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1. Introduction

Till twenty years ago the basic concepts of special and general relativity were introduced
by speaking of clocks and rods with an unspecified structure. Then the advances in atomic
physics and in space navigation led to a revolution in metrology with the elimination of these
old idealized notions and their replacements with realistic standards. For instance one can
compare the 1965 point of view of Ref. (Basri S.A., 1965) with the 1997 one of Ref. (Guinot B.,
1997).

However also today many scientists still think in terms of the absolute notions of time and
space present in the Galilei space-time used in Newtonian physics, due to the fact that
on Earth non-relativistic quantum mechanics is able to treat consistently problems ranging
from molecular physics till quantum information without taking into account gravity (when
needed Newtonian gravity is used). Only the description of light in atomic physics requires
relativity (the trajectories of photons do not exist in Galilei space-time). Therefore most of the
problems are formulated in inertial frames centered on inertial observers (having a constant
velocity) in Galilei space-time (they are connected by the group of Galilei transformations
containing space and time translations, spatial rotations and boosts) and, if needed, extended
to non-relativistic accelerated frames taking into account the associated inertial apparent
forces. The rotation of the Earth and its motion around the Sun are negligible effects for this
type of physics.

Instead particle physics must face high speed objects and needs the Minkowski space-time
of special relativity. Now the notions of space and time are no longer absolute: only the
global space-time is an absolute notion. The Large Hadron Collider LHC particle accelerator
at CERN is described with the coordinate time and the coordinate position of an inertial
frame of Minkowski space-time centered on an inertial observer. To get the description
with respect to another inertial observer one needs the group of Poincaré transformations
(space and time translations plus Lorentz transformations Λ, i.e. spatial rotations and

boosts; x
′µ = aµ + Λµ

ν xν). In the new inertial frame the new coordinate time (and also
the coordinate position) depends on both the old coordinate time and positions. This
has generated an endless (and still going on) philosophical discussion on the meaning of
time. Since the Lorentz-scalar line element joining two nearby points in an inertial frame
of Minkowski space-time is ds2 = (dxo)2 − ∑r (dxr)2 (with the particle physics conventions;
ds2 = −(dxo)2 + ∑r (dxr)2 with the general relativity ones; xµ are inertial time, xo = ct, and
space, xr, coordinates), space and time increments have different sign (Lorentz signature). The
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2 Will-be-set-by-IN-TECH

only intrinsic structure of Minkowski space-time is that in each point A there is a light-cone (or
null cone) defined by ds2 = 0, which is the locus of the ray of light (traveling with the velocity
of light) arriving in that point from the past or emanating from that point towards the future.
The points inside the light-cone in A have a time-like distance from A and can be reached (if
in the future) by traveling with a velocity less than the velocity of light. The points outside the
light-cone of A have space-like distance from A and could be reached only with super-luminal
velocity. If there is an atomic clock in A moving along a time-like curve towards the future its
Lorentz-scalar proper time is defined as dτ2 = ds2 (dτ2 = −ds2 with the other convention) and
coincides with the coordinate time xo only in the inertial rest frame of the clock. However,
since time is not absolute, there is no intrinsic notion of 3-space and of synchronization of
clocks: both of them have to be defined with some convention. As a consequence the 1-way
velocity of light from one observer A to an observer B has a meaning only after a choice of a
convention for synchronizing the clock in A with the one in B. Therefore the crucial quantity
in special relativity is the 2-way (or round trip) velocity of light c involving only one clock: the
observer A emits a ray of light which is reflected somewhere and then reabsorbed by A so
that only the clock of A is implied in measuring the time of flight. It is this velocity which is
isotropic and constant in special relativity.

In Minkowski space-time the Euclidean 3-spaces of the inertial frames centered on an inertial
observer A are identified by means of Einstein convention for the synchronization of clocks:
the inertial observer A sends a ray of light at xo

i towards the (in general accelerated) observer
B; the ray is reflected towards A at a point P of B world-line and then reabsorbed by A at
xo

f ; by convention P is synchronous with the mid-point between emission and absorption

on A’s world-line, i.e. xo
P = xo

i +
1
2 (xo

f − xo
i ) = 1

2 (xo
i + xo

f ). This convention selects the

Euclidean instantaneous 3-spaces xo = ct = const. of the inertial frames centered on A. Only
in this case the one-way velocity of light between A and B coincides with the two-way one,
c. However, if the observer A is accelerated, the convention breaks down and we need a
theory of non-inertial frames in Minkowski space-time as the one developed in Ref.(Alba
D. et al, 2010, 2007). In this theory the transition from an inertial to a non-inertial frame
(with its relativistic inertial forces and its non-Euclidean 3-spaces) can be described as a gauge
transformation connecting two different generalized conventions for clock synchronization:
therefore physics does not change, only the appearances of phenomena change.

However the International Space Station ISS near the Earth and space navigation in the
Solar System require general relativity (at least its Post-Newtonian approximation) to take
into account the effects of the gravitational field which is missing in special relativity. Now
also space-time is no longer an absolute notion but is dynamically determined by Einstein’s
equations. Einstein’s space-times have Lorentz signature but the structure of the light-cones
changes from a point to another one. However rays of light, moving along null geodesics,
are assumed to have the same 2-way velocity of light c as in special relativity, being an
eikonal approximation to Maxwell equations. The equivalence principle implies that global
inertial frames cannot exist: only locally near a particle in free fall we can have a local inertial
frame and a local special relativistic approximation. Again there is the problem of clock
synchronization for the definition of the non-Euclidean 3-spaces: even if the space-time is
dynamically determined by Einstein’s equations, each solution can be presented in arbitrary
systems of 4-coordinates, since this is the gauge freedom of general relativity (form invariance
of Einstein’s equations under general coordinate transformations).
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Therefore the presentation (gauge choice) of a solution of Einstein’s equations is nothing
else that a metrology choice of a standard of space-time, i.e. a choice of the time and space
4-coordinates.

Moreover this choice is fundamental for the description of macroscopic matter (its
energy-momentum tensor is the source term in Einstein’s equations) at the experimental
level: physicists, space engineers and astronomers use an intrinsically coordinate-dependent (i.e.
dependent on the chosen conventions) description of the trajectory of every macroscopic body
(from spacecrafts to satellites, planets, stars,....).

Around the Earth GPS (Global Positioning System) is a space-time standard (Ashby N., 2003),
relying on the time and length standards on the Earth surface. There is an array of 24
satellites around the Earth each one with an atomic clock with an accuracy which for modern
commercial devices is today less than 30 nanoseconds. The satellites are at an altitude of
20,000 Km and have a mean velocity of 14,000 km/hr. Special relativity implies that these
clocks tick more slowly (about 7 microseconds per day) than clocks on Earth. But general
relativity implies that they tick faster (about 48 microseconds per day), so that a satellite clock
advances faster than a clock on ground by about 38 microseconds per day. If we forget general
relativity the precision of GPS localization (less that 15 meters) is lost within two minutes.

