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1. Introduction 

Duchenne muscular dystrophy (DMD) is caused by the absence of functional dystrophin 
(Blake et al. 2002). Dystrophin is a cytoskeleton protein normally expressed in the inner face 
of the plasma membrane (Ahn and Kunkel 1993). In normal skeletal muscle, dystrophin is 
associated with a complex of glycoproteins known as dystrophin-associated proteins 
(DAPs), providing a linkage between the extracellular matrix (ECM) and cytoskeleton 
(Batchelor and Winder 2006). Lack of dystrophin in dystrophic muscle results in loss of the 
complex integrity and allegedly impairs the stability of the plasma membrane causing 
mechanical stress fragility, and an increase in Ca2+ permeability (Alderton and Steinhardt 
2000). But the pathophysiology of muscular dystrophy is not only explained by this 
increased mechanical fragility and a role for dystrophin and DAPs has been suggested as 
being part of a protein signaling complex involved in cell survival (Rando 2001). In this 
chapter we discuss evidence of such a role, which may evidence possible interactions 
between dystrophin and proteins other than those involved in DAP and possible cell 
location of dystrophin in regions other than the sarcolemma cytoskeleton. 

2. Calcium homeostasis 

Ca2+ is a highly versatile second messenger that can regulate several cellular functions. 
Skeletal muscles use Ca2+ for contraction process and as regulatory signaling molecule. 
Subsequently, muscle plasticity is closely related with calcium signals (Berchtold et al. 2000).  

Under resting conditions, wild type (wt) skeletal muscle cells maintain the cytosolic calcium 

concentration ([Ca2+]i) around 100-120 nM (Lopez et al. 1987; Eltit et al. 2010). Since the 

chemical gradient between [Ca2+]i and extracellular medium or sarcoplasmic reticulum (SR) is 

about 10,000 fold, to constantly keep the [Ca2+]i in the nM range, skeletal muscle cells uses a 

complex machinery to finely regulate calcium concentration. Plasma membrane Ca2+-ATPase 

(PMCA), Na+/Ca2+ exchanger (NCX) in the plasma membrane and the SR Ca2+-ATPase 

(SERCA) extrudes the Ca2+ to extracellular space or to SR, respectively. These functions are 

opposed, under resting conditions, for the SR Ca2+ leak type-1 ryanodine receptor (RyR1) 

channels and the basal sarcolemma Ca2+ influx (Eltit et al. 2010). 
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2.1 Altered resting calcium in DMD 

Several reports demonstrate that the [Ca2+]i is elevated in mdx mice and DMD human fibers 
(Lopez et al. 1987; Yeung et al. 2005; Allen et al. 2010). Lopez et al. (1987) have shown that 
the [Ca2+]i in DMD muscle fibers is 370 nM, while in normal muscle fibers was around 100 
nM (Lopez et al. 1987). Similar results were obtained in mdx adult fibers compared with the 
wt counterpart (Yeung et al. 2005; Allen et al. 2010). The authors demonstrated that [Ca2+]i 
was elevated under resting conditions in mdx fibers and when the fibers were exposed to 
stretch-induced damage, [Ca2+]i increased to higher levels, around 700 nM (Yeung et al. 
2005; Allen et al. 2010).  

Increased [Ca2+]i has been related with necrosis through calpain activation and 
mitochondrial permeability transition pore (MPTP) (Turner et al. 1988; Spencer et al. 1995; 
Millay et al. 2008). 

The mechanism that has been proposed for dystrophin function involves a role in 
sarcolemma stabilization, so in muscle fibers that lack this protein, membrane damage 
would be recurrent (Petrof et al. 1993; Mokri and Engel 1998). These evidences suggested the 
hypothesis of Ca2+ leak into the cell through damaged membrane. There are several 
evidences in mdx muscle fibers that relate the calcium entry with the transient receptor 
potential channels (TRPC1) and the store-operated calcium entry (SOCE) mechanism. 
TRPC1-dependent calcium entry is increased in mdx muscle fibers (Vandebrouck et al. 2002; 
Yeung et al. 2005; Gervasio et al. 2008). The blockage of these cationic channels with 
streptomycin or spider venom toxin (GsMTx4) reduced [Ca2+]i and prevented the rise of the 
[Ca2+]i following stretch (eccentric) contractions. This maneuver, partially reduced the 
decline in both the tetanic Ca2+ increase and force (Yeung et al. 2005; Allen et al. 2010). 
Gervasio et al. 2008 showed that TRPC1, caveolin-3 and Src-kinase protein levels are 
increased in mdx muscle (Gervasio et al. 2008). The authors propose that the stretch-induced 
muscle damage and the increase in the [Ca2+]i is produced by the ROS production, activation 
of Src-kinase and TRPC-induced Ca2+ entry. Furthermore, administration of streptomycin 
reduced muscle damage and increased myofiber regeneration (Yeung et al. 2005). 

More recently, store-operated calcium entry has been implicated in the exacerbated resting 
Ca2+ entry observed in mdx fibers (Boittin et al. 2006; Vandebrouck et al. 2006; Edwards et al. 
2010). These Ca2+ entries are modulated by a Ca2+-independent phospholipase A2, which is 
overexpressed in dystrophic fibers (Boittin et al. 2006). Vandebrouck et al. (2005) 
demonstrate that the high store-operated Ca2+ transients observed in dystrophin-deficient 
myotubes were associated with sustained cytosolic Ca2+ transients and high intra-
mitochondrial entries, that can be reduced by mini-dystrophin expression or FCCP 
(uncoupler of oxidative phosphorylation) (Vandebrouck et al. 2006). In addition, the 
thresholds for SOCE activation and deactivation occur at higher [Ca2+]SR and the proteins 
levels of STIM1 and Orai1 was 3-fold increased in extensor digitorum longus (EDL) muscles 
from mdx mice (Edwards et al. 2010). 

