
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Dang Minh Quan1, Joern Altmann2 and Laurence T. Yang3

1Center for REsearch And Telecommunication Experimentation for
NETworked Communities

2Technology Management, Economics, and Policy Program, Department of Industrial
Engineering, College of Engineering, Seoul National University

3Department of Computer Science, St. Francis Xavier University
1Italy

2South Korea
3Canada

1. Introduction

In the Grid Computing environment, many users need the results of their calculations
within a specific period of time. Examples of those users are weather forecasters running

weather forecasting workflows, and automobile producers running dynamic fluid simulation
workflow Lovas et al. (2004). Those users are willing to pay for getting their work completed
on time. However, this requirement must be agreed on by both, the users and the Grid
provider, before the application is executed. This agreement is contained in the Service Level
Agreement (SLA) Sahai et al. (2003). In general, SLAs are defined as an explicit statement
of expectations and obligations in a business relationship between service providers and
customers. SLAs specify the a-priori negotiated resource requirements, the quality of service
(QoS), and costs. The application of such an SLA represents a legally binding contract. This is
a mandatory prerequisite for the Next Generation Grids.

However, letting Grid-based workflows’ owners work directly with resource providers has
two main disadvantages:

• The user has to have a sophisticated resource discovery and mapping tools in order to find

the appropriate resource providers.

• The user has to manage the workflow, ranging from monitoring the running process to
handling error events.

To free users from this kind of work, it is necessary to introduce a broker to handle the
workflow execution for the user. We proposed a business model Quan & J. Altmann (2007)
for the system as depicted in Figure 1, in which, the SLA workflow broker represents the user

as specified in the SLA with the user. This controls the workflow execution. This includes

w-TG: A Combined Algorithm to Optimize
the Runtime of the Grid-Based

Workflow Within an SLA Context

1

www.intechopen.com

2 Will-be-set-by-IN-TECH

mapping of sub-jobs to resources, signing SLAs with the services providers, monitoring, and
error recovery. When the workflow execution has finished, it settles the accounts, pays the
service providers and charges the end-user. The profit of the broker is the difference. The
value-added that the broker provides is the handling of all the tasks for the end-user.

Grid
resource
broker for
workflow

SLA workflow

Service

provider 1

SLA subjob

Service

provider 3

SLA subjob

SLA subjob
Service

provider 2

User

Fig. 1. Stakeholders and their business relationship

We presented a prototype system supporting SLAs for the Grid-based workflow in Quan et
al. (2005; 2006); Quan (2007); Quan & Altmann (2007). Figure 2 depicts a sample scenario of
running a workflow in the Grid environment.

Subjob 0

RMS 1

SLA workflow broker

Subjob 5

RMS 1

Subjob 3

RMS 2

Subjob 7

RMS 6

Subjob 6

RMS 5

Subjob 4

RMS 4

Subjob 1

RMS 2

Subjob 2

RMS 3

Fig. 2. A sample running Grid-based workflow scenario

In the system handling the SLA-based workflow, the mapping module receives an important
position. Our ideas about Grid-based workflow mapping within the SLA context have 3 main
scenarios.

• Mapping heavy communication Grid-based workflow within the SLA context, satisfying
the deadline and optimizing the cost Quan et al. (2006).

• Mapping light communication Grid-based workflow within the SLA context, satisfying
the deadline and optimizing the cost Quan & Altmann (2007).

• Mapping Grid-based workflow within the SLA context with execution time optimization.

The requirement of optimizing the execution time emerges in several situations.

• In the case of catastrophic failure, when one or several resource providers are detached

from the grid system at a time, the ability to finish the workflow execution on time as

4 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 3

stated in the original SLA is very low and the ability to be fined because of not fulfilling
SLA is nearly 100%. Within the SLA context, which relates to business, the fine is usually
very high and increases with the lateness of the workflow’s finished time. Thus, those
sub-jobs, which form an workflow, must be mapped to the healthy RMSs in a way, which
minimizes the workflow finishing time Quan (2007).

• When the Grid is busy, there are few free resources. In this circumstance, finding a feasible
solution meeting the user’s deadline is a difficult task. This constraint equals to find an
optimizing workflow execution time mapping solution. Even when the mapping result
does not meet the preferred deadline, the broker can still use it for further negotiation with
the user.

The previous work proposed an algorithm, namely the w-Tabu Quan (2007), to handle this
problem. In the w-Tabu algorithm, a set of referent solutions, which distribute widely over
the search space, is created. From each solution in the set, we use the Tabu search to find the
local minimal solution. The Tabu search extends the local search method by using memory
structures. When a potential solution has been determined, it is marked as "taboo" so that the
algorithm does not visit that solution frequently. However, this mechanism only searches the
area around the referent solution. Thus, many areas containing good solutions may not be
examined by the w-Tabu algorithm and thus, the quality of the solution is still not as high as
it should be.

In this book chapter, we propose a new algorithm to further improve the quality of the
mapping solution. The main contribution of the book chapter includes:

• An algorithm based Genetic algorithm called the w-GA algorithm. According to the
character of the workflow, we change the working mechanism of the crossover and
mutation operations. Thus, the algorithm could find a better solution than the standard
GA algorithm with the same runtime.

• An analysis the strong and weak points of w-GA algorithm compared to the w-Tabu
algorithm. We do an extensive experiment in order to see the quality of w-GA algorithm
in performance and runtime.

• An combined algorithm, namely w-TG. We propose a new algorithm by combining the
w-GA algorithm and the w-Tabu algorithm. The experiment shows that the new algorithm
finds out solutions about 9% greater than the w-Tabu algorithm.

In the early state of the business Grid like now, there are not so many users or providers and
the probability of numerous requests coming at a time is very low. Moreover, even when the
business Grid becomes crowd, there are many periods that only one SLA workflow request
coming at a time. Thus, in this book chapter, we assume the broker handles one workflow
running request at a time. The extension of mapping many workflows at a time will be the
future work.

The chapter is organized as follows. Sections 2 and 3 describe the problem and the
related works respectively. Section 4 presents the w-GA algorithm. Section 5 describes the
performance experiment, while section 6 introduces the combined algorithm w-TG and its
performance. Section 7 concludes the book chapter with a short summary.

5w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

4 Will-be-set-by-IN-TECH

Sjs cpu speed stor exp rt S-sj D-sj data
(Mhz) (GB) (slot) (GB)

0 128 1000 30 2 16 0 1 1
1 64 1000 20 1 13 0 2 4

2 128 1000 30 2 14 0 3 6

3 128 1000 30 2 5 0 5 10
4 128 1000 30 2 8 1 7 3

5 32 1000 10 0 13 2 4 2

6 64 1000 20 1 16 3 4 8
7 128 1000 30 2 7 4 7 4

5 4 3

5 6 6
Workflow starting slot: 10 6 7 6

Table 1. Sample workflow specification

2. Problem statement

2.1 Grid-based workflow model

Like many popular systems handling Grid-based workflows Deelman et al. (2004); Lovas et
al. (2004); Spooner et al. (2003), our system is of the Directed Acyclic Graph (DAG) form. The
user specifies the required resources needed to run each sub-job, the data transfer between
sub-jobs, the estimated runtime of each sub-job, and the expected runtime of the whole
workflow. In this book chapter, we assume that time is split into slots. Each slot equals a
specific period of real time, from 3 to 5 minutes. We use the time slot concept in order to
limit the number of possible start-times and end-times of sub-jobs. Moreover, a delay of 3
minutes is insignificant for the customer. Table 1 presents the main parameters including
sub-job specifications and data transfer specifications of the sample workflow in Figure 2. The
sub-job specification includes the number of CPU (cpu), the CPU speed (speed), the amount
of storage (stor), the number of experts (exp), the required runtime (rt). The data transfer
specification includes the source sub-job (S-sj), the destination sub-job (D-sj), and the number
of data (data). It is noted that the CPU speed of each sub-job can be different. However, we
set it to the same value for the presentation purposes only.