While in non-inertial frames in Galilei and Minkowski space-times there is a good
understanding of the apparent inertial forces, in general relativity the gravitational field is
described by the 4-metric tensor 4gµν(x) in an arbitrary 4-coordinate system centered on an

arbitrary observer (the line element is now ds2 = 4gµν(x) dxµ dxν) and it is not clear how to
introduce a distinction between gravitational and inertial effects. However this is possible at
the Hamiltonian level for the globally hyperbolic, asymptotically Minkowskian space-times,
where it is possible to define global 3+1 splittings of the space-time, namely a foliation with
3-spaces evolving in time. The study of the 4-metric tensor in this framework allows one
to disentangle the two physical degrees of freedom (or tidal variables) of the gravitational
field (the two polarizations of gravitational waves in the linearized theory) and the gauge
(or inertial variables) degrees of freedom describing the arbitrariness in the choice of the
4-coordinates. As shown in Ref. (Lusanna L., 2011) among the inertial variables there is the
so-called York time (the trace of the extrinsic curvature of the 3-space as a 3-sub-manifold
of space-time): it describes the remnant of the special relativistic gauge freedom in clock
synchronization in this class of general relativistic space-times.

For the physics in the Solar System one assumes that the relevant Einstein space-times are
globally hyperbolic (namely admitting a global definition of time) and asymptotically flat
(namely tending to Minkowsky space-time at spatial infinity) space-times containing N bodies
(the Sun and the planets) treated as point-like objects carrying multipoles (spin, moment
of inertia,... of the extended body). A Post-Newtonian approximation is used in solving
Einstein’s equations in harmonic gauges and the gravitational waves inside the Solar System
are shown to be negligible.

We have spoken only about Einstein general relativity. See Ref. (Will C.M., 2006, 1993) for
the status of alternative theories of gravity inside the Solar System and Refs. (Soffel M.H.,
1989; Brumberg V.A., 1991; Damour T. et al, 1991, 1992, 1993, 1994) for a treatment going from
geodesy to celestial mechanics.
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4 Will-be-set-by-IN-TECH

In what follows there will be a sketch, with update bibliography, of relativistic metrology
inside the Solar System. It includes

A) Space and time standards.

B) The conventions needed for the description of satellites around the Earth: it is done by
means of NASA (USA National Aeronautics and Space Administration) coordinates (Moyer
T.D., 2003) firstly in the International Terrestrial Reference System ITRS (with an associated
frame ITRF fixed on the Earth surface; see Ref. (IERS, 2004) for the IERS2003 conventions of the
International Earth Rotation and Reference System Service IERS) and then in the Geocentric
Celestial Reference System GCRS (with an associated non-rotating frame GCRF centered on
the Earth center; see Ref. (Soffel M.H. et al, 2003) for the International Astronomic Units
IAU2000).

C) The conventions needed for the description of planets and other objects in the Solar System
uses the Barycentric Celestial Reference System BCRS (with an associated quasi-inertial
Minkowski frame BCRF, if perturbations from the Milky Way are ignored, centered in the
barycenter of the Solar System and with the axes specified by means of fixed stars (quasars)
in the Hypparcos catalog (Kovalesky J. et al, 1989; Sovers O.J. et al, 1998; Ma C. et al, 1998;
Johnstone K.J. et al, 1999; Fey A. et al, 2009)) and ephemerides (see IAU2000 in Ref. (Soffel
M.H. et al, 2003)).

Ref. (Kaplan G.H., 2005) contains all the relevant aspects of these conventions.

While ITRF is essentially realized as a non-relativistic non-inertial frame in Galilei space-time,
BCRF is defined as a quasi-inertial frame, non-rotating with respect to some selected fixed
stars, in Minkowski space-time with nearly-Euclidean Newton 3-spaces. The qualification
quasi-inertial is introduced to take into account general relativity, where inertial frames exist
only locally. It can also be considered as a Post-Minkowskian space-time with 3-spaces having
a very small extrinsic curvature. GCRF is obtained from BCRF by taking into account Earth’s
rotation around the Sun with a suitable Lorentz boost with corrections from Post-Newtonian
gravity. By taking into account the extension of the geoid and Earth revolution around its axis
one goes from the quasi-Minkowskian GCRF to the quasi-Galilean ITRF.

New problems emerge by going outside the Solar System. In astronomy the positions of stars
and galaxies are determined from the data (luminosity, light spectrum, angles) on the sky, i.e.
on a 2-dimensional spherical surface around the Earth with the relations between it and the
observatory on the Earth done with GPS.

Then one needs a description of stars and galaxies as living in a 4-dimensional nearly-Galilei
space-time with the International Celestial Reference System ICRS (see Refs. (Kovalesky
J. et al, 1989; Sovers O.J. et al, 1998; Ma C. et al, 1998; Johnstone K.J. et al, 1999; Fey
A. et al, 2009)), whose materialization ICRF is considered as a "quasi-inertial frame" in
a "quasi-Galilei space-time", in accord with the assumed validity of the cosmological and
Copernican principles. Namely one assumes a homogeneous and isotropic cosmological
Friedmann-Robertson - Walker solution of Einstein equations (the standard ΛCDM
cosmological model). In it the constant intrinsic 3-curvature of instantaneous 3-spaces is
nearly zero as implied by the CMB data (Bartelmann M., 2010; Bean R., 2009), so that Euclidean
3-spaces (and Newtonian gravity) can be used (all galactic dynamics is Newtonian gravity).
See Ref. (Lindegren L. et al, 2003) for the IAU conventions for defining the astrometric radial
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velocity of stars taking into account astrometric positions, spectroscopy of star light and light
propagation in gravitational fields.

However, to reconcile all the data with this 4-dimensional reconstruction one must postulate
the existence of dark matter and dark energy as the dominant components of the classical
universe (Durrer R., 2011; Bonvin C. et al, 2011; Garret K. et al, 2011; Ross M., 2010) after the
recombination 3-surface (a kind of Heisenberg cut between quantum cosmology and classical
astrophysics)!

2. Standards of length and time

In this Section we discuss the existing standards for length and time.

2.1 Standard of length

In 1975 in the 15th Meeting CGPM of the General Conference on Weights and Measures
(Meeting 15, 1975) the conventional value of the 2-way velocity of light was fixed to be
c = 299792458 m s−1.

In 1983 the 17th Meeting CGPM of the General Conference on Weights and Measures (Meeting
17, 1983) adopted the following standard of length

The meter is the length of the path traveled by light in vacuum during a time interval of 1/c of a second.

To measure the 3-distance between two objects in an inertial frame we send a ray of light from
the first object, to which is associated an atomic clock, to the second one, where it is reflected
and then reabsorbed by the first object. The measure of the flight time and the 2-way velocity
of light determine the 3-distance between the objects.

This convention is compatible with the Euclidean 3-space of inertial frames in Minkowski
space-time. When the technology will allow one to measure the deviations from Euclidean
3-space implied by Post-Newtonian gravity we will need a modified convention taking into
account a general relativistic notion of length.

In astronomy the unit of length, defined in the IAU (1976) System of Astronomical Constants,
is the astronomical unit AU, approximately equal to the mean Earth-Sun distance (Resolution
10, 1976; IBWM, 2006). It is the radius of an unperturbed circular Newtonian orbit about the
Sun of a particle having infinitesimal mass, moving with an angular frequency of 0.017 202
098 95 radians per day. Measurements of the relative positions of planets in the Solar System
are done by radar (or by telemetry from space probes): one measures the time taken for light
to be reflected from an object using the conventional value of the velocity of light c.

