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1. Introduction 

The mitogen-activated protein kinase (MAPK) signal transduction pathway is required to 

promote skeletal myogenesis and maintain skeletal muscle function. Although it has been 

long appreciated that the MAPK pathway plays a critical role in skeletal myogenesis it is 

still unclear as to whether the MAPKs are involved in the development of skeletal muscle 

diseases such as muscular dystrophies. Much evidence has demonstrated that MAPK 

activation is important for skeletal myogenesis. The cessation of MAPK activity is also an 

important part of the process of skeletal myogenesis. The MAPK phosphatases (MKPs) are 

responsible for inactivating the MAPKs. The role of the MKPs in physiological and 

pathophysiological functions of skeletal muscle remains to be fully understood. In this 

review, we will summarize the current state of understanding of the functional roles of the 

MAPKs, and the emerging role of the MKPs in the regulation of physiological skeletal 

muscle function, and their potential involvement in skeletal muscle diseases. 

2. Mitogen-activated Protein Kinase signaling and myogenesis  

The mitogen-activated protein kinase (MAPK) cascade plays an essential role in conveying 

extracellular signals from growth factors, stress, and cytokines into biological responses that 

include differentiation, proliferation, apoptosis and cell motility (Cuevas et al., 2007; Pearson 

et al., 2001). Up until now, at least 4 MAPK signaling pathways have been identified: 1) 

extracellular signal-regulated kinase 1 and 2 (ERK1/2), 2) p38┙/┚/┛/├ MAPK, 3) c-Jun 

NH2-terminal kinases 1, 2, and 3 (JNK1/2/3) and 4) ERK5 (Bogoyevitch, 2006; Bogoyevitch 

and Court, 2004; Whitmarsh, 2006; Zarubin and Han, 2005). MAPKs when phosphorylated 

on their regulatory threonine and tyrosine residues by their upstream MAPK kinases 

become activated. Once activated, these MAPKs phosphorylate substrates that include 

transcription factors, phospholipases, protein kinases and cytoskeletal proteins (Johnson 

and Lapadat, 2002; Turjanski et al., 2007). 
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A large body of data suggests that the p38 MAPK pathway is pro-myogenic. p38 MAPK 
promotes myogenesis through 1) interaction with transcription factors. At the early stage of 
differentiation, p38 MAPK phosphorylates E-protein E47, which dimerizes with the 
transcription factor MyoD to activate muscle-specific gene expression (Lluis et al., 2005). 
Whereas, at later stages of differentiation, p38 MAPK phosphorylates the transcription 
factor MRF4 thereby repressing its transcriptional activity (Suelves et al., 2004). 2) 
phosphorylation of the SWI/SNF chromatin-remodeling complex, recruiting this complex to 
myogenic loci (Simone et al., 2004); 3) phosphorylation of the transcription factor myocyte 
enhancer factor-2 (MEF2) thereby enhancing its transcriptional activity (Black and Olson, 
1998; Zetser et al., 1999); 4) stabilization of myogenic mRNA by directly phosphorylating 
KSRP, an important factor for decaying AU-rich element mRNA, and compromising its 
function to promote mRNA decay (Briata et al., 2005). These observations provide strong 
mechanistic insight into how p38 MAPK couples to the myogenic machinery. 

Evidence derived from mouse models also supports the functional role of p38 MAPK in 
muscle differentiation (Perdiguero et al., 2007). In an effort to dissect the role of different p38 
MAPK isoforms in myogenesis, Perdiguero et al used p38α, p38ȕ, p38Ȗ, and p38δ-deficient 
mice and analyzed the function of each. p38α rather than p38ȕ and p38Ȗ-deficient myoblasts 
failed to form multinucleated myotubes, whereas p38δ-deficient myoblasts exhibited 
attenuated differentiation (Perdiguero et al., 2007). Although a wide body of evidence 
supports the pro-myogenic role of p38 MAPK, several reports also imply the involvement of 
p38 MAPK in muscle cell proliferation. The concomitant activation of p38 MAPKα/ȕ and 
satellite cells imply that p38 MAPK may also be involved in satellite cell activation, since 
blockade of p38 MAPK by pharmacological inhibitors of p38 MAPK prevents both satellite 
cell proliferation and differentiation (Jones et al., 2005; Shi et al., 2010). A recent study using 
p38Ȗ-deficient mice revealed that muscles lacking this isoform of p38 MAPK contain 50% 
less satellite cells, and these cells exhibit reduced proliferation (Gillespie et al., 2009) 
implying that this p38 MAPK isoform may also be an important regulator of satellite cell 
deposition and proliferation. 