2.2 SR Ca
2+

 loading capacity 

There is a controversy about the loading capacity of the SR [Ca2+]SR in dystrophic skeletal 

muscle cells compared with normal skeletal muscle cells. Roberts et al. (2001), using a Ca2+-

sensitive photoprotein aequorin chimera with SR destination sequence, show that after SR 
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Ca2+ depletion, the re-addition of Ca2+ to the media increases the [Ca2+]SR rapidly up to a 

steady state that is 50% higher that the wt myotubes (Robert et al. 2001). In contrast, Culligan 

et al. (2002) shows a reduction in Ca2+ binding in the SR microsomes from mdx mice, 

associated with a drastic reduction in the calsequestrin-like proteins and normal SERCA1 

expression and activity (Culligan et al. 2002). However, a reduction in SERCA activity has 

been observed in dystrophic muscle (Kargacin and Kargacin 1996; Divet et al. 2005), which 

could account for the increased [Ca2+]i. SERCA1a overexpression in mdx diaphragm 

muscle by adeno-associated virus gene transfer, resulted in a reduction of centrally 

located nuclei and reduced susceptibility to eccentric contraction-induced damage 

(Morine et al. 2010). More recently, -sarcoglycan-null and mdx mice transgenic animals 

that overexpress SERCA1, show a reduction in myofiber central nucleation, tissue fibrosis 

and serum creatine kinase levels. In addition SERCA1 overexpression enhances excitation-

contraction (E-C) coupling and restore the [Ca2+]i and [Ca2+]SR in both dystrophic models 

(Goonasekera et al. 2011). 

2.3 Excitation-Contraction (E-C) coupling 

The proteins involved in E-C coupling are normally expressed in dystrophic muscle. The 

expression of 1-, 2- and -subunits of the dihydropyridine receptor (DHPR) are similar in 

microsomes from control and mdx mice (Culligan et al. 2002). RyR1 and SERCA1 are also 

found in comparable amounts in control and dystrophin-deficient muscles (Culligan et al. 

2002).  

In skeletal muscle cells, membrane depolarization induces a conformational change in 

Cav1.1 DHPRs that is transmitted to the ryanodine receptor (RyR1), causing it to release 

Ca2+ from the SR, that it is necessary for the contraction process.  

Several evidences indicate that the dystrophic skeletal muscle cells have an unpaired E-C 

coupling. Comparisons of the cytosolic calcium transients evoked by single action potential 

have shown that the calcium transients are reduced in mdx fibers compared with wt fibers 

(Woods et al. 2004; Hollingworth et al. 2008). Recently, similar results have been found in 

fibers from utr -/- mdx mice (Capote et al. 2010). Muscle weakness observed in isolated fibers 

from mdx mice and DMD patients has not been fully explained. The reduction in the Ca2+ 

transient evoked by single action potential, reduction in [Ca2+]SR and increased [Ca2+]i could 

provide a mechanism for contractile dysfunction and impaired force production in DMD 

patients. 

3. Excitation-Transcription (E-T) coupling 

We have previously described that membrane depolarization of skeletal myotubes evokes a 

fast Ca2+ transient during the stimuli, that promotes a contractile response through “E-C 

coupling”, and a slow Ca2+ transient peaking 60-100 seconds later, mostly associated to cell 

nuclei (Jaimovich et al. 2000; Estrada et al. 2001; Powell et al. 2001; Araya et al. 2003; 

Cardenas et al. 2005). Slow Ca2+ transients are involved in the “E-T coupling” mechanism, 

which relates membrane depolarization with gene expression (Powell et al. 2001; Araya et 

al. 2003; Carrasco et al. 2003; Juretic et al. 2006; Juretic et al. 2007). The signaling pathway 

begins at the DHPR, which by a mechanism involving G protein (Eltit et al. 2006), activates 
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PI3 kinase and PLC to produce inositol 1,4,5-trisphosphate (IP3) that diffuses in the cytosol 

and reaches IP3 receptors (IP3Rs) located both at the SR membrane and at the nuclear 

envelope, promoting Ca2+ release (Araya et al. 2003). IP3 mediated Ca2+ signals induce both 

a transient activation of ERK½ and transcription factor CREB, and an increase in early genes 

(c-fos, c-jun and egr-1) and in late genes (troponin I, interleukin-6, hmox and hsp70) mRNA 

levels after depolarization of normal skeletal muscle cells (Carrasco et al. 2003; Juretic et al. 

2006; Juretic et al. 2007; Jorquera et al. 2009). Moreover, in electrically stimulated adult 

muscle fibers, slow Ca2+ signals mediate the frequency-dependent activation of slow-

phenotype muscle fiber genes (slow troponin I, TnIs) and repression of fast-phenotype ones 

(TnIf) (Casas et al. 2010). These evidences link slow Ca2+ transients with muscular effects of 

nerve activity and with the process of muscle cell plasticity.  