Both for objects inside the Solar System and for the nearest stars one measure the distance
with the trigonometric parallax by using the propagation of light and its velocity c in inertial
frames. One measures the difference (the inclination angle) in the apparent position of an
object viewed along two different lines of sight at two different times and then uses Euclidean
geometry to evaluate the distance. The used unit in astronomy is the parsec, which is 3.26
light-years or 3.26 1016 meters.

However this convention cannot be used for more distant either galactic or extra-galactic
objects (UCLA, 2007; Carrol B.W. et al, 2007). New notions like standard candles, dynamical
parallax, spectroscopic parallax, luminosity distance,..... are needed. These notions involve
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both aspects of light propagation in curved space-times and cosmological assumptions like
the Hubble law (velocity-redshift linear relation). Therefore they belong to another type of
metrology.

2.2 Atomic clocks and ACES

The time scales like the SI (International System of Units) atomic second are based on frequency
standards for microwave atomic clocks based on isotopes like cesium (133Cs) and rubidium
(87Rb) and with frequencies of the order of GigaHertz (109Hz). While the national standard
agencies (National Institute of Standards and Technology NIST in USA, National Physical
Laboratory NPL in United Kingdom, Paris Observatory in France, Physikalisch-Technische
Bundesanstalt PTB in Germany, Istituto Nazionale di Ricerca Metrologica INRIM in Italy)
maintain an accuracy of 1 nanosecond per day (1ns = 10−9 s), many primary cesium atomic
clocks using laser cooled atomic fountains have an inaccuracy less than 100 picoseconds per
day (1ps = 10−12 s) with the best ones approaching 10 ps per day (Bize S. et al, 2005; Parker
T.E., 2010).

If atomic clocks operating on different quantum transitions are considered as ideal clocks in
general relativity, then they measure the same proper time (and not a coordinate time) along
their trajectory (Guinot B., 1997). See Ref. (Reynaud S. et al, 2009) and its bibliography for
the experiments on the universality of clock rates (relative frequency ratios between different
clocks are constant at a level of the order of 10−16 per year). See also Ref. (Perlick V., 1987,
1994) for another general relativistic effect, the second clock effect, according to which two clocks
synchronized at the same point, then separated and finally rejoined remain synchronized in
Riemannian space-times like Einstein’s ones but not in Weyl space-times.

A new family of optical atomic clocks in the region of 1015Hz is developing quickly with the
help of optical frequency-combs for direct optical frequency measurements. They allow one
to reach a fractional frequency inaccuracy of better than 10−17 (corresponding to better than
1 ps per day) (Gill P., 2005; Rosenbad T. et al, 2008; Ludlow A.D. et al, 2008; Chou C.W. et
al 2010a) and will become relevant for metrology in the near future. Moreover optical clocks
allow to verify the "time dilation effect" for relative speeds of less than 10 m/s or for a change
in height near the Earth’s surface of less than 1 meter (Chou C.W., 2010b).

In Ref. (Arias E.F., 2005) there is a review of time metrology with a comparison of various
time scales, the use of GPS receiver for time transfer (see also Ref. (Petit G. et al, 2005)) and
on the dissemination and access to the international time scales. See also Refs. (Lemonde P. et
al, 2001; SIGRAV 2006) for the status of atomic clocks in space near the Earth or on spacecrafts
inside the Solar System.

The Atomic Clock Ensemble in Space (ACES) mission of the European Space Agency ESA
(ACES 2010; Cacciapuoti L. et al, 2007, 2008; Blanchet L. et al, 2000), to be launched in
2015, aims to put a new microwave atomic clock (PHARAO, Projet d’Horloge Atomique par
Refroidissement d’Atome en Orbite) together with an active hydrogen maser (SHM, Space
active Hydrogen Maser) on the International Space Station (ISS; height 400 Km, rotation
period 90 min, inclination angle 51.6o). The two clocks will generate an on-board timescale
with an expected frequency instability and inaccuracy at the 10−16 level. There will be a
frequency comparison between the space clocks and ground clocks using microwave links: in
particular ACES will give the first precision measurement of the gravitational redshift of the
geoid, namely of the 1/c2 deformation of Minkowski light-cone caused by the geo-potential.
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2.3 Time scales

The fundamental conceptual time scale is the SI atomic second whose definition is (Resolution
1, 1956)

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium 133 atom. This definition refers to a
cesium atom at rest at a temperature of 0o K.

It gives a precise and constant rate of time measurement for observers local to the apparatus on
the surface of the Earth, i.e. on the rotating geoid (for them it is a unit of proper time (Guinot B.,
1997)), in which such seconds are counted.

However from 1971 the conventional practical high-precision atomic time standard is a
coordinate time (Guinot B., 1997), the International Atomic Time TAI. TAI is defined as a suitable
weighted average of the SI time kept by over 200 atomic clocks (mainly cesium clocks) in about
70 national laboratories worldwide (Circular T263, 2009). The comparison of the clocks is done
using GPS signals and two-way satellite time and frequency transfer.

The next step is to connect TAI to the time scales based the Earth Rotation, which were used in
astronomical applications as telescope pointing, depended on the geographical location of the
observer and were based on observing celestial bodies crossing the meridian every day. Two
such scales are:

Greenwich sidereal time is the hour angle of the equinox measured with respect to the Greenwich
meridian.

Local sidereal time is the local hour angle of the equinox or the Greenwich sidereal time plus the
longitude (east positive) of the observer, expressed in time units. Sidereal time appears in two
forms, mean (GAST Greenwich Apparent mean Sidereal Time or LMST Local Mean Sidereal
Time) and apparent (LAST, Local Apparent Sidereal Time), depending on whether the mean
or true equinox is the reference point. The position of the mean equinox is affected only by
precession while the true equinox is affected by both precession and nutation. Let us remember
that the equinox is a direction in space along the nodal line defined by the intersection of the
ecliptic (the plane of the Earth’s orbit) and equatorial planes. The difference between true
and mean sidereal time is the equation of the equinoxes, which is a complex periodic function
with a maximum amplitude of about 1sec. Of the two forms, apparent sidereal time is more
relevant to actual observations, since it includes the effect of nutation. Greenwich (or local)
apparent sidereal time can be operationally obtained from the right ascensions of celestial
objects transiting the Greenwich (or local) meridian.

Nowadays Universal Time UT is the generic timescale based on Earth’s rotation. It is
determined by Very Long Baseline Interferometry (VLBI) observations of distant quasars with
an accuracy of microseconds. There are various variants of UT. The most used is UT1, based
on VLBI observations of quasars, on Lunar Laser Ranging (LLR), on determination of GPS
satellite orbits. UT1 is the same everywhere on Earth and is proportional to the rotation angle
of the Earth with respect to distant quasars.

An approximate version of UT1 is the Coordinate Universal Time UTC. It is an atomic time scale
and the international standard for civil time. It is a hybrid time scale (ITUR, 2007), which
uses SI atomic seconds on the geoid (it usually has 86 400 SI seconds per day), but subject to
occasional 1 second adjustments (the so-called leap second) to keep it within 0.9 seconds from
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UT1 (UT1 ≈ UTC + DUT1 with DUT1 ≈ ±0.1sec) and to have TAI = UTC +△AT (△AT is
an integer number of leap seconds).