Although a critical role for ERK1/2 in satellite cell proliferation is established, surprisingly 
the role of ERK1/2 in myogenesis has not been well defined. Conflicting data from various 
groups suggest that this pathway may be tailored to respond to distinct cellular and 
extracellular conditions. Using 10T1/2 fibroblasts, Gredinger el showed that MEK1 and/or 
Raf1 positively regulates myogenesis by enhancing MyoD transcriptional activity, addition 
of the MEK inhibitor PD098059 represses MyoD-responsive genes (Gredinger et al., 1998). 
PD098059 also partially inhibits the formation of multinucleated myotubes in C2 myoblasts 
(Gredinger et al., 1998). In contrast, others have reported a negative effect of ERK1/2 in the 
regulation of myogenesis (Dorman and Johnson, 1999; Weyman and Wolfman, 1998). In 
23A2 and C2C12 myoblasts, IGF-1 and FGF-2 inhibit myoblast differentiation through 
ERK1/2 signaling as PD098059 blocked this effect (Kontaridis et al., 2002; Weyman and 
Wolfman, 1998). Persistent activation of Raf/MEK/ERK1/2 by overexpression of a 
constitutively active Raf inhibits the fusion of embryonic chick myoblasts into 
multinucleated myotubes. This inhibition can be rescued by addition of PD098059 (Dorman 
and Johnson, 1999). Yet there is another layer of regulation of Ras/Raf/ERK1/2 on 
myogenesis. A novel regulator of the Ras-Raf interaction, named DA-Raf, lacks the Raf 
kinase domain and interferes with the binding of Ras to other targets. It was found that DA-
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Raf serves as a positive regulator of myogenic differentiation (Yokoyama et al., 2007). A recent 
study revealed that Grb2-associated binder 1 (Gab1) interacts with the protein tyrosine 
phosphatase SHP-2 to activate downstream ERK signaling, thereby inhibiting IGF-1-mediated 
myogenic differentiation (Koyama et al., 2008). These results are consistent with other data in 
which conditional deletion of SHP-2 in skeletal muscle impairs skeletal muscle growth 
(Fornaro et al., 2006). Taken together, these findings tend to support the notion that ERK1/2 
signaling promotes myoblast proliferation and inhibits myogenic differentiation. However, 
further genetic data using ERK-deficient mice needs to be provided to fully conclude the 
relevance of ERK1/2 in myoblast proliferation and differentiation. 

ERK5 is a novel member of the MAPK family and its physiological function in myogenesis 
remains to be fully defined. ERK5 is enriched in skeletal muscle, it is activated upon 
myogenic differentiation, and anti-sense RNA to ERK5 blocks entry into myogenesis (Dinev 
et al., 2001). A recent study revealed an essential role of ERK5 in muscle cell fusion through 
the transcription factors Sp1 and Klf2/4 (Sunadome et al., 2011). ERK5 has also been shown 
to be responsible for muscle cell fusion without interference with other differentiation 
processes (Sunadome et al., 2011). 

Although the JNK pathway has been implicated in myoblast proliferation (Perdiguero et al., 
2007) its role in myogenic differentiation remains controversial. JNK has been demonstrated 
to be either dispensable or negative for myogenesis (Gallo et al., 1999; Khurana and Dey, 
2004; Meriane et al., 2002). It would be extremely informative if myoblasts derived from 
mice lacking either of the JNK isoforms were analyzed for their effects on cell proliferation 
and differentiation to resolve these issues. 