Recently we described a new role for ATP signaling in skeletal muscle in a process called 

“E-T” coupling (Buvinic et al. 2009, see Fig.1). We were able to show that the main ATP 

efflux pathway is through pannexin 1 hemichannels. We know that DHPR receptors and 

pannexin 1 interact with each other but it is not clear whether it is a direct interaction. The 

ATP released will locally activate the purinergic receptors P2X and P2Y localized in the 

membrane. This activation induces a transient increase in intracellular Ca2+ with specific 

kinetics. We demonstrated that ATP participates in the fast calcium transient related to 

contraction because apyrase (catalyses the hydrolysis of ATP) reduced the depolarization-

evoked Ca2+ transient by about 20%. We can speculate that activation of P2X receptors may 

contribute to improve the skeletal muscle cells Ca2+ availability needed to sustain 

contractions. Moreover, we could also show that ATP participates in “E-T” coupling due to 

the total inhibition by apyrase of the second Ca2+ transient induced by depolarization. 

Additionally, the use of apyrase during the electrical stimulation completely abolished the 

increase in gene expression related with muscle plasticity (unpublished data). We can 

conclude that gene expression is regulated through activation of P2Y receptors mediated by 

the ATP released during depolarization. 

3.1 Extracellular ATP: a major mediator for signal transduction  

ATP for a long time was considering as a molecule that was involved with energy and 

metabolism of many cells. Nevertheless in the last few years ATP has been considered as an 

extracellular messenger for autocrine and paracrine signaling (Corriden and Insel 2010). It 

has been described as a regulator of inflammation, in embryonic and stem cell development, 

ischemia, among others (Bours et al. 2006; Burnstock and Ulrich 2011). In skeletal muscle 

ATP has been implicated in the regulation of proliferation, differentiation and regeneration 

(Ryten et al. 2002; Ryten et al. 2004) and also promoting the stabilization of the 

neuromuscular junction (Jia et al. 2007).  

ATP release is induced in response to several kinds of stress in many cells type, including 
hypoxia, ischemia, osmotic swelling and mechanical stimulation (Corriden and Insel 2010). 
ATP can exit cells using several different purinergic signal efflux pathways (Fitz 2007). The 
main source of extracellular ATP is cell lysis, which occurs when massive cell death takes 
place during trauma, injury or inflammation. A non-lytic source of ATP is the release of 
secretory granules during stimulated exocytosis, which occurs in secretory cell types like 
epithelial cells of the liver, lung, kidney, neurons and astrocytes (Volonte and D'Ambrosi 
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2009). A non-lytic, and also non-exocytotic release of ATP can occur by channel- or 
transporter-mediated mechanisms, such as: (a) hemichannels, such as connexins and 
pannexin (Dubyak 2009); (b) anion channels, such as plasmalemma voltage dependent anion 
channel, voltage-dependent maxi-anion channel, volume sensitive Cl- channel and P2X7 
receptor (Sabirov and Okada 2005; Suadicani et al. 2006; Liu et al. 2008); (c) ATP-binding 
cassette transporters, such as cystic fibrosis transmembrane conductance regulator Cl- 
channel and P-glycoprotein (Campbell et al. 2003; Sabirov and Okada 2005); and (d) 
exchange carriers such as ADP/ATP exchange carrier (Sabirov and Okada 2005; Volonte 
and D'Ambrosi 2009). Several studies have recently demonstrated that ATP can be released 
by pannexin hemichannels in a variety of cells types that include myotubes (D'Hondt et al. 
2011). Pannexin is widely distributed among tissues with cell communication via calcium 
waves (Shestopalov and Panchin 2008). The channel formed by this protein can be opened 
by mechanical perturbation at the resting membrane potential. The channel is permeable for 
ATP and it can be opened at physiological calcium concentration (Barbe et al. 2006). These 
properties make pannexin 1 (Panx1) a very attractive candidate for an ATP-releasing 
channel. The widespread distribution of Panx1 has been confirmed in a variety of human 
tissues, with the highest levels being found in skeletal muscle (Baranova et al. 2004). Results 
of our laboratory indicate that this hemichannel is expressed in myotubes and adult fibers of 
rat and mouse.  

Once released, ATP acts as an extracellular signal trough the binding to purinergic receptors 
expressed in most cell types. Purinergic receptors comprise both ionotropic P2X receptor 
subtypes and G-protein-coupled P2Y receptor subtypes (Burnstock 2004). Between the 
purinergic receptors and the purine-generating reactions, there exist purino-converting 
enzymes. These enzymes named ectonucleotidases, consist of several different families with 
well-characterized molecular and functional features (Yegutkin 2008). They operate to 
metabolize nucleotides down to the respective nucleoside analogues, thus having the 
potential to decrease the extracellular concentrations of nucleotides. Consequently these 
enzymes modulate ligand availability at both nucleotide and nucleoside receptors (Yegutkin 
2008). The contribution of the diverse ectonucleotidases to the modulation of purinergic 
signaling depends on their availability of different ectonucleotidases and their selectivity for 
substrates, but also on their abundance and cell distribution (Volonte and D'Ambrosi 2009). 

ATP signaling has been implicated in many cell functions ranging from proliferation, 
differentiation, toxic actions, neurotransmission, smooth and cardiac muscle contraction, 
vasodilation, chemosensory signaling and secretion, to complex phenomena such as 
immune responses, male reproduction, fertilization, embryonic development, and so on 
(Burnstock 2004). This vast heterogeneity of their biological responses is influenced by 
different parameters such as the presence of endogenous ligands at receptor sites and the 
time and distance from the source of release; the concentration gradient of a ligand that 
simultaneously can activate more than one receptor subtype; the different composition of 
purinergic receptors in a given cell, or even more the composition in the diverse sub 
membrane compartments in which each ligand operates (Volonte and D'Ambrosi 2009). 