Other civil times given in Ref. (Moyer T.D., 2003) are

GPS Master Time: it is an atomic time for GPS receiving station on Earth and for GPS satellites
- TAI = GPS + const..

ST Station Time: it is an atomic time at a Deep Space Network (DSN) tracking station on Earth.
It is assumed UTC or GPS = ST + a + b (t − to) + c (t − to)2.

As UT is slightly irregular in its rate, astronomers introduced Ephemeris Time and then
replaced it with Terrestrial Time TT.

The Ephemeris Time Teph = ET, replacing an old barycentric dynamical time TDB, is
a relativistic coordinate time based on high-precision ephemerides, which are lists of
instantaneous positions of the centers of mass of Sun, Moon and planets with respect to
(equatorial rectangular 3-coordinates of) BCRS for any date and time between 1600 and 2001,
developed at the Jet Propulsion Laboratory (JPL) and denoted DE405/LE405 (Kaplan G.H.,
2005; Standish E.M., 1998). Lunar rotation angles are also provided. The DE405 coordinate
system has been aligned to the ICRS. The JPL ephemerides are computed by an N-body
numerical integration carried out in BCRS.

Terrestrial Time TT, which is an astronomical time scale used for geocentric and topo-centric
ephemerides. The "standard epoch" for modern astrometric reference data, designated J2000.0
is expressed as a TT instant: J2000.0 means 2000 January 1, 12h TT at geo-center (Julian date
JD 24515450 TT; J2000.0 is shorthand for the celestial reference system defined by the mean
dynamical equator and equinox of J2000.0) (Kaplan G.H., 2005). TT is an idealized form of
TAI (TT = TAI + 32s.184). TT runs at the same rate as a time scale based on the SI second on
the surface of the Earth.

As shown in Eq.(2.6) of Ref. (Kaplan G.H., 2005) we have Teph ≈ TDB ≈ TT + F(T), where
F(T) is a given function of the number T of Julian centuries of TT from J2000.0 (T = (JD(TT)−
2451545.0)/36525).

See also Ref.(Moyer T.D., 2003), p.18, where the following chains of transformations are
defined

Teph → TAI (→ UT1) → UTC, GPS → ST (ST = time scale of a tracking station on the
Earth),

Teph → TAI → GPS → ST (ST = time scale at an Earth satellite)

Let us remark that the astronomical universal time UT1 is defined by using the new earth
precession-nutation theory denoted IAU2000A (relating the International Celestial Reference
Frame ICRF to the International Terrestrial Reference Frame ITRF from 2003), which has been
replaced in 2009 with a more dynamically consistent precession model denoted IAU2006
(Coppola V., 2009; IAU, 2006).

According to IAU2006 UT1 is linear in the Earth rotation angle θ, a geocentric angle (such
that θ̇ = ωearth is the average angular velocity of rotation of the Earth) with a Non-Rotating
Origin NLO in the equatorial plane orthogonal to the Celestial Intermediate Pole CIP from the
axes centered in the Celestial Intermediate Origin CIO with no instantaneous rotation around
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the Earth axis to the axes centered in the Terrestrial Intermediate Origin TIO rotating with the
Earth (in IAU2000A CIO and TIO were called CEO, Celestial Ephemeris Origin, and TEO,
Terrestrial Ephemeris Origin, respectively).

The lengths of the sidereal (θ) and UT1 seconds, and the value of θ̇, are not precisely constant
when expressed in a uniform time scale such as TT. The accumulated difference in time
measured by a clock keeping SI seconds on the geoid from that measured by the rotation
of the Earth is △T = TT − UT1. The long-term trend is for △T to increase gradually because
of the tidal deceleration of the Earth’s rotation, which causes UT1 to lag increasingly behind
TT. In predicting the precise times of topo-centric phenomena, like solar eclipse contacts, both
TT and UT1 come into play, and this requires assumptions about the value of △T at the time
of the phenomenon. Alternatively, the circumstances of such phenomena can be expressed in
terms of an imaginary system of geographic meridians that rotate uniformly about the Earth’s axis
(△T is assumed zero, so that UT1 = TT) rather than with the real Earth; the real value of △T
then does not need to be known when the predictions are made. The zero-longitude meridian
of the uniformly rotating system is called the ephemeris meridian.

Finally the astronomical conventions IUA2000 (Soffel M.H. et al, 2003) for the description of
the Solar System (BCRS) and of the space near the Earth (GCRS) introduced the following
two theoretical time scales not taken by any real clock but connected with Post-Newtonian
solutions of Einstein’s equations in special harmonic gauges with Sun, Earth, Moon, planets
as matter.

Barycentric Coordinate Time - tB = TCB - it advances at a rate 1.55 10−8 faster with respect to
SI seconds on the surface of the Earth and is the time coordinate in BCRS.

Geocentric Coordinate Time - tG = TCG - it advances at a rate 6.97 10−10 faster with respect
to SI seconds on the surface of the Earth and is the time coordinate in GCRS. The connection
to the terrestrial time is assumed to be TT = TCG − LG (TCG − to) with a constant rate
d TT
dtG

= 1 − LG with LG = 6.969290134 10−10, while the transformation connecting TCB and

TCG is given in the next Section.

Let us notice that the discussion whether it is better to use primary conventions based on
atomic clocks or to revert to astronomical conventions is still open (Finkleman D. et al, 2011)
and will be discussed again in 2012. For a recent update on the problem of time see Ref.
(McCarthy D.D., 2009). At this stage it is difficult to say which point of view will become
more relevant in the near future: how to compare astronomic precisions connected to VLBI
and LLR with theoretical problems of atomic clocks like whether an atomic fountain clock can
be approximated with a mass-point with a well defined proper time?

3. The space-time in the Solar System and near the Earth

In this Section we will describe the conventions used to describe physics on the Earth’s surface
and space physics near the Earth and in the Solar System. Instead of starting from the
Earth, where Newtonian gravity is dominating, we shall begin with the general relativistic
description of the Solar System.

The IAU conventions (Soffel M.H. et al, 2003) for the Solar System identify a system
of harmonic coordinates (a BCRF frame) centered on the solar system barycenter and a
Post-Newtonian solution of Einstein’s equations in a special harmonic gauge at the O(1/c3)
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order, which can be interpreted as an asymptotically-Minkowskian Post-Newtonian Einstein
space-time. With a suitable coordinate transformation this solution is transformed in a
description of the same space-time with new harmonic coordinates centered on the center of
the Earth (a GCRF frame). However the presentation of this Einstein’s space-time is strongly
special relativistic (just O(1/c2) for the NASA coordinates of spacecrafts (Moyer T.D., 2003))
and becomes Galilean when one makes the transition from the coordinates with origin in the
center of the Earth to coordinates fixed on the crust of the Earth (a ITRF frame in the IERS
conventions) (IERS, 2003).

3.1 BCRS - Barycentric Celestial Reference System

The resolution B1.3 of IAU2000 (Soffel M.H. et al, 2003) states that the Barycentric Celestial
Reference System BCRS is a global reference system of barycentric space-time coordinates for
the Solar System within the framework of general relativity. It is centered in the barycenter
of the Solar System, which can be considered as a quasi-inertial Minkowski observer with a
constant 4-velocity (the time axis of the barycentric time tB = TCB), because the effects of the
Milky Way are negligible. Its spatial axes (in the instantaneous 3-spaces ΣtB with tB = const.
with rectangular 3-coordinates xi

B) are restricted to be kinematically non-rotating, namely they
have no systematic rotation with respect to distant objects in the universe. For all practical
applications the spatial axes are assumed to be oriented like the spatial axes of ICRS (see next
Section). Therefore to each ICRF frame giving a materialization of ICRS is associated a BCRF
frame.