2.2 Grid service model

The computational Grid includes many High Performance Computing Centers (HPCCs).
The resources of each HPCC are managed by a software called local Resource Management
System (RMS)1. Each RMS has its own unique resource configuration, the number of CPUs,
the amount of memory, the storage capacity, the software, the number of experts, and the
service price. To ensure that the sub-job can be executed within a dedicated time period, the
RMS must support an advance resource reservation such as CCS Hovestadt (2003). Figure 3
depicts an example of an CPU reservation profile of such an RMS. In our model, we reserve
three main types of resources: CPU, storage, and expert. The addition of further resources is
straightforward.

1 In this book chapter, RMS is used to represent the cluster/super computer as well as the Grid service
provided by the HPCC.

6 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 5

Number CPU available
1728

Number CPU

require

0 21 67 82

51

45

166

435
419

357

138

time

Fig. 3. A sample CPU reservation profile of a local RMS

10MB/s

Bandwidth

0 21 50 65 138

time

100

Fig. 4. A sample bandwidth reservation profile of a link between two local RMSs

If two output-input-dependent sub-jobs are executed on the same RMS, it is assumed that the
time required for the data transfer equals zero. This can be assumed since all compute nodes
in a cluster usually use a shared storage system such as NFS or DFS. In all other cases, it is

assumed that a specific amount of data will be transferred within a specific period of time,
requiring the reservation of bandwidth.

The link capacity between two local RMSs is determined as the average available capacity

between those two sites in the network. The available capacity is assumed to be different for
each different RMS couple. Whenever a data transfer task is required on a link, the possible
time period on the link is determined. During that specific time period, the task can use
the entire capacity, and all other tasks have to wait. Using this principle, the bandwidth
reservation profile of a link will look similar to the one depicted in Figure 4. A more realistic
model for bandwidth estimation (than the average capacity) can be found in Wolski (2003).
Note, the kind of bandwidth estimation model does not have any impact on the working of
the overall mechanism.

Table 2 presents the main resource configuration including the RMS specification and the
bandwidth specification of the 6 RMSs in Figure 2. The RMS specification includes the number
of CPU (cpu), the CPU speed in Mhz (speed), the amount of storage in GB (stor), the number
of expert (exp). The bandwidth specification includes the source RMS (s), the destination
RMS (d), and the bandwidth in GB/slot (bw). For presentation purpose, we assume that all
reservation profiles are empty. It is noted that the CPU speed of each RMS can be different.
We set it to the same value for the presentation purposes only.

2.3 Problem specification

The formal specification of the described problem includes following elements:

7w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

6 Will-be-set-by-IN-TECH

ID cpu speed stor exp s d bw s d bw
1 256 1000 3000 4 1 2 1 2 1 1

2 128 1000 2000 3 1 3 3 3 1 3

3 256 1000 3000 4 1 4 2 4 1 2
4 256 1000 3000 4 1 5 3 5 1 3

5 256 1000 3000 4 1 6 2 6 1 2

6 64 1000 1000 2 2 3 1 3 2 1
2 4 1 4 2 1

2 5 3 5 2 3

2 6 2 6 2 2
3 4 1 4 3 1

3 5 3 5 3 3

3 6 1 6 3 1
4 5 2 5 4 2

4 6 3 6 4 3
5 6 1 6 5 1

Table 2. Sample RMS configurations

• Let R be the set of Grid RMSs. This set includes a finite number of RMSs, which provide
static information about controlled resources and the current reservations/assignments.

• Let S be the set of sub-jobs in a given workflow including all sub-jobs with the resource
and runtime requirements.

• Let E be the set of edges in the workflow, which express the dependency between the
sub-jobs and the necessity for data transfers between the sub-jobs.

• Let Ki be the set of resource candidates of sub-job si. This set includes all RMSs, which can
run sub-job si, Ki ⊂ R.

Based on the given input, the required solution includes two sets defined in Formula 1 and 2.

M = {(si, rj, start, stop)|si ∈ S, rj ∈ Ki} (1)

N = {(eik, start, stop)|eik ∈ E} (2)

If the solution does not have a start, stop slot for each si, it becomes a configuration as defined

in Formula 3.
a = {(si, rj)|si ∈ S, rj ∈ Ki} (3)

A feasible solution must satisfy following conditions:

• Criterion 1: All Ki �= ∅. There is at least one RMS in the candidate set of each sub-job.

• Criterion 2: The dependencies of the sub-jobs are resolved and the execution order remains
unchanged.

• Criterion 3: The capacity of an RMS must equal or greater than the requirement at any
time slot. Each RMS provides a profile of currently available resources and can run many
sub-jobs of a single flow both sequentially and in parallel. Those sub-jobs, which run on

the same RMS, form a profile of resource requirement. With each RMS rj running sub-jobs
of the Grid workflow, with each time slot in the profile of available resources and profile of

8 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 7

resource requirements, the number of available resources must be larger than the resource
requirement.

• Criterion 4: The data transmission task eki from sub-job sk to sub-job si must take place in
dedicated time slots on the link between the RMS running sub-job sk to the RMS running
sub-job si. eki ∈ E.

The goal is to minimize the makespan of the workflow. The makespan is defined as the period

from the desired starting time until the finished time of the last sub-job in the workflow. In
addition to the aspect that the workflow in our model includes both parallel and sequential
sub-jobs, the SLA context imposes the following distinguishing characteristics.

• An RMS can run several parallel or sequential sub-jobs at a time.

• The resources in each RMS are reserved.

• The bandwidth of the links connecting RMSs is reserved.

To check for the feasibility of a configuration, the mapping algorithm must go through the
resource reservation profiles and bandwidth reservation profile. This step needs a significant
amount of time. Suppose, for example, that the Grid system has m RMS, which can satisfy
the requirement of n sub-jobs in a workflow. As an RMS can run several sub-jobs at a time,
finding out the optimal solution needs (mn) loops for checking the feasibility. It can be easily
shown that the optimizing of the execution time of the workflow on the Grid as described
above is an NP hard problem Black et al. (1999). Previous experiment results have shown that
with the number of sub-jobs equaling 6 and number of RMSs equaling 20, the runtime to find

out the optimal solution is exponential Quan et al. (2007).