3.2 Purinergic receptors 

Purinergic receptors are subdivided into two major groups: eight G-protein-coupled seven-
transmembrane P2Y subunits (P2Y1, 2, 4, 6, 11–14), and seven P2X ligand-gated ion channels 
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(P2X1–7). These two types of receptor have larger differences in their aminoacid sequences, 
molecular/physiological properties and relative sensitivities to ATP, with ranges of 
nanomolar for P2Y, low micromolar for most P2X, to high micromolar for P2X7. Moreover 
the complexity of these receptors is augmented because both subtypes can form homomers 
and heteromers and these different combinations can change the agonist and antagonist 
selectivity, transmission signaling, channel and desensitization properties (Nakata et al. 
2004). 

P2X receptors are ATP-gated ion channels that mediate sodium influx, potassium efflux 

and, to varying extents, calcium influx, leading to depolarization of the cell membrane. 

Membrane depolarization subsequently activates voltage-gated calcium channels, thus 

causing accumulation of calcium ions in the cytoplasm. The predicted structure of the P2X 

subunits is a transmembrane protein with two membrane spanning domains that are 

involved in gating the ion channel and lining the ion pore (Surprenant and North 2009). 

Functional P2X receptor ion channels are now thought to consist of three subunits that could 

be homomers and heteromers (North 2002). The different combinations present different 

desensitization and permeability properties, as well as agonist and antagonist specificities. 

P2X receptors are widely distributed, and in neurons, glial cells, bone, muscle, endothelium, 

epithelium, and hematopoietic cells, they have functional roles. Moreover, several studies 

have implicated these receptors in the pathophysiology of Parkinson’s disease, Alzheimer’s 

disease, and multiple sclerosis (Jarvis and Khakh 2009). 

P2Y receptors are G-protein-coupled receptors (GPCRs) that are activated by purine and/or 

pyrimidine nucleotides. Like other members of the GPCR superfamily, they are composed 

of seven transmembrane spanning regions that assist in forming the ligand binding pocket 

and also the purinergic receptor (Abbracchio et al. 2006). Stimulation leads to activation of 

heterotrimeric G proteins and their dissociation into  and  subunits that can then interact 

with a variety of effector proteins. Some of P2Y receptors are activated mainly by nucleoside 

diphosphates (P2Y1,6,12), while others are activated mainly by nucleoside triphosphates 

(P2Y2,4). Otherwise, some P2Y receptors are activated by both purine and pyrimidine 

nucleotides (P2Y2,4,6), and others only by purine nucleotides (P2Y1, 11, 12) (Jacobson et al. 

2009). Each individual P2Y receptor subtypes can couple to distinct G proteins that are 

specific for each cell type or tissue. The abilities to activate different G proteins were 

inferred from their capability to induce increases in inositol tris-phosphate, cytoplasmic 

Ca2+, or cyclic AMP levels, and determination of sensitivity to the Gi/o protein inhibitors 

pertussis toxin (PTX) (Abbracchio et al. 2006). P2Y receptors can also be coupled to the 

activation of monomeric G proteins like Rac and RhoA. Even more, in the last few years 

many studies have revealed that a cross-talk exist between different GPCRs and their 

downstream effectors as well as between GPCRs and other signaling proteins, such as ion 

channels, integrins, and receptor and non-receptor tyrosine kinases (von Kugelgen 2006). 

These properties explain how the activation of particular P2Y receptors can lead to the 

induction of more than one signaling pathway in the same cell type. These receptors are able 

to regulate many different functions in a variety of cell types, and for that reason an intense 

effort has been developed to design selective agonist and antagonist ligands, both as 

pharmacological tools and as potential therapeutic agents (Abbracchio et al. 2003; 

Brunschweiger and Muller 2006). For cystic fibrosis, dry eye disease, and thrombosis the 

application of P2Y receptor ligands has been tested as drug candidates. The development of 
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new chemical compounds will provide new opportunities for therapeutics of several 

diseases, including cardiovascular diseases, inflammatory diseases, and neurodegeneration 

(Jacobson and Boeynaems 2010). 

Between the many functions that P2 receptors can regulate is ion channel activity. The 
studies have been performed mainly in neurons, in which specific P2 subtype can regulate 
the N-type Ca2+ channel and the M-current K+ channel. Nevertheless, recent studies have 
demonstrated that P2 receptors can induce fast inhibitory junction potential in rat colon 
(Grasa et al. 2009), membrane hyperpolarization in vascular endothelial cells (Raqeeb et al. 
2011), Ca2+ influx mediated contraction in intestinal myofibroblasts (Nakamura et al. 2011), 
and contraction induced by electrical field stimulation in smooth muscle (Cho et al. 2010). 
These data suggest that ATP signaling is important in excitable cells for their normal 
function. In skeletal muscle there are many evidences of the importance of ATP signaling. 
The activation of P2 receptors has been associated with modulation of Ca2+ influx and 
signaling (Sandona et al. 2005; May et al. 2006), activation of the ERK½ (May et al. 2006), 
muscle contractility (Sandona et al. 2005; Grishin et al. 2006), and regulation of excitability of 
muscle fibers (Voss 2009; Broch-Lips et al. 2010). Also extracellular nucleotides play 
important functions during skeletal muscle development and regeneration (Ryten et al. 
2002; Ryten et al. 2004). Importantly, it has been shown that ATP promotes differentiation of 
rat skeletal muscle satellite cells (Araya et al. 2004; Banachewicz et al. 2005). 