The harmonic 4-coordinates and the retarded Post-Newtonian solution of Einstein’s equations
for the 4-metric gBµν(xB) given in the IAU2000 conventions are

x
µ
B =

(

xo
B = c tB; xi

B

)

,

gBoo(xB) = ǫ
[

1 − 2 wB(xB)

c2
− 2 w2

B(xB)

c4
+ O(c−5)

]

,

gBoi(xB) = ǫ
[4 wBi(xB)

c3
+ O(c−5)

]

,

gBij(xB) = −ǫ 3gBij(xB) = −ǫ
[

(1 +
2 wB(xB)

c2
) δij + O(c−4)

]

.

The signature of the 4-metric is the same as for Minkowski metric ηµν = ǫ (+−−−) ( ǫ = +
is the particle physics convention, ǫ = − is the general relativity one). The 3-metric 3gBij(xB)
on the 3-spaces ΣtB is positive-definite.

See Appendix A of Ref. (Soffel M.H. et al, 2003) for the Post-Newtonian gravitational
potentials wB(xB) and wi

B(xB) generated by the Sun and the planets. These extended bodies
are usually approximated with their center of mass (mass monopole) carrying, when needed
like for Saturn, a spin dipole.

The barycenter of the Solar System has coordinates x
µ

B(B)
=

(

xo
B; 0i

)

and its world-line is a

straight-line (the time axis) approximating a time-like geodesic of the 4-metric if we neglect
galactic and extra-galactic influences. In each point of the barycentric world-line there is an

orthonormal tetrad with the time-like 4-vector given by the barycenter 4-velocity u
µ

B(B)
=

(

1;�0
)
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and with the 3 mutually orthogonal spatial axes ǫ
µ

B(B)r
=

(

0;�ǫB(B)r

)

whose orientation

is determined by ICRS. The instantaneous 3-spaces ΣtB are considered as nearly Euclidean
inertial 3-spaces. However their extrinsic 3-curvature as 3-sub-manifolds of the space-time is
not zero but of order O(c−2), so that strictly speaking they do not correspond to Einstein’s
clock synchronization convention.

The world-line x
µ

B(G)
(xo

B) =
(

xo
B;�xB(G)(xo

B)
)

of the Earth’s geo-center (a time-like geodesics of

the Post-Newtonian 4-metric gBµν(xB)) is determined by the JPL ephemerides as solution of the

equations of motion of the solar system bodies. The geo-center has the 4-velocity u
µ

B(G)
(xo

B) =

d x
µ

B(G)
(xo

B)

dxo
B

=
(

1;�vB(G)(xo
B)
)

and carries spatial 3-axes ǫ
µ

B(G)r
(xo

B) =
(

0;�ǫB(G)r

)

assumed

parallel to the axes ǫ
µ

B(B)r
of the barycenter. For an arbitrary point in the solar system with

coordinates
(

xo
B;�xB

)

we have �xB = �xB(G)(xo
B) +�rB(G)(xo

B).

The global reference system BCRS is the reference system in which the positions and
motions of bodies outside the immediate environment of the Earth have to be expressed.
It is appropriate for the solution of the equations of motion of solar system bodies (the
development of the solar system ephemerides). Within it the positions and motions of galactic
and extra-galactic objects are most simply expressed. It is the system to be used for most
positional-astronomy reference data, e.g. star catalogues.

3.2 GCRS - Geocentric Celestial Reference System

The resolution B1.3 of IAU2000 (Soffel M.H. et al, 2003) states that the Geocentric Celestial
Reference System BCRS is a global reference system of space-time coordinates for Earth
based measurements and the solution of the equations of motion of bodies in the near-Earth
environment (artificial satellites) within the framework of general relativity. The GCRS is
defined such that the transformation between BCRS and GCRS spatial coordinates contains
no rotation component, so that GCRS is kinematically non-rotating with respect to BCRS. The
equations of motion of an Earth satellite with respect to GCRS will contain relativistic Coriolis
forces that come mainly from geodesic precession. The spatial orientation of the GCRS is
derived from that of BCRS, that is by the orientation of the ICRS. Its origin is the world-line of
the geo-center (fictitious observer at the center of the Earth): it is the time axis of the geocentric
time tG = TCG and the instantaneous 3-spaces ΣtG

with tG = const. are inertial hyper-planes
(Einstein’s convention for clock synchronization) only at the lowest order in 1/c.

GCRS has the following 4-coordinates and retarded Post-Newtonian solution of Einstein’s
equations for the 4-metric gGµν(xG)

x
µ
G =

(

xo
G = c tG; xa

G

)

,

gGoo(xG) = ǫ
[

1 − 2 wG(xG)

c2
− 2 w2

G(xG)

c4
+ O(c−5)

]

,

gGoa(xG) = ǫ
[4 wa

G(xG)

c3
+ O(c−5)

]

,

gGab(xG) = −ǫ 3gGab(xG) = −ǫ
[

(1 +
2 wG(xG)

c2
) δab + O(c−4)

]

.
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See Appendix A of Ref. (Soffel M.H. et al, 2003) for the GCRS Post-Newtonian gravitational
potentials wG(xG) and wa

G(xG). While wG(xG) generalizes the Newton potential, the
components gGoa(xG) (i.e. wa

G(xG)) are responsible for the gravito-magnetic effects near the
Earth like the Lense-Thirring or frame-dragging effect (Ciufolini I. et al, 1995; Will C.M., 2011).
The Post-Newtonian solution gGµν(xG) describes the exterior gravitational field outside the
Earth surface, not inside.

The geo-center has coordinates x
µ

G(G)
=

(

xo
G; 0a

)

with tangent time-like vector (the unit

4-velocity) u
µ

G(G)
= (1; 0a), while the spatial axes have the 3 orthogonal tangent space-like

unit vectors ǫ
µ

G(G)r
. It is a time-like geodesic of the Post-Newtonian 4-metric gGµν(xG), if the

Earth is approximated as a mass monopole. Otherwise the Earth mass and spin multipoles will
create a deviation of the geo-center world-line from a time-like geodesic.