3. Duchenne muscular dystrophy 

The most common form of muscular dystrophy is Duchenne muscular dystrophy (DMD) 

which affects up to 1:3,500 males in the United States (Porter, 2000). The regenerative 

capacity of skeletal muscle in DMD-stricken patients is impaired due to the loss of 

dystrophin (Davies and Nowak, 2006). DMD patients lose muscle strength and mobility and 

the disease often results in death. There is neither a cure, nor an effective treatment for 

DMD, or similar skeletal muscle degenerative diseases (Bhatnagar and Kumar, 2010; 

Tedesco et al., 2010). DMD is caused by the loss or partial deficiency in the dystrophin 

protein, which serves as a critical component of the dystrophin glycoprotein complex (DGC) 

linking the cytoskeleton of the muscle fibers to that of the extracellular matrix. The loss of 

dystrophin cripples the functionality of the DGC rendering the muscle fiber more 

susceptible to stress-induced injury. Although the primary defect of DMD is the loss of 

dystrophin, there are multiple secondary events that contribute to the progression of the 

disease. These include profound inflammatory responses, extracellular matrix degradation 

and fibrosis. Strategies therefore that curtail some of these secondary responses have been 

considered as potential therapeutic avenues to treating the progression of the disease in 

DMD patients. 

Although the DGC and its components such as dystrophin appear to primarily serve 
structural roles to couple the muscle fiber to the extracellular matrix, there is clearly an 
important intracellular role played by providing a platform from which signaling pathways 
are launched. These links to downstream pathways suggest that the DGC engages active 
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signaling in order to regulate muscle fiber function. Hence, DGC dysregulation may lead to 
alterations in intracellular signaling cascades, which may contribute to the pathogenesis of 
the muscular dystrophies. In this regard, understanding the signaling pathways such as the 
MAPKs in skeletal muscle function and muscular dystrophy may provide important insight 
into new avenues of therapies for these diseases. 

4. MAPKs and Muscular dystrophy 

A link between the MAPKs and muscular dystrophy has been indirectly suggested by the 
fact that the DGC not only functions as a mechanical infrastructure to stabilize skeletal 
muscle cell membranes, but it also serves as a bridge between stimuli from the extracellular 
matrix and intracellular signaling through physically interacting with distinct proteins 
(Rando, 2001). For example, Grb2, an adapter protein involved in MAPK signal transduction 
and cytoskeletal organization, interacts with ȕ-dystroglycan at the C-terminal proline-rich 
domains (Yang et al., 1995). Furthermore, ȕ-dystroglycan can physically interact with MAPK 
kinase 2 (MEK2) and its downstream kinase ERK1/2 in a yeast two-hybrid screen (Spence et 
al., 2004). These findings imply that MAPK signaling may play an important role in the 
mechano- and signal transduction of extracellular stimuli to intracellular biological 
responses that control muscle fiber viability. However, the reports regarding the activity of 
the MAPKs in the pathogenesis of muscular dystrophy remain inconclusive and vary in 
different experimental settings. For example, it has been reported that JNK1 is highly 
activated in a mouse model of DMD (mdx mouse) and compound intercrosses between an 
mdx mouse and a MyoD-deficient mouse (mdx/MyoD-/-) contributes to the progressive 
dystrophinopathy without appreciable changes in either ERK1/2 or p38 MAPK activities 
(Kolodziejczyk et al., 2001). In contrast, stable over-expression of the JNK1-specific upstream 
kinase MKK7 disrupts the formation of myotubes in C2C12 skeletal myoblasts and H9C2 
cardiac myoblasts (Kolodziejczyk et al., 2001). Adenoviral infection of the JNK1 specific 
inhibitor JIP1 (JNK interacting protein) increased the diameter of myofibers (Kolodziejczyk 
et al., 2001), suggesting that the MAPKs can affect the structural integrity of the myofiber. In 
an attempt to test whether loss of dystrophin causes aberrant mechanotransduction, Kumar 
et al measured the activity of the MAPKs following stretching of mdx and wild type 
diaphragm muscles. ERK1/2, but not JNK or p38 MAPKs were significantly activated in the 
muscles derived from mdx mice (Kumar et al., 2004). In addition, the downstream effector of 
ERK1/2, AP-1 was highly up-regulated (Kumar et al., 2004). In another exercise model, mdx 
mice were subjected to treadmill exercise, p38 MAPK and ERK1/2, but not JNK1 were 
highly elevated in mdx cardiac muscles in comparison with wild type muscles (Nakamura et 
al., 2002). Elevated p38 MAPK was also observed in utrophin-dystrophin double knock-out 
cardiac muscles (Nakamura et al., 2001). Together, these findings suggest that MAPK 
signaling is likely involved in the pathogenesis of muscular dystrophy, but to what extent 
and how exactly MAPK contributes at the molecular level to the pathogenesis of DMD 
remains to be established. 