4. Alterations in both IP3Rs and E-T coupling in DMD models 

We have described that the amount of IP3Rs, as well as the total mass of IP3, are largely 
increased in both an mdx mice derived cell line and in a human DMD derived cell line 
compared to normal cells (Liberona et al. 1998). In dystrophic skeletal muscle, it has been 
suggested that an alteration of Ca2+ homeostasis occurs and might be responsible for muscle 
degeneration (Turner et al. 1988; Turner et al. 1991). Several studies indicate that IP3 
pathways could be involved in the DMD pathophysiology (Liberona et al. 1998; Balghi et al. 
2006a; Balghi et al. 2006b). We recently found that both expression and localization of IP3Rs 
are different in normal and dystrophic human skeletal muscle and cell lines (Cárdenas et al. 
2010). On the other hand, experiments performed using two types of myotubes originated 
from the same Sol8 cell line – dystrophin deficient myotubes, SolC1(-), and myotubes 
transfected to express the minidystrophin, SolD(+) - show that Ca2+ rise evoked by 
potassium depolarization was higher in SolC1(-) than in SolD(+) myotubes (Balghi et al. 
2006a). Analysis of the kinetics of the Ca2+ rise, reveals that the slow IP3-dependent release 
may be increased in the SolC1(-) as compared to the SolD(+), suggesting an inhibitory effect 
of mini-dystrophin on IP3R-dependent K+-evoked Ca2+ release (Balghi et al. 2006a). 
Moreover, it has been described that IP3 production after membrane depolarization is 
significantly elevated in dystrophin-deficient myotubes and that the presence of mini-
dystrophin under the membrane leads to reduced IP3 production (Balghi et al. 2006a). In 
fact, we have recently demonstrated, using normal (RCMH) and dystrophic (RCDMD) 
human skeletal muscle cell lines, that IP3 dependent, slow Ca2+ transients evoked by 
electrical stimulation are faster in dystrophic cells, compared to normal myotubes 
(Cárdenas et al. 2010). Electrical stimulation induced an important phosphorylation of 
ERK½ in normal but not in dystrophic cells, and a differential pattern of gene expression 
between cell lines.  
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In normal adult mice skeletal muscle, we observed that IP3R immuno-labeling follows 

distinctive patters resembling the SR (types 1, 2 and 3 IP3Rs), sarcolemmal (types 1 and 3 

IP3Rs) or nuclear localizations (types 1 and 3 IP3Rs) (Casas et al. 2010). The labeling for both 

type 1 and type 2 IP3Rs subtypes showed a fiber type-specific distribution with much higher 

expression in fast (type II) muscle fibers, whereas type 3 IP3R showed a uniform distribution 

in both fiber types, as shown by co-labeling with slow myosin heavy chain antibody. 

Likewise, mice muscle fibers show a characteristic mosaic pattern for type 1 IP3R (Casas et 

al. 2010). When human muscle was studied, type II muscle fibers showed a much more 

intense labeling for the IP3R subtype 1 compared to type I (slow) fibers. In biopsies from 

DMD patients, we found that 24 ± 7% of type II fibers have totally lost type 1 IP3R labeling, 

compared to age-matched control biopsies (Cárdenas et al. 2010). On the other hand, 

RCDMD cells show a five-fold over expression of type 2 IP3Rs and down regulation of type 

3 IP3Rs compared to normal RCMH cells (Cárdenas et al. 2010). Unlike normal muscle cells, 

type 2 IP3R locate in the nucleus in RCDMD cells, while type 1 and type 3 IP3Rs also display 

a particular subcellular location for each line (Cárdenas et al. 2010). These results showed 

that IP3Rs expression and localization are different in muscle affected by DMD.  

5. Signaling by extracellular nucleotides in dystrophic skeletal muscle 

A number of skeletal muscle pathologies have been associated with alterations in the 

metabolism of extracellular ATP, changes in the sensitivity towards ATP and altered 

expression of purinergic receptors; among these pathologies we have DMD. In recent works, 

ATP signaling has been implicated in abnormal calcium homeostasis in dystrophic muscle 

and proposed to have implications in the pathogenesis of muscular dystrophies. Moreover, 

in myoblasts of a dystrophin negative muscle cell line, exposure to extracellular ATP elicited 

a strong increase in cytoplasmic Ca2+ concentrations. This increased susceptibility to ATP 

was due to changes in expression and function of P2X receptors and proposed to be a 

significant contributor to pathogenic Ca2+ entry in dystrophic mouse muscle (Yeung et al. 

2006). The plasma membrane Na+/H+ exchanger (NHE) has been proposed to be involved 

in the pathogenesis of muscular dystrophy, most probably through the sustained increase in 

intracellular Ca2+. The mechanism by which NHE is constitutive activated appears to be 

through stimulation of P2 receptors with ATP being continuously released in response to 

stretching (Iwata et al. 2007). 

Nevertheless, these works failed to explain the mechanism by which ATP is released from 

skeletal muscle. ATP in skeletal muscle was proposed to be co-released with acetylcholine 

from motor nerve terminals during nerve activation (Smith 1991; Silinsky and Redman 1996) 

and released from muscle fibers during contraction (Cunha and Sebastiao 1993; Hellsten et 

al. 1998). Dystrophic muscle would be expected to contain high levels of extracellular ATP 

due mainly to fiber injury. 