The tetrad carried by the geo-center is obtained from the BCRS tetrad with the tensorial

transformation law of 4-vectors, i.e. with the matrix
∂x

µ
G

∂xν
B
|geocenter. To evaluate it one needs

the transformation between BCRS and GRCS coordinates. If the barycentric 3-velocity and

3-acceleration of the geo-center are �vB(G) =
d�xB(G)

dtB
and �aB(G) =

d�vB(G)

dtB
respectively and if

we introduce the relative 3-vector �rB(G)(xo
B) = �xB − �xB(G)(xo

B), the BCRS-GCRS coordinate
transformation is (Soffel M.H. et al, 2003)

tG = tB − 1

c2

[

A(tB) + vi
B(G) ri

B(G)

]

+

+
1

c4

[

B(tB) + Bi(tB) ri
B(G) + Bij(tB) ri

B(G) r
j

B(G)
+ C(tb,�xB)

]

+ O(c−5) =

= tB − 1

c2

[

∫ tB

tBo

dt
(�v2

B(G)

2
+ wBext(�xB(G))

)

+ vi
B(G)r

i
B(G)

]

+ O(c−4),

xa
G = δai

[

ri
B(G) +

1

c2

(1

2
vi

B(G) v
j

B(G)
r

j

B(G)
+ wBext(�xB(G)) ri

B(G) +

+ ri
B(G) a

j

B(G)
r

j

B(G)
− 1

2
ai

B(G) r2
B(G)

)]

+ O(c−4),

The functions A(tB), B(tB), Bi(tB), Bij(tB) and C(tB,�xB(G)), depending on the BCRS

gravitational potentials wBext(�xB(G)) (the BCRS Newtonian potential of all solar system bodies

apart from the Earth acting on the geo-center) and wi
Bext(�xB(G)) (the BCRS gravito-magnetic

potential) are given in Ref. (Soffel M.H. et al, 2003).

As shown in Ref. (Soffel M.H. et al, 2003), this transformation reduces to a pure Lorentz
boost without rotation modulo terms of order O(c−4) in the limit of no acceleration due to the
gravitational field (i.e. with �xB(G)(tB) = �vB(G) tB, �vB(G) = const., vB(G) = |�vB(G)|, βB(G) =

vB(G)/C, γB(G) = (1 − β2
B(G)

)−1/2)

tG = γB(G)

(

tB −
�vB(G) ·�xB

c2

)

+ O(c−4),

�xG = �xB − γB(G)�vB(G) tB +
γB(G) − 1

v2
B(G)

�vB(G) ·�xB�vB(G) + O(c−4).
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Without the kinematically non-rotating constraint, GCRS would have a slow rotation (≈ 1.9
arcsec/century) with respect to the BCRS, the largest component of which is the geodetic
(DeSitter-Fokker) precession, i.e. it would be dynamically non-rotating (and Coriolis terms
should be added to the equations of motion of bodies in GCRS). Instead in the kinematically
non-rotating version the motion of the celestial pole is defined in GCRS and the geodetic precession
appears in the precession-nutation theory rather than in the transformation between GCRS and
BCRS.

In the GCRS of IERS2003 (IERS, 2003) there are small velocities allowing one to use Galilean
calculations plus relativistic corrections. However the ecliptic plane was redefined only in the
IAU2006 resolutions (IAU, 2006) and a nearly relativistic dynamical theory of Earth rotation
appeared only in 2009 with IAU2006 (Coppola V., 2009).

Therefore there are still open problems in the relativistic formulation of angular variables
(Kaplan G.H., 2005):

1) the algorithms for space motion, parallax, light-time and gravitational deflection (for the observer
at the geo-center the gravity field of the Earth is neglected in evaluating the deflection(star
catalogs and ephemerides use 3-vectors in BCRS) );

2) the series of rotations for precession, nutation, Earth rotation and polar motion (in this order)
use 3-vectors in GCRS;

3) the aberration calculation connects the two systems because it contains the transformation
between them: its input are two 3-vectors in BCRS and its output is a 3-vector in GCRS;

4) in the VLBI case aberration does not appear explicitly, but the conventional algorithm for the
delay observable incorporates 3-vectors expressed in both systems.

3.3 ITRS - International Terrestrial Reference System

The International Terrestrial Reference System ITRS is the Earth-fixed geodetic system which
matches the reference ellipsoid WGS-84 (basis of the terrestrial coordinates latitude, longitude,
height, obtainable from GPS; it has equatorial radius 6, 378.137 m and polar flattening
1/298.257223563) to several centimeters and is defined on the instantaneous 3-spaces ΣtG

of
constant geocentric time tG = TCG = const.. It uses geocentric rectangular 3-coordinates
�xT = �xITRS on ΣtG

connected to the geocentric ones �xG by time-dependent rotations. It
is centered on the geo-center like GCRS with the center of mass defined for the whole
Earth including oceans and atmosphere. The coordinates of ITRS ≈ WGS84 ≈ GPS are
(

c tG;�xITRS

)

. GCRS is obtained from ITRS with a series of time-dependent rotations fixed by

the conventions in IERS2003 (IERS, 2003) for the precession-nutation theory of Earth rotation.
In chapter 5 of Ref. (Kaplan G.H., 2005) there is the old precession-nutation theory, while in
chapter 6 there is the new theory of Earth rotation (updated with IAU2006). In Ref. (Coppola
V., 2009) there is a more dynamical version IAU2006. Therefore the quasi-inertial relativistic
3-spaces ΣtG

of GCRS are replaced with quasi-Euclidean non-relativistic 3-spaces (still denoted
ΣtG

) only by means of rotations.

The World Geodetic System WGS84 (WGS, 1984) is the latest revision (dated 1984 and revised
in 2004) of a standard for use in cartography, geodesy and navigation. It comprises a
standard coordinate frame for the Earth, a standard spheroidal reference surface (the reference
ellipsoid) for raw altitude data and a gravitational equipotential surface (the geoid) that defines
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the minimal sea level. The measurement of the form and dimensions of the Earth, the location
of objects on its surface and the Earth gravity field are done by means of artificial satellites like
the GPS ones (Seeber G., 2003). Let us remark that the gravitational field inside the Earth is
evaluated in geodesy with Newtonian gravity, while the external GCRS gravitational potential
is evaluated with Post-Newtonian general relativity and the junction of the two approaches
has still to be done.

In the description of Earth rotation precession and nutation are really two aspects of a
single phenomenon, the overall response of the spinning oblate, elastic Earth to external
gravitational torques from the Moon, Sun and planets. As a result of these torques, the
orientation of the Earth’s rotation axis is constantly changing with respect to a space-fixed
(locally inertial) reference system. The motion of the celestial pole among the stars is
conventionally described as consisting of a smooth long term motion called precession upon
which is superimposed a series of small periodic components called nutation.

In the old theory precession and nutation are described by 3× 3 rotation matrices operating on
column 3-vectors in a traditional equatorial celestial coordinate system.The 3-vectors have the

form�x =

⎛

⎝

xx

xy

xz

⎞

 =

⎛

⎝

d cos δ cos α
d cos δ sin α
d sin δ

⎞

, where α = tg−1 xy

xx
is the right ascension, δ = tg−1 xz√

x2
x+x2

y

is the declination and d is the distance from the specific origin of the system. For stars and objects
at infinity (beyond the solar system), d is often simply put to 1.

In these traditional systems the adjective mean is applied to quantities (pole, equator, equinox,
coordinates) affected only by precession, while true describes quantities affected by both
precession and nutation. Thus it is the true quantities that are directly relevant to observations;
mean quantities now usually represent an intermediate step in the computation.

Let us now describe the rotations in the 3-spaces ΣtG
connecting a GCRS 3-vector �xG to a ITRS

3-vector �xT according to the conventions of the new theory of Ref. (IERS, 2003). The new
definitions were forced by the fact the the errors in the determination of the old quantities
were too big.