3. Related works

The mapping algorithm for Grid workflow has received a lot of attentions from the scientific
community. In the literature, there are many methods to mapping a Grid workflow to
Grid resource within different contexts. Among those, the old but well-known algorithm
Condor-DAGMan from the work of Condor (2004) is still used in some present Grid systems.
This algorithm makes local decisions about which job to send to which resource and considers
only jobs, which are ready to run at any given instance. Also, using a dynamic scheduling
approach, Duan et al. (2006) and Ayyub et al. (2007) apply many techniques to frequently
rearrange the workflow and reschedule it in order to reduce the runtime of the workflow.
Those methods are not suitable for the context of resource reservation because whenever a
reservation is canceled, a fee is charged. Thus, frequent rescheduling may lead to a higher
running workflow cost.

Deelman et al. (2004) presented an algorithm which maps Grid workflows onto Grid resources
based on existing planning technology. This work focuses on coding the problem to be
compatible with the input format of specific planning systems and thus transferring the
mapping problem to a planning problem. Although this is a flexible way of gaining
different destinations, which includes some SLA criteria, significant disadvantages regarding
the time-intensive computation, long response times and the missing consideration of
Grid-specific constraints appeared.

In Mello et al. (2007), Mello et. al. describe a load balancing algorithm addressed to Grid
computing environment called RouteGA. The algorithm uses GA techniques to provide an

9w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

8 Will-be-set-by-IN-TECH

equal load distribution based on the computing resources capacity. Our work is different
from the work of Mello et. al. in two main aspects.

• While we deal with workflow, the work in Mello et al. (2007) considers a group of single
jobs but with no dependency among them.

• In our work, The resources are reserved, whereas Mello et al. (2007) does not consider the

resource reservation context.

Related to the mapping task graph to resources, there is also the multiprocessor scheduling
precedence-constrained task graph problem Gary et al. (1979); Kohler et al. (1974). As this is a
well-known problem, the literature has recorded a lot of methods for this issue, which can be
classified into several groups Kwok et al. (1999). The classic approach is based on the so-called
list scheduling technique Adam et al. (1974); Coffman et al. (1976). More recent approaches
are the UNC (Unbounded Number of Clusters) Scheduling Gerasoulis et al. (1992); Sarkar
(1989), the BNP (Bound Number of Processors) Scheduling Adam et al. (1974); Kruatrachue
et al. (1987); Sih et al. (1993), the TDB (Task Duplication Based) Scheduling Colin et al. (1991);

Kruatrachue et al. (1988), the APN (Arbitrary Processor Network) Scheduling Rewini et al.
(1990), and the genetic Hou et al. (1994); Shahid et al. (1994). Our problem differs from the
multiprocessor scheduling precedence-constrained task graph problem in many factors. In
the multiprocessor scheduling problem, all processors are similar, but in our problem, RMSs
are heterogeneous. Each task in our problem can be a parallel program, while each task in the
other problem is a strictly sequential program. Each node in the other problem can process
one task at a time while each RMS in our problem can process several sub-jobs at a time.
For these reasons, we cannot apply the proposed techniques to our problem because of the
characteristic differences.

In recent works Berman et al. (2005); Blythe et al. (2005); Casanova et al. (2000); Ma et al.
(2005), authors have described algorithms which concentrate on scheduling the workflow
with parameter sweep tasks on Grid resources. The common destination of those algorithms
is optimizing the makespan, defined as the time from when execution starts until the last job
in the workflow is completed. Subtasks in this kind of workflow can be group in layers and
there is no dependency among subtasks in the same layer. All proposed algorithms assume
each task as a sequential program and each resource as a compute node. By using several
heuristics, all those algorithms perform the mapping very quickly. Our workflow with the
DAG form can also be transformed to the workflow with parameter sweep tasks type, and
thus we have applied all those algorithms to our problem.

Min-min algorithm

Min-min uses the Minimum MCT (Minimum Completion Time) as a measurement, meaning
that the task that can be completed the earliest is given priority. The motivation behind
Min-min is that assigning tasks to hosts that will execute them the fastest will lead to an overall
reduced finished time Berman et al. (2005); Casanova et al. (2000). To adapt the min-min
algorithm to our problem, we analyze the workflow into a set of sub-jobs in sequential layers.

Sub-jobs in the same layer do not depend on each other. With each sub-job in the sequential
layer, we find the RMS which can finish sub-job the earliest. The sub-job in the layer which
has the earliest finish time, then, will be assigned to the determined RMS. A more detailed
description about the algorithm can be seen in Quan (2007).

10 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 9

Max-min algorithm

Max-min’s metric is the Maximum MCT. The expectation is to overlap long-running tasks

with short-running ones Berman et al. (2005); Casanova et al. (2000). To adapt the max-min
algorithm to our problem, we analyze the workflow into a set of sub-jobs in sequential layers.
Sub-jobs in the same layer do not depend on each other. With each sub-job in the sequential
layer, we find the RMS which can finish sub-job the earliest. The sub-job in the layer which
has the latest finish time, will be assigned to the determined RMS. A more detailed description
about the algorithm can be seen in Quan (2007).

Suffer algorithm

The rationale behind sufferage is that a host should be assigned to the task that would "suffer"
the most if not assigned to that host. For each task, its sufferage value is defined as the
difference between its best MCT and its second-best MCT. Tasks with a higher sufferage value
take precedence Berman et al. (2005); Casanova et al. (2000). To adapt a suffer algorithm to our
problem, we analyze the workflow into a set of sub-jobs in sequential layers. Sub-jobs in the
same layer do not depend on each other. With each sub-job in the sequential layer, we find the
earliest and the second-earliest finish time of the sub-job. The sub-job in the layer which has
the highest difference between the earliest and the second-earliest finish time will be assigned
to the determined RMS. A more detailed description about the algorithm can be seen in Quan
(2007).

GRASP algorithm

In this approach a number of iterations are made to find the best possible mapping of jobs
to resources for a given workflow Blythe et al. (2005). In each iteration, an initial allocation
is constructed in a greedy phase. The initial allocation algorithm computes the tasks whose
parents have already been scheduled on each pass, and consider every possible resource for
each such task. A more detailed description about the algorithm can be seen in Quan (2007).

w-DCP algorithm

The DCP algorithm is based on the principle of continuously shortening the longest path
(also called critical path (CP)) in the task graph by scheduling tasks in the current CP to an
earlier start time. This principal was applied for scheduling workflows with parameter sweep
tasks on global Grids by Tianchi Ma et al in Ma et al. (2005). We proposed a version of DCP
algorithm to our problem in Quan (2007).

The experiment results show that the quality of solutions found by those algorithm is not
sufficient Quan (2007). To overcome the poor performance of methods in the literature, in
the previous work Quan (2007), we proposed the w-Tabu algorithm. An overview of w-Tabu
algorithm is presented in Algorithm 1.

The assigning sequence is based on the latest start_time of the sub-job. Sub-jobs having
smaller latest start time will be assigned earlier. Each solution in the reference solutions set
can be thought of as the starting point for the local search so it should be spread as widely as
possible in the searching space. To satisfy the space spread requirement, the number of similar

map sub − job : RMS between two solutions, must be as small as possible. The improvement
procedure based on the Tabu search has some specific techniques to reduce the computation
time. More information about w-Tabu algorithm can be seen in Quan (2007).

11w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

10 Will-be-set-by-IN-TECH

Algorithm 1 w-Tabu algorithm

1: Determine assignning sequence for all sub-jobs of the workflow
2: Generate reference solution set
3: for all solution in reference set do
4: Improve the solution as far as possible with the modified Tabu search
5: end for
6: Pick the solution with best result

4. w-GA algorithm

4.1 Standard GA

The standard application of GA algorithm to find the minimal makespan of a workflow within
an SLA context is presented in Algorithm 2. We call it the n-GA algorithm.