5. MAPK phosphatases in skeletal muscle function and muscular dystrophy  

Equally important as the activation of the MAPKs is their inactivation, which is catalyzed by 

the MKPs. The MKPs belong to a sub-class of protein tyrosine phosphatases known as the 

dual-specificity protein phosphatases (DUSP) (Boutros et al., 2008; Soulsby and Bennett, 
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2009; Tonks, 2006). The DUSPs are characterized by a consensus signature motif represented 

by HC(X)5R which defines the active site of these enzymes (Soulsby and Bennett, 2009; 

Tonks, 2006). MKPs inactivate the MAPKs by directly dephosphorylating the MAPKs on its 

regulatory threonine and tyrosine residues. The MKPs share largely the same structure 

comprising of a cdc25 homology domain and a MAPK binding domain in the NH2 terminus 

and a COOH-terminus PTP catalytic domain. The NH2 terminus of the MKPs controls 

MAPK binding and sub-cellular targeting (Wu et al., 2005), both of these attributes 

contribute to MAPK signaling specificity. In this regard, although the MKPs 

dephosphorylate the MAPKs they do so with varying degrees of potency that depends upon 

both their MAPK binding affinity and sub-cellular localization. There are 10 catalytically 

active members in this group and they exhibit distinct sub-cellular localization, responses to 

extracellular stimuli, tissue distribution and affinity to their substrates (Boutros et al., 2008; 

Groom et al., 1996; Ishibashi et al., 1994; Misra-Press et al., 1995; Muda et al., 1997; Noguchi 

et al., 1993; Rohan et al., 1993).  

Binding of MKPs to their MAPK substrates increases phosphatase activity (Camps et al., 
1998a; Hutter et al., 2000; Slack et al., 2001) and this is due to stabilization of the active 
enzyme-substrate complex (Field et al., 2000). MKP-3 exhibits high fidelity to its substrate 
ERK1/2 and upon binding its catalytic activity is enhanced (Camps et al., 1998b). Despite 
the fact that the MKPs dephosphorylate a common pool of MAPKs these enzymes exhibit 
remarkably unique physiological effects (Chi et al., 2006; Christie et al., 2005; Wu et al., 
2006). Studies from MKP knock-out mice provide convincing genetic evidence to support 
the notion that these MKPs function in distinct ways (Nunes-Xavier et al., 2011). The 
complexity of the signaling pathways and biological responses that the MKPs are involved 
with strongly suggest that these enzymes serve as central players in the regulation of the 
MAPKs. Therefore, the MKPs, which have the capacity to regulate multiple MAPKs 
simultaneously, represent a critical signaling node of MAPK convergence. Molecules that 
act as signalling (before nodes) in signal transduction can be defined as those which 
represent a point of convergence of multiple pathways, and one that is represented by 
several isoforms that are both positively and negatively involved in divergent signaling. We 
propose that the MKPs satisfy these criteria and constitute a critical signaling node in the 
MAPK pathway. Given the established role of the MAPKs in skeletal myogenesis, the 
actions of the MKPs as critical signaling nodes of the MAPKs is likely to make them 
important players in this system.  

MKPs in skeletal myogenesis and skeletal muscle function. Studies of the MKPs in 

myogenesis and skeletal muscle function remain mainly an uncharted area. Much of the 

work on the MKPs in skeletal muscle function has focused on the role of MKP-1. The first 

MKP to be implicated in skeletal muscle function was MKP-1 (Bennett and Tonks, 1997). 

MKP-1 is a ubiquitously expressed, nuclear localized dual-specificity phosphatase, whose 

substrates include predominantly p38 MAPK, JNK and to a lesser extent, ERK1/2 (Boutros 

et al., 2008; Owens and Keyse, 2007). MKP-1 is an immediate-early gene and is induced by 

numerous stresses (Owens and Keyse, 2007). Initial reports demonstrated that MKP-1-

deficient mice exhibit an unremarkable phenotype, suggesting that the MKPs largely serve 

redundant physiological roles (Dorfman et al., 1996). However, we have shown that mice 

lacking MKP-1 exhibit enhanced ERK1/2, JNK and p38 MAPK activities in skeletal muscle, 

as well as in other tissues, demonstrating that MKP-1 plays an essential physiological role as 
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a negative regulator of the MAPKs (Wu et al., 2006). The earliest suggestion that MKP-1, and 

hence the MAPKs, participate in myogenic regulation emerged from studies in which 

conditional overexpression of MKP-1 was shown to stimulate precocious myogenesis in the 

context of the inhibitory actions of growth factors (Bennett and Tonks, 1997). MKP-1 

expression levels in proliferating myoblasts are initially high, at levels presumably sufficient 

to allow cell proliferation but not differentiation, and declines upon the onset of myogenesis, 

suggesting that extinguishing the expression of MKP-1 might be a prerequisite for myogenic 

entry and/or progression (Bennett and Tonks, 1997; Kondoh et al., 2007; Perdiguero et al., 