We propose now that in skeletal muscle, ATP is released upon contraction or electrical 

stimulation mainly through activation of pannexin 1 hemichannels. Any disturbance in 

either pannexin 1 channels or changes in P2 receptors expression or activity will have 

implications in skeletal muscle normal function. The possibility that this system is altered in 

muscular dystrophies raises new possibilities of therapeutic strategies in the treatment of 

diseases like DMD. 
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In addition to the structural role for dystrophin and its known associated proteins, there is 
clear evidence for signal transduction roles. The best studied signaling protein linked is the 
nNOS pathway. In DMD nNOS appears to be either drastically reduced or even absent 
(Niebroj-Dobosz and Hausmanowa-Petrusewicz 2005). It has been propose that part of 
muscle degeneration in DMD may result from the reduction in the production of nNOS/NO 
(Niebrój-Dobosz, 2005). Lately many additional signaling pathways have been 
demonstrated to be altered in dystrophy, such as: nuclear factor kappa-B (NF-kB), tumor 
necrosis factor (TNF)-alpha and interleukin (IL)-6 (Messina et al. 2011). The precise role of 
these signaling pathways remains mysterious, it is interesting to investigate whether the 
abnormal regulation of one (or more) of these pathways contributes to skeletal muscle 
pathogenesis in dystrophy. 

To address the different pathways that could be altered in muscular dystrophy, many 
studies have compared gene expression profile between normal and dystrophic muscle 
based on microarray analysis. These analysis have been done in patients with DMD and in 
mdx mice. These studies include different types of muscle and in different times of the 
human disease (Chen et al. 2000) or in different life periods of mdx mice (Porter et al. 2003b; 
Lang et al. 2004; Porter et al. 2004; Dogra et al. 2008). In DMD patients biopsies that were 
individually analyzed, the upregulated genes are related with ECM and cytoskeleton, 
muscle structure and regeneration, immune response, signal transduction and cell-cell 
communication (Chen et al. 2000). In the mouse model there are many gene expression 
studies. The main muscles studied are diaphragm, extraocular muscles and leg muscle 
groups (Porter et al. 2003b; Lang et al. 2004; Dogra et al. 2008). Among the results, it is worth 
mentioning that the response to the lack of dystrophin varies in different muscle groups of 
human and mdx mice, and it was proposed that changes in gene expression could be related 
with the progression of the disease (Porter et al. 2003b; Lang et al. 2004; Porter et al. 2004; 
Dogra et al. 2008). Moreover, some groups studied the profile of gene expression in skeletal 
muscle implicated in specific pathways such as regeneration (Turk et al. 2005), inflammation 
(Evans et al. 2009a), immune system (Evans et al. 2009b) and specific transcription factors 
(Dogra et al. 2008). Also there are some studies that propose that expression of utrophin in 
the mdx mouse muscle results in a gene expression profile that is similar to that seen for the 
wt mouse (Baban and Davies 2008). 

The analysis performed by Porter et al. (2002) established that numerous pathogenic 
pathways in mdx skeletal muscles are closely related and share features with DMD (Porter et 
al. 2002). Among the genes that were increased in mdx muscle is purinergic receptor P2X. 
The P2X4 up regulation in dystrophic muscle has been attributed to vascular permeability 
changes and to inflammatory responses (Porter et al. 2002). Later, Yeung et al. (2004) 
demonstrated that P2X4 were expressed in infiltrating macrophages in dystrophic human 
and mouse muscle, and could be related with the inflammatory process (Yeung et al. 2004). 
Jiang et al. 2005 demonstrated that there is a differential expression of P2X receptors that 
change during the progression of the disease in both human and mouse dystrophic muscle 
(Jiang et al. 2005). They found that the P2X1 and P2X6 receptors are expressed during the 
process of regeneration in mouse muscular dystrophy, and the expression of P2X2 is 
associated with type 1 fibers. Nevertheless, the work of Yeung et al. (2006) demonstrated 
that increase in P2X receptors increased the susceptibility of dystrophic myoblasts to 
extracellular ATP (Yeung et al. 2006). They proposed that changes in P2X will significant 
contribute to pathogenic Ca2+ entry.  
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Moreover, studies of Ryten et al. (2002, 2004) identified a role for ATP in the regulation of 
skeletal muscle formation, through inhibiting the proliferation and increase the rate of 
differentiation of satellite cells (Ryten et al. 2002; Ryten et al. 2004) Later, they show that the 
P2X2, P2X5  and P2Y1 receptors were strongly expressed in mdx skeletal muscle and in the 
cells known to be important for muscle regeneration. 

As previously described, P2 receptors have been implicated in the alteration on intracellular 

calcium. This could also be releated with some of the signaling pathways that are dependent 

on calcium homeostasis, like the activation of proteases. It has been demonstrated that 

changes in intracellular calcium can activate calpain and proteolytic damage to sarcomer 

proteins, like titin (Goll et al. 2003; Zhang et al. 2008). 

The original sarcoglycan (SG) complex has four subunits and comprises a subcomplex of the 

dystrophin-associated protein complex (Hack et al. 2000). Gene defects in -sarcoglycan also 
lead to a severe muscular dystrophy, type 2D limb-girdle muscular dystrophy (Roberds et 
al. 1994). The role of sarcoglycans in dystrophin complex function is not entirely 

understood. The -sarcoglycan was described as an ecto-ATPase with distinctive enzymatic 

properties in vitro (Betto et al. 1999). Later on, -sarcoglycan was demonstrated to 
significantly contribute to total ecto-nucleotidase activity of C2C12 myotubes and during the 

differentiation of this cell type (Sandona et al. 2004). As a result, mutations of the -
sarcoglycan gene causing the loss of its enzymatic function could represent an important 
mechanism to explain the pathogenesis mechanisms leading to dystrophy. 