Algorithm 2 n-GA algorithm

1: Determine assigning sequence for all sub-jobs of the workflow
2: Generate reference configuration set
3: while num_mv < max do
4: Evaluate the makespan of each configuration
5: a"= best configuration
6: Add a" to the new population
7: while the new population is not enough do
8: Select parent couple configurations according to their makespan
9: Crossover the parent with a probability to form new configurations

10: Mutate the new configuration with a probability
11: Put the new configuration to the new population
12: end while
13: num_mv ← num_mv + 1
14: end while
15: return a"

Determining the assigning sequence

The sequence of determining runtime for sub-jobs of the workflow in an RMS can also affect

the final makespan, especially in the case of many sub-jobs in the same RMS. Similar to w-Tabu
algorithm, the assigning sequence is based on the latest start_time of the sub-job. Sub-jobs
having the smaller latest start time will be assigned earlier. The complete procedure can be
seen in Quan (2007). Here we outline some main steps. We determine the earliest and the
latest start time for each of the sub-jobs of the workflow under ideal conditions. The time
period to do data transferring among sub-jobs is computed by dividing the amount of data
over a fixed bandwidth. The latest start/stop time for each sub-job and each data transfer
depends only on the workflow topology and the runtime and not on the resources context.
Those parameters can be determined by using conventional graph algorithms.

Generating the initial population

In the n-GA algorithm, the citizen is encoded as described in Figure 5. We use this convention
encoding as it naturally presents a configuration and thus, it is very convenient to evaluate
the timetable of the solution.

12 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 11

RMS

1

RMS

3

RMS

5

RMS

2

sj0 sj1 sj2 sj3

RMS

3

RMS

k

sj4 sjn

Encoded configuration

1 3 5 2 3 k

Fig. 5. The encoded configuration

Each sub-job has different resource requirements and there are a lot of RMSs with different
resource configurations. The initial action is finding among those heterogeneous RMSs the
suitable RMSs, which can meet the requirement of the sub-job. The matching between the
sub-job’s resource requirement and the RMS’s resource configuration is done by several logic
checking conditions in the WHERE clause of the SQL SELECT command. This work will
satisfy Criterion 1. The set of candidate lists is the configuration space of the mapping
problem.

The crossover operation of the GA will reduce the distance between two configurations. Thus,
to be able to search over a wide search area, the initial population should be distributed
widely. To satisfy the space spreading requirement, the number of the same map sub-job:RMS

between two configurations must be as small as possible. We apply the same algorithm for
creating the initial set of the configuration in Quan (2007). The number of the member in the
initial population set depends on the number of available RMSs and the number of sub-jobs.

For example, from Table 1 and 2, the configuration space of the sample problem is presented
in Figure 6a. The initial population will be presented in Figure 6b.

Determining the makespan

The fitness value is based on the makespan of the workflow. In order to determine the
makespan of a citizen, we have to calculate the timetable of the whole workflow. The
algorithm for computing the timetable is presented in Algorithm 3. The start and stop time of

the sub-job is determined by searching the resource reservation profile. The start and stop time
of data transfer is determined by searching the bandwidth reservation profile. This procedure
will satisfy Criteria 2 and 3 and 4.

After determining the timetable, we have a solution. With our sample workflow, the solution
of the configuration 1 in Figure 6b including the timetable for sub-jobs and the time table for
data transfer is presented in Table 3. The timetable for sub-jobs includes the RMS and the
start, stop time of executing the sub-job. The timetable for data transfer includes the source
and destination sub-jobs (S-D sj), source and destination RMS (S-D rms), and the start and
stop time of performing the data transfer. The makespan of this sample solution is 64.

13w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

12 Will-be-set-by-IN-TECH

1 1 1 5

sj0 sj1 sj2 sj3

4 3

sj4 sj6

4

sj5

1

sj7

3 3 2 6 2 21 5

2 4 3 3 1 12 3

4 2 5 5 3 45 2

5 6 4 4 6 53 6

5 6 2 5 4

1 1 1 5 4 34 1

3 3 2 6 2 21 5

2 4 3 3 1 12 3

4 2 5 5 3 45 2

5 6 4 4 6 53 6

5 6 2 5 41 4 3

a)

b)

1

2

3

4

5

6

Fig. 6. Sample of forming the initial population

Algorithm 3 Determining timetable algorithm

1: for Each sub-job k following the assign sequence do
2: Determine set of assigned sub-jobs Q, which having output data transfer to the sub-job

k
3: for Each sub-job i in Q do
4: min_st_tran=end_time of sub-job i +1
5: Search in reservation profile of link between RMS running sub-job k and RMS

running sub-job i to determine start and end time of data transfer task with the start
time > min_st_tran

6: end for
7: min_st_sj=max end time of all above data transfer +1
8: Search in reservation profile of RMS running sub-job k to determine its start and end

time with the start time > min_st_sj
9: end for

Crossover and mutation

Parents are selected according to the roulette wheel method. The fitness of each configuration
= 1/makespan. Firstly, the sum L of all configuration fitness is calculated. Then, a random
number l from the interval (0, L) is generated. Finally, we go through the population to sum
the fitness p. When p is greater than l, we stop and return to the configuration where we were.

The crossover point is chosen randomly. For the purpose of demonstration, we use the sample
workflow in Figure 2. Assume that we have a parents and a crossover point as presented
in Figure 7a. The child is formed by copying from two parts of the parents. The result is
presented in Figure 7b. The mutation point is chosen randomly. At the mutation point, rj of si

14 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 13

Sjs RMS start-stop S-D sj S-D rms start-stop
0 1 10-25 0-1 1-1 0-0

1 1 26-29 0-2 1-1 0-0

2 1 30-42 0-3 1-5 26-27
3 5 28-32 0-5 1-4 26-30

4 4 44-51 1-7 1-1 0-0

5 4 31-43 2-4 1-4 43-43
6 3 50-65 3-4 5-4 33-36

7 1 68-74 4-7 4-1 52-53

5-4 4-4 0-0
5-6 4-3 44-49

6-7 3-1 66-67

Table 3. Sample solution timetable

is replaced by another RMS in the candidate RMS set. It is noted that the probability of having
a mutation with a child is low, ranging approximately from 0.5% to 1%. The final result is
presented in Figure 7c.

3 4 5 3

2 3 3 4

Crossover point

Mutation point

(a)

(b)

(c)

2 1 2 6

4 2 5 6

3 4 3 42 1 2 6

2 3 5 34 2 5 6

3 4 3 42 1 2 6

2 3 5 14 2 5 6

Fig. 7. Standard GA operations

4.2 Elimination of the standard GA

We did several experiments with n-GA and the initial result was not satisfactory. The
algorithm has long runtime and presents low quality solutions. We believe that the reason

15w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

14 Will-be-set-by-IN-TECH

for this is located in we do the crossover and mutation operations. In particular, we do not
carefully consider the critical path of the workflow. The runtime of the workflow depends
mainly on the execution time of the critical path. With a defined solution and timetable, the
critical path of a workflow is defined with the algorithm as described in Algorithm 4.