2007). Consistent with this, overexpression of MKP-1 when myoblasts have become 

irrevocably committed to myogenesis inhibits multinucleated myotube formation (Bennett 

and Tonks, 1997; Kondoh et al., 2007). Hence, MKP-1 plays both positive and negative roles 

in myogenesis in a temporal manner by selectively regulating one or more MAPKs (Figure 

1). MKP-1 appears to be directly coupled to the myogenic transcriptional machinery as 

studies have shown that MKP-1 is a target for upregulation by MyoD (Shi et al., 2010). 

Within the proximal promoter of MKP-1 there resides an E-box binding site that serves to 

mediate MKP-1 activation by MyoD (Shi et al., 2010). Hence, upon the initiation of 

myogenesis the activation of MyoD leads to an initial upregulation of MKP-1, which may be 

required to inactivate ERK1/2 and thus facilitate cell cycle exit in the transition towards 

myogenic entry. Later on during myogenesis MyoD was shown to uncouple from the MKP-

1 promoter and hence downregulate MKP-1 expression (Figure 1). Downregulation of MKP-

1 during the later stages of myogenesis may facilitate the increased p38 MAPK activation, 

which is important for multinucleated myotube formation. As such, the complexity of the 

outcome through which MKP-1 integrates multiple MAPK activities cannot be simply 

inferred by the implied actions of a single MAPK family member. These results using 

cultured myoblast cell lines are supported by in vivo data where it has been shown that 

regenerative myogenesis in response to cardiotoxin-induced injury is impaired in MKP-1-

deficient mice (Shi et al., 2010). These results support the notion that MKP-1 is an important 

regulator of myogenesis.  

MKP-1 is also implicated in adult skeletal muscle fiber specialization (Shi et al., 2008). 
Overexpression of MKP-1 in adult type IIb (glycolytic) myofibers converts these fibers to 
slower-twitch type IIa or type I (oxidative) fibers, suggesting that MKP-1-mediated 
dephosphorylation of MAPK signaling is required to maintain the glycolytic fiber 
phenotype through the repression of slow myofibers (Shi et al., 2008). Consistent with these 
data, it has been shown that MKP-1-deficient mice are protected from the loss of oxidative 
myofibers during high fat diet-induced obesity (Roth et al., 2009). Hence, decreased MKP-1 
expression results in enhanced MAPK signaling, which protects from the loss of glycolytic 
myofibers by driving oxidative myofiber conversion. The mechanistic basis for these data is 
based upon the observation that MKP-1 mediates p38 MAPK phosphorylation of the 

peroxisome proliferator-activated receptor  co-activator 1 (PGC-1) (Roth et al., 2009), 
which is required to promote oxidative myofiber conversion. Collectively, these results 
suggest that MKP-1 plays an essential role in the maintenance of glycolytic/oxidative 
myofiber composition. MKP-1 is also suggested to be involved in the maintenance of muscle 
mass (Shi et al., 2009). Overexpression of MKP-1 in slow-twitch soleus muscles and in fast-
twitch gastrocnemius muscles reduces muscle fiber size, though this reduction in fiber size 
may go through distinct molecular mechanisms (Shi et al., 2009). 

www.intechopen.com



Mitogen-Activated Protein Kinases and Mitogen-Activated  
Protein Kinase Phosphatases in Regenerative Myogenesis and Muscular Dystrophy 165 

 

Fig. 1. MAPK/MKP signaling coordinates myogenesis. Following myotrauma the MAPKs 
become activated to drive cell proliferation. MKP-1 is upregulated by these MAPKs and 
MyoD. MKP-1 sets the threshold of MAPK activity that permits myoblast proliferation 
[Proliferation Permissive] but not differentiation. Upon the initiation of differentiation, 
MyoD uncouples from the MKP-1 promoter causing its expression levels to fall, thereby 
removing the inhibitory actions of MKP-1 on the MAPKs. This allows for higher levels of 
MAPK activity to be achieved, in particular p38 MAPK, which promotes differentiation 
[Differentiation Permissive].  