Taken these studies together, we can conclude that modifications in ATP signaling, due to 

changes in ATP release mechanism or receptors expression and availability, could be 

implicated in several mechanisms potentially involved in diseases. For these reasons ATP 

signaling has been considered as a good candidate for therapeutic targets for the treatment 

of muscle diseases 

6. Gene expression in DMD 

Microarrays analysis has been the basis of a number of publications in which dystrophic 
muscle is compared with unaffected muscle. Gene expression comparison of human 
biopsies from DMD and normal skeletal muscle has shown that many of the differentially 
expressed genes reflect in histo-pathology changes. For example, immune response signals 
and ECM genes are overexpressed in DMD muscle, an indication of the infiltration of 
inflammatory cells and connective tissue (Haslett et al. 2002). cDNA analysis of individual 
DMD patients have shown that genes related to immune response, sarcomere, ECM and 
signaling/cell growth were increased. Up-regulation of these genes accompanies dystrophic 
changes in DMD muscles such as myofiber necrosis, inflammation and muscle regeneration 
(Noguchi et al. 2003). Up-regulated inflammatory gene expression and activated immune 
cells are present in dystrophic muscle and play a critical role in muscle wasting (Evans et al. 
2009b). The pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 are up-regulated in 
Duchenne patients and mdx mice (Porreca et al. 1999; Porter et al. 2002; Kumar and Boriek 
2003; Acharyya et al. 2007; Hnia et al. 2008). The fact that a number of chemokines are 
expressed directly by the muscle cell suggests that muscle tissue may contribute to 
chemotaxis process (Porter et al. 2003a). Using microarray technology we have shown that 
membrane depolarization induces expression and repression of a number of genes in both 
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normal (RCMH) and DMD (RCDMD) human skeletal muscle cell lines. Importantly, 
modulated genes are mostly different for these two cell lines (Cárdenas et al. 2010). 
Nevertheless, the expression of only 44 of them is modified in both cell lines. The pattern of 
expression (up- or down-regulation) of these common genes is strikingly different between 
cell lines, and they appear to be regulated in opposite ways (Cárdenas et al. 2010). 

Within these 44 genes we identified genes related to the immune response (HLA-DQB1), 
cytoskeleton/ECM proteins (ADD1, KRT1, and FBLN1), and signaling (NRG and POU2F2), 
among others. We found that 18 of these 44 genes are related to processes associated with 
Ca2+, and 10 of them have been related in some way to dystrophy (Cárdenas et al. 2010). 

Within the genes whose expression increases in RCDMD cells, particularly interesting in 
relation to muscle function and development, are those coding for the two isoforms of 

neuregulin (NGR1-2 and NRG1-) and the POU2F2 gene (Cárdenas et al. 2010). NRG1 is a 
growth factor that potentiates myogenesis and may play an important role in differentiation 
of satellite cells in muscle regeneration (Hirata et al. 2007). Moreover, NRG stimulates Ca2+-
induced glucose transport during contraction (Canto et al. 2006) and is implicated in the 
metabolic and proliferative response of muscle to exercise (Lebrasseur et al. 2003). POU2F2 
has been described as a transcription factor expressed in developing mouse skeletal muscle 
(Dominov and Miller 1996). 

In addition, we found variations in the expression of ICEBERG, HLA-DQB1, ADD1, FBLN1 
and TRIO genes that also have been associated with Ca2+ and dystrophy (Cárdenas et al. 
2010). Considering that changes observed in DMD muscle biopsies have been related to 
elevation of intracellular Ca2+ concentration, which could activate Ca2+-dependent 
degradation pathways, resulting in myofibril disruption and muscle necrosis (Turner et al. 
1993). It will be interesting to analyze the roles described for the above mentioned genes. To 
our knowledge, there are no studies describing the role of membrane depolarization on the 
expression of these genes, and further studies are needed to explore the involvement of IP3-
mediated slow Ca2+ signals in the expression of some of these particular genes in skeletal 
muscle cells (Cárdenas et al. 2010). 

Gene expression profiling at different stages in mdx models have also evidenced the highly 
dynamic process of the disease onset. These works, show that dystrophy in mdx models 
have an onset at 3 weeks of age, with a peak in pathology around 8 weeks. Interestingly, at 
this stage, there is a marked upregulation of almost 9 fold of the purinergic receptor P2X4 
(Porter et al. 2003b). 

Although no therapy described to date can effectively slow or halt muscle degeneration in 
dystrophic patients (Kapsa et al. 2003), a promising pharmacological treatment for DMD aims 
to increase levels of utrophin and to identify molecules that modulate utrophin expression 
(regulatory pathways) by activation of its promoter (Dennis et al. 1996), in muscle fibers of 
affected patients to compensate for the absence of dystrophin (Miura and Jasmin 2006). 

Indeed, utrophin is considered the autosomal homolog of dystrophin because it shares 
structural and functional motifs throughout the length of the molecule (Love et al. 1989; 
Khurana et al. 1990; Nguyen et al. 1991; Ohlendieck et al. 1991; Tinsley et al. 1992). It is 
capable of associating with members of the DAPs with similar affinity to dystrophin as well 
(Matsumura et al. 1992; Winder et al. 1995). Studies in the dystrophin-deficient mdx mice 
have established that the elevation of utrophin levels in dystrophic muscle fibers can restore 
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sarcolemmal expression of DAPs members and alleviate the dystrophic pathology (Miura 
and Jasmin 2006). Direct evidence for the ability of utrophin to functionally substitute for 
dystrophin comes from experiments demonstrating that transgene-driven utrophin 
overexpression can effectively rescue dystrophin-deficient muscle in mdx mice (Tinsley et al. 
1996; Deconinck et al. 1997; Tinsley et al. 1998).  