Algorithm 4 Determining critical path algorithm

1: Let C is the set of sub-jobs in the critical path
2: Put last sub-job into C
3: next_subjob=last sub-job
4: repeat
5: prev_subjob is determined as the sub-job having latest finished data output transfer to

next_subjob
6: Put prev_subjob into C
7: next_sj = prev_subjob
8: until prev_sj= first sub-job

We start with the last sub-job determined. The next sub-job of the critical path will have the
latest finish data transfer to the previously determined sub-job. The process continues until
the next sub-job becomes the first sub-job.

The purpose of the crossover operation in the n-GA algorithm is creating new solutions in the
hope that they are superior to the old one. In the crossover phase of the GA algorithm, when

the sub-jobs of the critical path are not moved to other RMSs, the old critical path will have
very low probability of being shortened. Thus, the overall makespan of the workflow has a
low probability of improvement.

The primary purpose of the mutation operation is to maintain genetic diversity from one
generation of a population of chromosomes to the next. In particular, it allows the algorithm to
avoid local minima by preventing the population of chromosomes from becoming too similar
to each other. When the sub-jobs of the critical path are not moved to other RMSs, the old
critical path will have very low probability of being changed. Thus, the mutation operation
does not have as good effect as it should have.

With the standard GA algorithm, it is always possible that the above situation happens and
thus creates a long convergent process. We can see an example scenario in Figure 7. Assume
that we select a parent as presented in Figure 7a. Using the procedure in Algorithm 4, we
know the critical path of each solution which is marked by colour boxes. After the crossover
and mutation operation as described in Figure 7b, 7c, the old critical path remains the same.

To overcome this elimination, we propose an algorithm called the w-GA algorithm.

4.3 w-GA algorithm

The framework of the w-GA algorithm is similar to the n-GA algorithm. We focus on the
crossover and mutation operations. Assume that we selected a parent such as in Figure 7(a),
the following steps will be taken.

Step 1: Determine the critical path of each solution. The procedure to determine this is
described in Algorithm 4. In each solution of our example, the sub-jobs joined with the critical

16 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 15

path are marked with color. The sub-jobs joined with the critical path in solution 1 include 0,
2, 4, 7. The sub-jobs joined the critical path in solution 2 include 0, 3, 4, 7.

Step 2: Form the critical set. The critical set includes sub-jobs have appeared in both critical
paths. With our example, the critical set includes sub-jobs 0, 2, 3, 4, 7.

Step 3: Create derived configurations. The derived configuration is extracted from the old

one by getting only sub-jobs which have appeared in the critical set. After this step, the two
new configurations of the example are presented in Figure 8.

2 3 1 4 2 5 3 6

4 2 3 2 5 3 4 6

(1)

(2)

2 1 4 2 6

sj0 sj2 sj3 sj4 sj7

4 3 2 5 6

Fig. 8. The new derived configurations

Step 4: Exchange assignment if there is improvement signal. A couple (si : rj|si ∈ S, rj ∈ Ki)
is called an assignment. Assume that (s1i : rj) is an assignment of the derived configuration 1,
and (s2i : rk) is an assignment of the derived configuration 2. If we change (s1i : rj) to (s1i : rk)
and the finished time of the data transfer from the sub-job s1i to the next sub-job in the critical
path is decreased, we say that the improvement signal appears. Without the improvement
signal, the critical path cannot be shortened and the makespan cannot be improved. The
algorithm for doing the exchange assignment is presented in Algorithm 5.

Algorithm 5 Exchange assignment algorithm

1: imp_signal ← 0
2: for each sub-job si in the critical set do
3: (s1i : rj) change to (s1i : rk)
4: if has improving signal then
5: imp_signal ← 1
6: else
7: (s1i : rk) change to (s1i : rj)
8: end if
9: (s2i : rk) change to (s2i : rj)

10: if has improving signal then
11: imp_signal ← 1
12: else
13: (s1i : rj) change to (s1i : rk)
14: end if
15: end for

With each sub-job, we exchange the RMS between two configurations. If the exchange
indicates an improvement signal, we keep the change. Otherwise, we return to the old
assignment.

17w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

16 Will-be-set-by-IN-TECH

If there are some changes in either of the two configurations, we move to step 5. If there is no
change, we move to step 4. In our example, the possible changes could be presented in Figure
9.

2 1 4 2 6

sj0 sj2 sj3 sj4 sj7

4 3 2 5 6

(1)

(2)

2 3 4 5 6

2 3 2 2 6

Fig. 9. Derived configurations after exchanging

Step 5: Do crossover. When there is no change with step 4 we do a normal crossover with the
two derived configurations. This procedure is presented in Figure 10.

2 1 4 2 6

sj0 sj2 sj3 sj4 sj7

4 3 2 5 6

(1)

(2)

Crossover point

2 1 2 5 6

4 3 4 2 6

Fig. 10. Normal crossover operations

Step 6: Do mutation. The mutation is done on the derived configuration with no successful
change. With each selected configuration, the mutation point is chosen randomly. At the
mutation point, rj of si is replaced by another RMS in the candidate RMS set. Like the normal
GA algorithm, the probability to do mutation with a configuration is small. We choose a
random selection because the main purpose of mutation is to maintain genetic diversity from
one generation of a population of chromosomes to the next. If we also use mutation to
improve the quality of the configuration, the operation mutation needs a lot of time. Our
initial experiment shows that the algorithm cannot find a good solution within the allowable
period.

Step 7: Reform the configuration. We return the derived configurations to the original
configurations to have the new configurations. With our example, assume that step 4 is
successful so we have two new derived configurations as in Figure 9. The new configurations
are presented in Figure 11.

5. w-GA performance and discussion

The goal of the experiment is to measure the feasibility of the solution, its makespan and
the time needed for the computation. The environment used for the experiments is rather
standard and simple (Intel Duo 2,8Ghz, 1GB RAM, Linux FC5).

To do the experiment, we generated 18 different workflows which:

• Have different topologies.

18 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 17

2 3 3 4 5 5 3 6

2 2 3 2 2 3 4 6

(1)

(2)

Fig. 11. Newly created configurations

• Have a different number of sub-jobs with the number of sub-jobs being in the range from

7 to 32.

• Have different sub-job specifications. Without loss of generality, we assume that each
sub-job has the same CPU performance requirement.

• Have different amounts of data transfer.

The runtime of each sub-job in each type of RMS is assigned by using Formula 4.

rtj =
rti

pki+(pk j−pki)∗k
pki

(4)

With pki, pkj is the performance of a CPU in RMS ri, rj respectively and rti is the estimated
runtime of the sub-job with the resource configuration of RMS ri. k is the speed up control
factor. Within the performance experiment, in each workflow, 60% of the number of sub-jobs
have k = 0.5, 30% of the number of sub-jobs have k = 0.25, and 10% of the number of sub-jobs
have k = 0.

The complexity of the workflow depends on the number of sub-job in the workflow. In the
experiment, we stop at 32 sub-jobs for a workflow because it is much greater than the size of
the recognized workflows. As far as we know, with our model of parallel task sub-job, most
existing scientific workflows as described by Ludtke et al. Ludtke et al. (1999), Berriman et al.
Berriman et al. (2003) and Lovas et al. Lovas et al. (2004) include just 10 to 20 sub-jobs.