MKP-1 also plays a regulatory role in estrogen-related receptor α (ERRα) and PGC-1α 

mediated myogenic differentiation. Direct up-regulation of MKP-1 by ERRα and PGC-1α at 

the early stage of myogenesis inactivate ERK1/2 signaling and facilitate the progression of 

myogensis as MEK inhibition rescues the myogenic defect in ERR┙-/- myoblasts (Murray 

and Huss, 2011). Recent work from this laboratory suggests that other MKPs, in addition to 

MKP-1, also contribute to the regulation of skeletal muscle function. Mice lacking MKP-5, 

which interestingly also dephosphorylates predominately p38 MAPK and JNK, exhibit 

enhanced skeletal muscle regeneration distinct from that observed with MKP-1-deficient 

mice (H.S. and A.M.B., unpublished observations). These results suggest that the MKPs might 

play distinct roles in not only coordinating myogenic activation and progression but they 

may do so through specific and non-overlapping mechanisms. 

A role for MKP-1 in muscular dystrophy. The generation, maintenance, and repair of adult 

skeletal muscle is critically dependent upon the activation and self-renewal of satellite cells 

(Wagers and Conboy, 2005). In response to skeletal muscle injury, myofiber-released growth 

factors and cytokines stimulate satellite cell proliferation, migration and differentiation by 

activating signaling cascades including the MAPK pathway. It is thought that the depletion 

of satellite cells during the progression of DMD is a major factor that precipitates the 
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ultimate failure of muscle function. Therefore, by modulating satellite cell activation, 

differentiation and/or self-renewal DMD can theoretically be improved.  

Several reports have addressed the role of the MAPKs in mdx mice, however there is no 
underlying consensus as to whether the MAPKs are definitively involved in the 
pathogenesis of the dystrophic phenotype. Some reports show upregulation of ERK1/2, 
JNK2 and p38 MAPK (Nakamura et al., 2005), whereas others have shown a downregulation 
of p38 MAPK and an upregulation of ERK1/2 (Lang et al., 2004), yet others find no 
consistent differences in p38 MAPK (Nakamura et al., 2001). To study the 
pathophysiological role of MKP-1 in Duchenne muscular dystrophy, we inter-crossed MKP-
1 knockout mice into the mdx background in order to determine whether loss of MKP-1 
ameliorates or exacerbates the dystrophic phenotype. The advantage of generating an MKP-
1-deficient animal model is that instead of studying an individual MAPK, we examined the 
integration of several MAPKs that become hyperactivated due to the lack of MKP-1. We 
found that mdx/mkp-1-/- mice have reduced body weight and muscle mass in comparison 
with mdx/mkp-1+/+ mice (Shi et al., 2010). The reduction of body weight may be attributed to 
the chronic elevated levels of inflammation or it is also likely that this is due to an 
underlying metabolic defect that we have observed in mice lacking MKP-1 that is related to 
increased energy expenditure (Roth et al., 2009; Wu et al., 2006). Histological analysis of 
muscle sections from mdx/mkp-1-/- mice revealed that MKP-1 deficiency exacerbates the 
pathogenesis of muscular dystrophy (Shi et al., 2010). This exacerbation may be accounted 
for by a combination of two factors that are cell autonomous and/or directly related to 
defects in satellite cell function as well as a contribution from a hyperactivated immune 
response. Satellite cells from MKP-1-deficient muscles exhibit reduced proliferative capacity 
whereas precocious differentiation was evident even under high serum conditions (Shi et 
al., 2010). Additionally, increased levels of macrophage and neutrophil infiltrates into 
damaged myofibers in mdx/mkp-1-/- mice compared to MKP-1 wild type mdx mice, this was 
observed along with serum and skeletal muscle cytokine levels that are significantly 
increased in mdx/mkp-1-/- mice (Shi et al., 2010). Collectively, these findings suggest that 
MKP-1 is critical for the regulation of muscle regeneration in DMD by modulating both 
immune responses and satellite cell proliferation and differentiation (Figure 2). Further 
studies employing conditional deletion of MKP-1 in the satellite cell and hematopoietic 
compartments will be required in order to determine the contribution of MKP-1 in these 
tissues to the overall skeletal muscle regenerative defect. 