6.1 Electrical stimulation induces calcium-dependent up-regulation of neuregulin-1 
in dystrophic skeletal muscle cell lines 

Neuregulin (NRG) is one of many factors that increase utrophin expression (Miura and 
Jasmin 2006). It belongs to a family of proteins structurally related to the epidermal growth 
factor (EGF) that are synthesized in and secreted from motoneurons and muscle (Falls 2003). 
Four members of NRG proteins, NRG-1 to NRG-4, have been identified. The best-studied 
and most characterized products are those encoded by NRG-1 gene. 

Neuregulin-1 (NRG-1) was initially described as a neurotrophic factor involved in 
neuromuscular junction formation in skeletal muscle, but recently it has emerged as a 
myokine, with relevant effects on myogenesis, muscle metabolism and regeneration, and 
has been considered as a strong candidate to transduce muscle adaptation to chronic 
exercise (Lebrasseur et al. 2003; Guma et al. 2010). 

Interestingly, NRG-1 treatment increases utrophin mRNA levels and transcriptional activity 
in mouse and human myotubes (Gramolini et al. 1999; Khurana et al. 1999). Moreover, Krag 
et al. (2004) described that intraperitoneal injection of a small peptide region of NRG-1 
ectodomain increases utrophin expression in mdx mice (Krag et al. 2004). Observed increase 
was accompanied by a reduction in muscle degeneration and inflammation, and by 
decreased susceptibility to the damage induced by lengthening contractions. Improvement 
in muscle function was deemed to result specifically from the up-regulation of utrophin 
because NRG-1 administration has no beneficial effect in dystrophin/utrophin double-
knockout animals (Krag et al. 2004).  

However, regardless the evidences supporting such important roles for NRG-1 in skeletal 
muscle, the molecular mechanisms involved in its expression are still unclear.  

When we investigated the effect of membrane depolarization on global gene expression in 
dystrophic RCDMD cells using microarrays technology, our data revealed that membrane 
potential changes, induced by electrical stimulation, resulted in significant up or down 

regulation of 150 genes after 4 h. Interestingly, two NRG-1 isoforms ( and ) appear within 
the ten highest up-regulated genes (Cárdenas et al. 2010). 

Taking into account the important biological effects of NRG-1 in the muscle and its potential 
clinical implication in DMD, we focused our study on the regulation of muscle NRG-1 

expression, specifically on NRG-1 isoform, that displays a higher affinity for NRG receptor 

(Juretić et al. n.d.). NRG-1 increased expression was confirmed by quantitative PCR. We 

observed that electrical stimulation induces a significant increase of NRG-1 mRNA level in 

RCDMD cells, with a maximun at 4 h post-stimuli, but has no effect on NRG-1 expression 
in RCMH cells treated with the same procedure, suggesting that activation of molecular 

pathways involved in the regulation of NRG-1 gene expression are different in normal and 
dystrophic cells. Western blot analysis of stimulated RCDMD cells demonstrates that 
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observed increase in NRG-1 mRNA levels was followed by actual enhancement of the 
corresponding protein (Juretić et al. n.d.).  

Accumulating evidence suggests that integral dystrophin-DAPs complex components are 
also implicated in signaling in DMD, and that mutations in non-DAP protein encoding 
genes may lead to the muscular dystrophy phenotype, supporting the idea that more than 
one molecular pathway is implicated in the disease (Haslett et al. 2002). Thus, it is likely that 
the lack of DAP proteins in the cell membrane will somehow affect the regulation of Ca2+ 
transients and gene expression in dystrophic cells after electrical stimulation. In fact, Balghi 
et al. (2006) have demonstrated that IP3 production after depolarization is significantly 
elevated in SolC1(-) dystrophin deficient myotubes and that the presence of mini-dystrophin 
under the membrane leads to reduced IP3 production (Balghi et al. 2006b).  

 

Fig. 1. Diagram for the model for excitation-transcription coupling in skeletal muscle. 
Two protein complexes are proposed to be present in the transverse tubule (T-T) membrane. 
The first one is the excitation-contraction (E-C) complex, comprising the voltage sensing 
dihydropyridine receptor (DHPR, Cav1.1) and the ryanodine receptor (RyR). We propose 
that purinergic P2X receptors also contribute to the fast calcium transient associated to E-C 
coupling. The excitation-transcription (E-T) coupling complex comprises also the DHPR, 
pannexin1 (Panx), the purinergic receptor P2Y linked to a G protein and possibly the 
phosphatidyl inositol 3 kinase (PI3K) and phospholipase C (PLC). It is likely that dystrophin 
is playing a role stabilizing this complex in the membrane. Upon electrical stimulation (ES), 
membrane depolarization will trigger a conformational change in DHPR which somehow 
will induce opening of Panx channel and ATP will be released. ATP acting on P2Y receptors 
will activate PI3K via G protein and in turn PLC will be recruited to the membrane 
producing inositol (1,4,5) trisphosphate (IP3) and diacyl glycerol (DAG). IP3R- mediated 
calcium signals will be responsible for activation of kinases (PKC, CaMK II, ERK½) and 
transcription factors leading finally to gene expression. 
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7. Final remarks 

Results discussed here point out to the important role of slow Ca2+ transients evoked by 
electrical stimulation in the activation of the pathways that couple excitation to gene 
expression in dystrophin-deficient muscle cells (a putative role for dystrophin is 
schematized in Fig. 1). If we find ways to intervene such pathways in a manner that can 
compensate dystrophin dysfunction, the understanding of this new role of dystrophin will 
give new insights to the design of a therapeutic strategy in order to potentiate muscle 
survival and regeneration in DMD.  
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