A matrix B, called frame bias matrix, is required to convert ICRS data to the dynamical mean
equator and equinox J2000.0: �xmean(2000) = B�xICRS. The same matrix is used in geocentric
transformations to adjust 3-vectors in the GCRS so that they can be operated on by the
conventional precession and nutation matrices. The matrix B corresponds to a fixed set of
very small rotations: B = R1(−ηo) R2(ξo) R3(d αo) with dαo = −14.6mas, ξo = −16.6170mas,
ηo = −6.8192, all converted to radians (divide by 206264806.247).

If B is the frame bias matrix , P(tG) the GCRS matrix for precession and N(tG) the GCRS
matrix for nutation, for a 3-vector �xG in GCRS we have

�xG
B→ MEAN EQUATOR and EQUINOX o f J2000.0,

P(tG)→ MEAN EQUATOR and EQUINOX at tG,

N(tG)→ �EY =
(

TRUE EQUATOR and EQUINOX at tG

)

.
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If the 3-vector �EY is decomposed on the basis

⎛

⎝

1
0
0

⎞

,

⎛

⎝

0
1
0

⎞

 and

⎛

⎝

0
0
1

⎞

, then by definition the

true equinox at tG in GCRS is the unit 3-vector

�YG = BT PT(tG) NT(tG)

⎛

⎝

1
0
0

⎞

 .

By definition the true celestial pole at date tG - the Celestial Intermediate Pole CIP - in GCRS is the
unit 3-vector

�nG = BT PT(tG) NT(tG)

⎛

⎝

0
0
1

⎞

 =

⎛

⎝

X
Y
Z

⎞

 =

⎛

⎝

sin d cos E
sin d sin E
cos d

⎞

 ,

�nG · �YG = 0.

By definition the Earth’s axis is the line through the geo-center in direction of the CIP. The angle
of rotation about this axis (θ, linear in UT1 and independent from the precession-nutation model
for the Earth) must be measured with respect to some agreed-upon direction in space (CIO, see
later on).

The reference point on the equator (origin of θ) must be defined in such a way that the rate
of change of the Earth’s rotation angle, measured with respect to this point, is the angular
velocity of the Earth about the CIP. As the CIP moves, the point must move to remain in the
equatorial plane (instantaneously orthogonal to the CIP axis); but the point motion must be
such that the measured rotation angle is not contaminated by some component of the motion
of the CIP itself. This leads to the concept of Non-Rotating Origin (NLO) on the equator: as the
equator moves the point’s instantaneous motion must always be orthogonal to the equator
(whereas the equinox has a motion along the equator: the precession in right ascension). That
is, the point motion at some time tG must be directly toward or away from the position of the
pole of rotation at tG. The point is not unique.

The new conventions use the Celestial Intermediate Reference System CIRS Eσ, which has the
NLO azimuthal origin at the Celestial Intermediate Origin CIO or σ, a well defined point on the
equator of CIP with GCRS coordinates

�σG = �YG cos Eo − (�nG × �YG) sin Eo, �nG ·�σG = 0,

where Eo is an angle, named equation of the origins (the arc on the instantaneous true equator
of date tG from the CIO at equinox; it is the right ascension of the true equinox relative
to the CIO; it is also the difference θ − GAST, where GAST is the angular equivalent of
Greenwich apparent sidereal time), given at p.60 of Ref.(Kaplan G.H., 2005). Now we have an
orthonormal triad: �nG,�σG and �yG = �nG ×�σG.

The coordinates in Eσ are

GCRS
C→ Eσ, �xσ = C�xG,

CT =
(

�σG,�yG,�nG

)

=

⎛

⎝

σ1 y1 xCIP

σ2 y2 yCIP

σ3 y3 zCIP

⎞

 = R3(−E) R2(−d) R3(E) R3(s),
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with the angles d and E appearing in �nG. The angle s, the CIO locator, given at p.62 of Ref.
(Kaplan G.H., 2005), represents the difference between the length of the arc from the point
N westward to the CIO (on the instantaneous equator) and the length of the arc from N
westward to the GCRS origin of right ascension (on the GCRS equator).

On the celestial sphere, the Earth’s instantaneous (moving) equator intersects the GCRS
equator at two nodes. Let N be the ascending node of the instantaneous equator on the GCRS
equator.

The matrix C is the CIO-based rotation taking into account nutation, precession and frame
bias.

The Earth rotation angle θ with the origin CIO rotates the CIO equatorial axis to an
instantaneous axis (the Terrestrial Intermediate Origin TIO or ω̃), which is a NLO azimuthal
origin for the Terrestrial Intermediate Reference System TIRS Eω̃

Eσ
R3(θ)→ Eω̃ , �xω̃ = R3(θ)�xσ.

Then to arrive to ITRS from Eω̃ we must take into account the polar motion

Eω̃
WT(tG)→ ITRS, �xT = WT(tG)�xω̃ ,

W(tG) = R3(−s
′
) R2(xp) R1(yp),

where WT(tG) is the polar motion (wobble) matrix and xp and yp are the coordinates of CIP in
ITRS. This rotation reorients the pole from the ITRS z-axis to the CIP and moves the origin of

longitude very slightly from the ITRS x-axis to TIO (the angle s
′ ≈ −47microarcsec). See p.63

of Ref. (Kaplan G.H., 2005).

In conclusion we have the following sequence of rotations connecting GCRS to ITRS

GCRS → Eσ → Eω̃ → ITRS,

�xG → �xσ = C�xG → �xω̃ = RT
3 (−θ)�xσ → �xT = WT

�xω̃ ,

�xT = WT RT
3 (−θ)C�xG.

Therefore ITRS is defined by taking the instantaneous 3-spaces ΣtG
of GCRS and by rotating

the 3-coordinates in each 3-space to take into account the rotation of the Earth. However in this
way all the clocks on the Earth surface have the same geocentric time tG. A more relativistic
formulation should replace the final rotation matrix R with a Lorentz transformation Λ = B R,
where the Lorentz boost B would imply the transformation of the global GCRS time tG into
the different local coordinate times associated with the proper times (SI atomic seconds) of the
atomic clocks in each point of the Earth surface.

4. The space-time outside the Solar System

Reference data for positional astronomy, such as the the data in astrometric star catalogs
or barycentric planetary ephemerides, are specified in the International Celestial Reference
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System ICRS (Kaplan G.H., 2005; Kovalevski J. et al, 1989; Sovers O.J. et al, 1998; Johnstone
K.J. et al, 1999; Ma C. et al, 1998; Fey A. et al, 2009) with origin in the solar system barycenter
and with spatial axes fixed with respect to space. A materialization as a ICRF is obtained
by supposing that the origin is a quasi-inertial observer and that we have a quasi-inertial
(essentially non-relativistic) reference frame with rectangular 3-coordinates (or equatorial
geographical coordinates) in a nearly Galilei space-time whose 3-spaces are Euclidean. The
directions of the spatial axes are effectively defined by the adopted coordinates (i.e. using
the tabulated right ascensions and declinations and, in the case of a star catalogue, the proper
motions (ephemerides)) of 212 extragalactic radio sources observed by VLBI . These radio sources
(quasars and AGN, active galactic nuclei) are assumed to have no observable intrinsic angular
momentum. At low accuracy one uses a star catalogue system such as the FK5 (Fey A.
et al, 2009). At a more accurate level taking into account optical wavelengths, one has the
Hipparcos Celestial Reference Frame HCRF, composed of the positions and proper motions
of the astrometrically well-behaved stars in the Hipparcos catalog.