6. Therapeutic targeting of MAPK/MKPs in muscular dystrophy 

Research on MKP-1 and its involvement in regenerative myogenesis and muscular 
dystrophy suggests that MKP-1 may play an important role in the progression of muscular 
dystrophy and possibly other degenerative skeletal muscle diseases. Therefore, targeting the 
MAPK/MKP signaling pathway in order to ameliorate skeletal muscle disease and 
specifically, muscular dystrophy, merits further investigation. However, definitive 
validation that the MAPK/MKP module is a valid therapeutic target for muscular 
dystrophy is still lacking. There has been some suggestion that interference with the 
MAPK/MKP signaling module may have therapeutic value. It has been shown that 
adenoviral delivery of the JNK1 inhibitory protein, JIP1, can attenuate the pathogenesis of 
dystrophic fibers (Kolodziejczyk et al., 2001), implying that inhibition of JNK1 may serve as  
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Fig. 2. MKP-1 and Duchenne Muscular Dystrophy. MKP-1 regulates both myoblast 
proliferation and differentiation (see Figure 1). Loss of MKP-1 in a mouse model of 
Duchennes’ muscular dystrophy exacerbates the dystrophic phenotype due to enhanced 
MAPK activity, which inhibits myoblast proliferation, and ectopically enhances 
differentiation. In conjunction, MKP-1 has a profound effect in macrophages (Mac) and 
neutrophils (NF), which as a result of enhanced MAPK activity, in the absence of MKP-1 
become hyper-responsive leading to increased inflammatory responses. Together, both the 
increased inflammatory response and dysfunctional myoblast proliferation and 
differentiation exacerbates the dystrophic phenotype. 

a potential therapeutic target for the treatment of certain dystrophies. However, given the 
uncertain role played by JNK in skeletal muscle regeneration this target should be 
approached cautiously. A recent study shows that treating dystrophic mice with the free 
radical scavenger ┙-lipoic acid and L-carnitine improved muscular dystrophy with a 
concomitant repression of ERK1/2, JNK and p38 MAPK activation (Hnia et al., 2007). This is 
quite a provocative result since reactive oxygen species have been shown to inhibit the 
actions of certain protein tyrosine phosphatases through modification of the catalytic 
cysteine residue (Tonks, 2005). Therefore, treatment of dystrophic muscle with free radical 
scavengers would be predicted to ameliorate the loss of PTP activity, including MKP 
activity, resulting in increased inactivation of MAPKs. However, it is not yet clear whether 
the improved myopathy is caused by the decreased activation of a particular MAPK and/or 
a combination thereof. In an Emery-Dreyfuss muscular dystrophy mouse model, which 
lacks the inner nuclear membrane protein A-type lamins (LMNA), JNK and ERK1/2 are 
highly activated in heart tissue and cardiomycytes (Muchir et al., 2007). Inhibition of the 
ERK1/2 upstream kinase MEK by PD098059 improves cardiomyopathy in Lmna mutant 
knock-in mice (Muchir et al., 2009), implying that molecules in the ERK1/2 pathway have 
therapeutic potential for the treatment of human Emery-Dreyfuss muscular dystrophy and 
potentially related disorders.  

www.intechopen.com



 
Muscular Dystrophy 168 

Although the MAPK/MKP pathway represents a potentially attractive therapeutic target to 
treat muscular dystrophy, it is a challenging one given the fact that the MAPK/MKP 
module is a universal pathway serving a number of common control points in the regulation 
of cell proliferation, differentiation, migration, and survival. The challenge will be to 
identify MAPK/MKP family members that exhibit signaling preferences to skeletal muscle 
with those functions further selectively controlling the appropriate physiological response 
in dystrophic skeletal muscle tissue. Given the importance of p38 MAPK in promoting 
regenerative myogenesis an attractive strategy could involve enhancing p38 MAPK activity 
so as to promote either satellite cell activation, proliferation and/or differentiation in 
dystrophic tissue. This could conceivably be achieved either through activation of p38 
MAPK itself or through inhibition of the MKP that opposes the physiologically relevant 
pool of p38 MAPK in these cells. Clearly, significant gaps in our knowledge need to be filled 
in this area, nevertheless it is an important goal given the devastating nature of these 
skeletal muscle diseases that still lack a successful treatment. 
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