As the difference in the static factors of an RMS such as OS, CPU speed and so on can be easily
filtered by SQL query, we use 20 RMSs with the resource configuration equal to or even better
than the requirement of sub-jobs. Those RMSs have already had some initial workload in
their resource reservation and bandwidth reservation profiles. In the experiment, 30% of the
number of RMS have CPU performance equals to the requirement, 60% of the number of RMS
have CPU performance which is 100% more powerful than requirement, 10% of the number
of RMS have CPU performance which is 200% more powerful than requirement.

We created 20 RMSs in the experiment because it closely parallels the real situation in Grid
Computing. In theory, the number of sites joining a Grid can be very large. However, in reality,
this number is not so great. The number of sites providing commercial service is even smaller.
For example, the Distributed European Infrastructure for Supercomputing Applications
(DEISA) has only 11 sites. More details about the description of resource configurations and
workload configurations can be seen at the address: http://it.i-u.de/schools/altmann/
DangMinh/desc_expe2.txt.

19w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

18 Will-be-set-by-IN-TECH

Sjs 0 100 200 400 600 800 1000
Simple level experiment

7 56 52 52 52 52 52 52

8 187 55 55 55 55 55 55
9 93 71 64 64 64 64 64

10 81 56 56 56 56 56 56

11 229 65 65 65 65 65 65
12 88 88 88 88 88 88 88

13 149 52 52 52 52 52 52

Intermediate level experiment
14 218 149 149 149 149 115 115

15 243 185 185 185 185 185 185

16 196 180 180 180 180 180 170
17 73 49 49 49 49 49 49

18 269 207 144 144 144 144 144
19 216 87 87 86 86 86 86

20 248 151 151 151 151 151 151

Advance level experiment
21 76 37 37 37 37 37 37

25 289 262 217 217 214 205 204

28 276 229 201 76 76 76 76
32 250 250 250 250 250 205 205

Table 4. w-GA convergent experiment results

5.1 Time to convergence

To study the convergence of the w-GA algorithm, we do three levels of experiments according
to the size of the workflow. At each level, we use the w-GA to map workflows to the RMSs.
The maximum number of generations is 1000. The best found makespan is recorded at 0, 100,
200, 400, 600, 800 and 1000 generations. The result is presented in Table 4.

From the data in the Table 4, we see a trend that the w-GA algorithm needs more generations
to convergence when the size of the workflow increases.

At the simple level experiment, we map workflow having from 7 to 13 sub-jobs to the RMSs.
From this data, we can see that the w-GA converges to the same value after fewer than 200
generations in most case.

At the intermediate level of the experiment where we map a workflow having from 14 to 20
sub-jobs to the RMSs, the situation is slightly different than the simple level. In addition
to many cases showing that the w-GA converges to the same value after fewer than 200
generations, there are some cases where the algorithm found a better solution after 600 or
800 generations.

When the size of the workflow increases from 21 to 32 sub-jobs as in the advanced level
experiment, converging after fewer than 200 generations happens in only one case. In other
cases, the w-GA needs from 400 to more than 800 generations.

20 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 19

5.2 Performance comparison

We have not noticed a similar resource model or workflow model as stated in Section

2. To do the performance evaluation, in the previous work we implemented the w-DCP,
Grasp, minmin, maxmin, and suffer algorithms to our problem Quan (2007). The extensive
experiment result is shown in Figure 12.

Fig. 12. Overall performance comparison among w-Tabu and other algorithms
Quan (2007)

The experiment result in Figure 12 shows that the w-Tabu algorithm has the highest
performance. For that reason, we only need to consider the w-Tabu algorithm in this work.
To compare the performance of the w-GA algorithm with other algorithms, we map 18
workflows to RMSs using the w-GA, the w-Tabu, and the n-GA algorithms. Similar to the
experiment studying the convergence of the w-GA algorithm, this experiment is also divided
into three levels according to the size of the workflow. With the n-GA algorithm, we run it with

1000 generations. With w-GA algorithm, we run it with 120 generations and 1000 generations
and thus we have the w-GA1000 algorithm and the w-GA120 algorithm respectively. The
purpose of running the w-GA at 1000 generations is for theoretical purpose. We want to
see the limit performance of w-GA and n-GA within a long enough period. Thus, with
the theoretical aspect, we compare the performance of the w-GA1000, the w-Tabu and the
n-GA1000 algorithms. The purpose of running w-GA at 120 generations is for practical
purposes. We want to compare the performance of the w-Tabu algorithm and the w-GA
algorithm in the same runtime. With each mapping instance, the makespan of the solution
and the runtime of the algorithm are recorded. The experiment results are presented in Table
5.

In three levels of the experiments, we can see the domination of the w-GA1000 algorithm.
In the whole experiment, w-GA1000 found 14 better and 3 worse solutions than did the
n-GA1000 algorithm and the w-Tabu algorithm. The overall performance comparison in
average relative value is presented in Figure 13. From this Figure, we can see that the
w-GA1000 is about 21% better than the w-Tabu and the n-GA1000 algorithms. The data in the
Table 5 and Figure 13 also show an equal performance between the w-Tabu and the n-GA1000
algorithms.

21w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

20 Will-be-set-by-IN-TECH

w-GA 1000 w-GA 120 w-Tabu n.GA 1000
Sjs Mksp Rt Mksp Rt Mksp Rt Mksp Rt

Simple level experiment

7 52 20 52 2 56 2 67 19
8 55 25 55 3 144 2 67 23

9 64 29 71 3 79 1 79 24

10 56 31 56 4 81 3 94 27
11 65 39 65 4 102 4 160 37

12 88 45 88 5 58 2 62 39

13 52 48 52 5 54 3 65 44
Intermediate level experiment

14 115 40 149 4 154 3 128 37

15 185 43 185 5 81 4 85 40
16 170 47 180 5 195 3 195 44

17 49 54 49 6 54 4 63 49
18 144 52 207 5 171 5 144 48

19 86 51 87 5 201 5 150 47

20 151 60 151 6 193 4 205 57
Advance level experiment

21 37 74 37 8 37 7 47 70

25 204 59 262 6 195 8 195 55
28 76 108 229 11 86 7 105 105

32 205 111 250 12 250 10 239 106

Table 5. Performance comparison among w-GA and other algorithms

Fig. 13. Overall performance comparison among w-GA and other algorithms

22 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 21

With the runtime aspect, the runtime of the w-GA1000 algorithm is slightly greater than the
n-GA1000 algorithm because the w-GA is more complicated than the n-GA. However, the
runtime of both the w-GA1000 and the n-GA1000 are much, much longer when compare to
the runtime of w-Tabu algorithm. On average, the runtime of the w-GA1000 and the n-GA1000
are 10 times longer than the runtime of the w-Tabu algorithm.

The long runtime of the w-GA1000 and the n-GA1000 is the great disadvantage for them to be
employed in the real environment. In practice, thought, the broker scheduling a workflow
for 1 or 2 minutes is not acceptable. As the w-Tabu algorithm needs only from 1 to 10
seconds, we run the w-GA algorithm at 120 generations so it has relatively the same runtime
as w-Tabu algorithm. As the n-GA algorithm does not have a good performance even at 1000
generations, we will not consider it within the practical framework. In particular, we focus on
comparing the performance of the w-GA120 and the w-Tabu algorithm.

