iterative Riemann solver with the 
TRRS, the TSRS and the Adaptive RS, it has been found that for all pressure values 
computed in the star region, the average error of the new solver is notably smaller than 
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the average error of all the others approximated Riemann solvers (Table 5). In terms of the 
worst pressure values obtained in the star region (Table 2), the percentage error of the 
new solver is almost 50 time smaller than the best percentage obtained by the other 
solvers (Table 3). From the point of view of computational cost, it is higher if compared 
with the Adaptive solver and TSRS by 33.3 % and 9.4% respectively, but lower if the 
comparison is made with the TRRS. However, the new solver presented has a higher cost-
benefit ratio.  

It can be argued that the extremely high degree of uncertainty presented by the TRRS was 
due to the range of sampled Riemann problems (they mostly were problems with two 
shocks). However, in cases with well defined two rarefaction waves, the TRRS does not offer 
advantages over an exact Riemann solver because both perform the same operations. 

Although the proposed solver has already shown to be efficient, it still requires a sequence 
of operations that others solvers do not need. For instance, before carrying out the 
interpolation on a data-base matrix of Riemann solutions, the matrix must be generated (a 
100x100x100 matrix like the one used in this paper, requires the exact solution of 106 
Riemann problems). However, this matrix is calculated only once at the beginning of the 
computation and it has only three degrees of freedom, which makes it of easy handling.  

The numerical results obtained with HLLC, MUSCL and Godunov schemes, have shown 
that the new solver is accurate and robust, and no significant differences were found when 
results are compared with the exact Riemann solver. In addition, it shows appreciable 
advantages in terms of CPU time.  

Modifications on the implementation of the new solver are suggested to benefits from the 
advantage of using the fully analytical solution in two expansion waves Riemann problems, 
and only the new approximate solver when there are Riemann problems with shock waves. 

Furthermore, it shall be desirable to redefine the parameter 1 avoiding the square root, 
since it is the more expensive numerical operation.  
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