From the data in Table 5, we see a trend that the w-GA120 decreases its performance compared
to the w-Tabu when the size of the workflow increases.

At the simple level and intermediate level of the experiment, the quality of the w-GA120 is
better than the quality of the w-Tabu algorithm. The w-GA algorithm found 3 worse solutions
and 11 better solutions than the w-Tabu algorithm.

However, at the advance level experiment, the quality of the w-GA120 is not acceptable.
Apart from one equal solution, the w-GA120 found more worse solutions than the w-Tabu
algorithm. This is because of the large search space. With a small number of generations, the
w-GA cannot find high quality solutions.

6. The combined algorithm

From the experiment results of the w-GA120 and w-Tabu algorithms, we have noted the
following observations.

• The w-Tabu algorithm has runtime from 1 to 10 seconds and this range is generally
acceptable. Thus, the mapping algorithm could make use of the maximum value of

allowed time period, i.e 10 seconds in this case, to find the highest possible quality solution.

• Both the w-GA and the w-Tabu found solutions with great differing quality in some cases.
This means in some case the w-GA found a very high quality solution but the w-Tabu
found very low quality solutions and vice versa.

• When the size of the workflow is very big and the runtime of the w-GA and the w-Tabu
to find out solution also reaches the limit, the quality of the w-GA120 is not as good as the
w-Tabu algorithm.

From these observations, we propose an other algorithm combining the w-GA120 and the
w-Tabu algorithm. The new algorithm called w-TG is presented in Algorithm 6.

From the experiment data in Table 5, the runtime of the w-TG algorithm is from 4 to 10
seconds. We run the w-GA with 120 generations in all cases for two reasons.

• If the size of the workflow is large, increasing the number of generations will significantly
increase the runtime of the algorithm. Thus, this runtime may exceed the acceptable range.

23w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

22 Will-be-set-by-IN-TECH

Algorithm 6 w-TG algorithm

1: if the size of the workflow <= 20 then
2: Call w-GA120 to find solution a1
3: Call w-Tabu to find solution a2
4: a” ← better(a1, a2)
5: else
6: Call w-Tabu to find solution a"
7: end if
8: return a"

• If the size of the workflow is small, the algorithm has high probability of convergence
within a small number of generations. The data in Table 4 also supports this idea.

To examine the performance of the w-TG algorithm, we do an extensive experiment in order
to make a comparison with the w-GA and the w-Tabu algorithm. For this experiment, we keep
the topology of 18 workflows as in the experiment in Section 4 but change the configuration
of sub-jobs in each workflow. With each topology we created 5 different workflows. Thus, we
have a total 90 different workflows.

Those workflows are mapped to the RMSs using the w-GA, the w-Tabu and the w-TG
algorithms. The makespan of the solution and the runtime of the algorithm are then recorded.
From the experiment data, the runtime of all algorithms is from 1 to 12 seconds. The average
performance of each algorithm is presented in Figure 14 and Figure 15.

Fig. 14. Performance comparison when the size of each workflow less than or equal to 20

Figure 14 presents the comparison of the average makespan in relative value when all the
workflows in the experiment have the number of sub-job less than or equal to 20. We want

to see the performance of the equal combination part of the w-TG algorithm. As can be seen
from Figure 14, the w-TG algorithm has the highest performance. The w-TG algorithm found
solutions 11% better than the w-Tabu algorithm and 12% better than the w-GA120 algorithm.

24 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 23

Fig. 15. Performance comparison when the size of each workflow less than or equal to 32

We make the average comparison with all 90 workflows, and the overall result of this is
presented in Figure 15. As with the workflow having the number of sub-jobs more than 20,
the quality of the w-TG algorithm is equal to the quality of the w-Tabu algorithm. Thus the
better rate of the w-TG compared to the w-Tabu is reduced by about 9%. In contrast, as the
quality of the w-GA algorithm is not as good with a workflow having the number of sub-jobs
more than 20. Thus the worse rate of the w-GA algorithm compared to the w-TG algorithm is
an increase to 17%.

We can also see that the performance of the w-GA120 compared to the w-Tabu in this
experiment is not as high as in the experiment of Section 5.2. This means that the performance
of the w-GA120 fluctuates with different scenarios. However, in any case, the combined
algorithm still has good performance.

7. Conclusion

In this book chapter we presented the modified Genetic Algorithm and its combination
with the w-Tabu algorithm to form a new algorithm called w-TG to solve the problem of
optimizing runtime of the Grid-based workflows within the SLA context. In our work, the
distinguishing characteristic is that each sub-job of a workflow can be either a sequential or
parallel program. In addition, each grid service can handle many sub-jobs at a time and
its resources are reserved. The w-Tabu algorithm creates a set of referent solutions, which
distribute widely over the search space, and then searches around those points to find the

local minimal solution. We proposed a special genetic algorithm to map workflow to the Grid
resources called w-GA. In the w-GA algorithm, we applied many dedicated techniques for
workflow within the crossover and mutation operations in order to improve the searching
quality. The experiment showed that both the w-GA and the w-Tabu found solutions with
great differing quality in some cases. When the size of the workflow is very big and the
runtime of the w-GA and the w-Tabu to find out solution also reaches the limit, the quality
of the w-GA is not as good as the w-Tabu algorithm. The combined algorithm can fix the
disadvantage of the individual algorithms. Our performance evaluation showed that the
combined algorithm created solution of equal or better quality than the previous algorithm

25w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

24 Will-be-set-by-IN-TECH

and requires the same range of computation time period. The latter is a decisive factor for the
applicability of the proposed method in real environments.

8. References

Adam, T. L., Chandy, K. M. and Dickson, J. R., 1974, A comparison of list scheduling for
parallel processing systems. Communication of the ACM, 17, 685-690.

Ayyub, S. and Abramson, D. (2007) ’GridRod - A Service Oriented Dynamic Runtime
Scheduler for Grid Workflows’. Proceedings of the 21st ACM International Conference
on Supercomputing, pp. 43-52.

Berman et al. 2005 ’New Grid Scheduling and Rescheduling Methods in the GrADS Project’,
International Journal of Parallel Programming, Vol. 33, pp.209-229.

Berriman, G. B., Good, J. C., Laity, A. C. (2003) ’Montage: a Grid Enabled Image Mosaic Service
for the National Virtual Observatory’, ADASS, Vol. 13, pp.145-167.

P. E. Black, "Algorithms and Theory of Computation Handbook", CRC Press LLC, 1999.
Blythe et al. 2005 ’Task Scheduling Strategies for Workflow-based Applications in Grids’,

Proceeding of the IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2005), pp.759-767.

Casanova, H., Legrand, A., Zagorodnov, D. and Berman, F. 2000 ’Heuristics for
Scheduling Parameter Sweep applications in Grid environments’, Proceeding of the
9th HeterogeneousComputing workshop (HCW’2000), pp.292–300.

Coffman, E. G., 1976, Computer and Job-Shop Scheduling Theory. John Wiley and Sons, Inc.,
New York, NY.

Colin, J. Y. and Chretienne, P., 1991, Scheduling with small computation delays and task
duplication. Operation Research, 39, 680-684.

CondorVersion 6.4.7 Manual. www.cs.wisc.edu/condor/manual/v6.4 [10 December 2004].
Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K. and Livny,

M. (2004) ’Pegasus : Mapping Scientific Workflows onto the Grid’, Proceedings of the
2nd European Across Grids Conference, pp.11-20.

Duan, R., Prodan, R., Fahringer, T. (2006) ’Run-time Optimization for Grid Workflow
Applications’, Proceedings of the 7th IEEE/ACM International Conference on Grid
Computing (Grid’06), pp. 33-40.

Elmagarmid, A.K. (1992) Database Transaction Models for Advanced Applications, Morgan
Kaufmann.

Gary, M. R. and Johnson, D. S., 1979, Computers and Intractability: A Guide to the theory of
NP-Completeness. W. H. Freeman and Co.

Georgakopoulos, D., Hornick, M., and Sheth, A. (1995) ’An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure’,
Distributed and Parallel Databases, Vol. 3, No. 2, pp.119-153.

Gerasoulis, A. and Yang, T., 1992, A comparison of clustering heuristics for scheduling DAG’s
on multiprocessors. J. Parallel and Distributed Computing, 16, 276-291.

Hou, E. S. H., Ansari, N., and Ren, H., 1994, A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems, 5, 113-120.

Hovestadt, M. (2003) ’Scheduling in HPC Resource Management Systems:Queuing vs.
Planning’, Proceedings of the 9th Workshop on JSSPP at GGF8, LNCS, pp.1-20.

26 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

w-TG: a Combined Algorithm to Optimize the Runtime of the Grid-Based Workflow Within an SLA Context 25

Hsu, M. (ed.) (1993) Special Issue on Workflow and Extended Transaction Systems, IEEE Data
Engineering, Vol. 16, No. 2.

Kohler, W. H. and Steiglitz, K., 1974, Characterization and theoretical comparison of
branch-and-bound algorithms for permutation problems. Journal of ACM, 21, 140-156.

Kruatrachue, B. and Lewis, T. G., 1987, Duplication Scheduling Heuristics (DSH): A New
Precedence Task Scheduler for Parallel Processor Systems. Oregon State University,
Corvallis, OR.

Kruatrachue , B., and Lewis, T., 1988, Grain size determination for parallel processing. IEEE
Software, 5, 23-32.

Kwok Y. K. and Ahmad, I., 1999, Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR), 31, 406-471.

Lovas, R., Dózsa, G., Kacsuk, P., Podhorszki, N., Drótos, D. (2004) ’Workflow Support for
Complex Grid Applications: Integrated and Portal Solutions’, Proceedings of 2nd
European Across Grids Conference, pp.129-138.

Ludtke, S., Baldwin, P. and Chiu, W. (1999) ’EMAN: Semiautomated Software for

High-Resolution Single-Particle Reconstructio’ , Journal of Structure Biology, Vol. 128,
pp. 146–157.

Ma, T. and Buyya, R. 2005 ’Critical-Path and Priority based Algorithms for Scheduling
Workflows with Parameter Sweep Tasks on Global Grids’, Proceeding of the 17th
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD 2005), IEEE CS Press, pp.251-258.

Mello, R. F., Filho J. A. A., Senger, L. J., Yang, L. T. (2007) ’RouteGA: A Grid Load Balancing
Algorithm with Genetic Support’, Proceedings of the 21st International Conference on
Advanced Networking and Applications, (AINA 2007), IEEE CS Press, pp.885-892.

Quan, D.M., Kao, O. (2005) ’On Architecture for an SLA-aware Job Flows in Grid
Environments’, Journal of Interconnection Networks, Vol. 6, No. 3, pp.245-264.

Quan, D.M., Hsu, D. F. (2006) ’Network based resource allocation within SLA context’,
Proceedings of the GCC2006, pp. 274-280.

Quan, D.M., Altmann, J. (2007) ’Business Model and the Policy of Mapping Light
Communication Grid-Based Workflow Within the SLA Context’, Proceedings of the
International Conference of High Performance Computing and Communication (HPCC07),

pp.285-295.
Quan, D.M. (2007) ’Error recovery mechanism for grid-based workflow within SLA context’,

Int. J. High Performance Computing and Networking, Vol. 5, No. 1/2, pp.110-121.
Quan, D.M., Altmann, J. (2007) ’Mapping of SLA-based Workflows with light Communication

onto Grid Resources’, Proceedings of the 4th International Conference on Grid Service
Engineering and Management (GSEM 2007), pp.135-145

Quan, D.M., Altmann, J. (2007) ’Mapping a group of jobs in the error recovery of the
Grid-based workflow within SLA context’, Proceedings of the 21st International
Conference on Advanced Networking and Applications, (AINA 2007), IEEE CS Press,
pp.986-993.

Rewini , H. E. and Lewis, T. G., 1990, Scheduling parallel program tasks onto arbitrary target
machines. Journal of Parallel and Distributed Computing, 9, 138-153.

Shahid, A., Muhammed, S. T. and Sadiq, M., 1994, GSA: scheduling and allocation
using genetic algorithm. Paper presented at the Conference on European Design
Automation, Paris, France, 19-23 September.

27w-TG: A Combined Algorithm to Optimize the Runtime
of the Grid-Based Workflow Within an SLA Context

www.intechopen.com

26 Will-be-set-by-IN-TECH

Sahai, A., Graupner, S., Machiraju, V. and Moorsel, A. 2003 ’Specifying and Monitoring
Guarantees in Commercial Grids through SLA’, Proceeding of the 3rd IEEE/ACM
CCGrid2003, pp.292–300.

Sarkar, V., 1989, Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT
Press, Cambridge, MA.

Sih, G. C., and Lee, E. A., 1993, Declustering: a new multiprocessor scheduling technique.
IEEE Transactions on Parallel and Distributed Systems, 4, 625-637.

Singh, M. P. and Vouk, M. A. (1997) Scientific Workflows: Scientific Computing
Meets Transactional Workflows, http://www.csc.ncsu.edu/faculty/mpsingh/
papers/databases/workflows/sciworkflows.html

Spooner, D. P., Jarvis, S. A., Cao, J., Saini, S. and Nudd, G. R. (2003) ’Local Grid Scheduling
Techniques Using Performance Prediction’, ⁀IEEE Proceedings - Computers and
Digital Techniques, pp.87–96.

Yu, J., Buyya R. (2005) ’A taxonomy of scientific workflow systems for grid computing’,
SIGMOD Record, Vol. 34, No. 3, pp.44-49.

Fischer, L. Workflow Handbook 2004, Future Strategies Inc., Lighthouse Point, FL, USA.
Wolski, R. (2003) ’Experiences with Predicting Resource Performance On-line in

Computational Grid Settings’, ACM SIGMETRICS Performance Evaluation Review, Vol.
30, No. 4, pp.41-49.

28 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dang Minh Quan, Joern Altmann and Laurence T. Yang (2012). w-TG: A Combined Algorithm to Optimize the

Runtime of the Grid-Based Workflow Within an SLA Context, Grid Computing - Technology and Applications,

Widespread Coverage and New Horizons, Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3, InTech, Available

from: http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-

and-new-horizons/w-tg-a-combined-algorithm-to-optimize-the-runtime-of-the-grid-based-workflow-within-an-

sla-context

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