Thus, the ICRS is a space-fixed system, more precisely a kinematically non-rotating system,
without an associated epoch. ICRS provides the orientation of BCRS and closely matches the
conventional dynamical system defined by the Earth’s mean equator and equinox of J2000.0:
the alignment difference is at the 0.02 arcsecond level, negligible for many applications.

However if we take into account the description of the universe given by cosmology, the actual
cosmological space-time cannot be a nearly Galilei space-time but it must be a cosmological
space-time with some theoretical cosmic time. In the standard cosmological model (Bartelmann
M., 2010; Bean R., 2009) it is a homogeneous and isotropic Friedmann-Robertson-Walker
space-time whose instantaneous 3-spaces have nearly vanishing internal 3-curvature, so that
may locally be replaced with Euclidean 3-spaces as it is done in galactic dynamics. However
they have a time-dependent conformal factor (it is one in Galilei space-time) responsible for
the Hubble constant regulating the expansion of the universe. Moreover the Hubble constant
is also the negative of the trace of the external 3-curvature of the 3-space as 3-sub-manifold
of the space-time. As a consequence the transition from the astronomical ICRS to an
astrophysical description taking into account cosmology is far from being understood.

5. Concluding remarks

As we have seen relativistic metrology is a field in rapid evolution and subject to continuous
refinements.

The existing standard of length will survive till when the technology will allow us to detect
the deviations from Euclidean instantaneous 3-spaces implied by Post-Newtonian general
relativity. For instance in Ref. (Turyschev S.G. et al, 2006) there is a proposal of a space mission
LATOR (Laser Astrometric Test Of Relativity), in which two spacecrafts behind the Sum will
form a triangle with the International Space Station ISS. This would allow us to measure the
three angles of the triangle to see whether their sum is 2π as required by an instantaneous
Euclidean 3-space.

The development of optical atomic clocks will allow us to develop a new generation of
gravimeters for the local study of the gravitational field of the Earth (now also investigated
with the satellites GOCE (Gravity field and steady-state Ocean Circulation Explorer,
ESA), CHAMP (CHAllenging Mini-Satellite Payload, GeoForschungsZentrum GFZ), GRACE
(Gravity Recovery and Climate Experiment, Center for Space Research, Austin Texas)). One
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open problem to get a reliable theory of heights over the reference geoid is the comparison
of the measurements of gravimeters on the two sides of an ocean. But a byproduct of the
ACES mission will be the possibility of such a comparison, by synchronizing the optical
atomic clocks of the gravimeters with the ACES clocks on the International Space Station ISS
(Svelha D. et al, 2008). As a consequence standard non-relativistic geodesy will be replaced
by relativistic geodesy.

Also the transformation from the non-relativistic ITRS on the Earth surface to the relativistic
GCRS around the Earth will be accomplished. This will put full control on possible
semi-relativistic precessional effects near the Earth surface.

Space navigation inside the Solar System will require refinements of BCRS. In particular to test
deviations from Einstein theory of general relativity (the one used in BCRS). See for instance
the recent interest in the Pioneer anomaly (Turyshev S.G. et al, 2010) and the endless number
of proposals for its explanation.

Regarding ICRS we need a general relativistic relativistic version of it taking into account
the non-Euclidean nature of the 3-space as 3-sub-manifolds of space-time. The unsolved
problems of dark energy and dark matter, required by the standard ΛCDM cosmological
model starting from the hypothesis of homogeneity and isotropy of space-time, are pushing
towards inhomogeneous cosmological space-times in which the 3-spaces have small internal
3-curvature but a non zero external 3-curvature. The first step will be to face these problems
inside the Milky Way finding a relativistic galactic celestial reference frame extending the
existing BCRF. To this end the GAIA (Global Astrometric Interferometer for Astrophysics)
mission of ESA (Jordi C., 2011; Jordan S., 2008; Klioner S.A. et al, 2005), to be launched in 2012,
for the 3-dimensional cartography of our galaxy (position, proper velocity, radial velocity and
spectroscopic data for about one billion stars) will be a first relevant step.

6. References

[1] ACES 2010 - ESA: Atomic Clock Ensemble in Space (ACES), http :
//www.esa.int/SPECIALS/HSF−Research/SEMJSK0YDUF−0.htlm.

[2] Alba D. and Lusanna L., 2010, Charged Particles and the Electro-Magnetic Field in
Non-Inertial Frames: I. Admissible 3+1 Splittings of Minkowski Spacetime and the Non-Inertial
Rest Frames, Int.J.Geom.Methods in Physics 7, 33 (2010) (arXiv 0908.0213) and
II. Applications: Rotating Frames, Sagnac Effect, Faraday Rotation, Wrap-up Effect,
Int.J.Geom.Methods in Physics, 7, 185 (2010) (arXiv 0908.0215).

[3] Alba D. and Lusanna L., 2007, Generalized Radar 4-Coordinates and Equal-Time Cauchy
Surfaces for Arbitrary Accelerated Observers, Int.J.Mod.Phys. D16, 1149 (2007) (arXiv
gr-qc/0501090).

[4] Arias E.F., 2005, The Metrology of Time, Phil.Trans.R.Soc. A363, 2289 (2005).
[5] Ashby N., 2003, Relativity in the Global Positioning System, Living Rev. Relat. 6, 1 (2003);

see also http : //www.usno.navy.mil/USNO/time/gps.
[6] Bartelmann M., 2010, The Dark Universe, Rev.Mod.Phys. 82, 331 (2010) (arXiv 0906.5036).
[7] Basri S.A., 1965, Operational Foundation of Einstein’s General Theory of Relativity,

Rev.Mod.Phys. 37, 288 (1965).
[8] Bean R., TASI 2009. Lectures on Cosmic Acceleration (arXiv 1003.4468).
[9] Bize S., Laurent P., Abgrall M., Marion H., Maksimovic I., Cacciapuoti L., Grünert J.,

Vian C., Pereira dos Santos F., Rosenbusch P., Lemonde P., Santarelli G., Wolf P., Clairon

412 Modern Metrology Concerns

www.intechopen.com



Relativistic Metrology: from

Earth to Astrophysics 19

A., Luiten A., Tobar M. and Salomon C., 2005, Cold Atom Clocks and Applications , J.Phys.
B38, S449 (2005), special issue Atoms, Quanta and Relativity: a Century after Einstein’s
Miracolous Year.

[10] Blanchet L., Salomon C., Teyssandier P. and Wolf P., 2000, Relativistic Theory for Time and
Frequency Transfer to Order 1/c3, Astron.Astrophys. 370, 320 (2000).

[11] Bonvin C. and Durrer R., 2011, What Galaxy Surveys Really Measure, (arXiv 1105.5280).
[12] Brumberg V.A., 1991, Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol,

1991).
[13] Cacciapuoti L. and Salomon C., 2007, ACES:Scientific Objectives and Mission Status,

Nucl.Phys. Proc.Suppl. B 166, 303 (2007).
[14] Cacciapuoti L. and Salomon C., 2008, Cold Atom Clocks in Microgravity: the ACES Mission,

J.Jpn.Soc. Microgravity Appl. 25, 237 (2008).
[15] Carroll B.W. and Ostlie D.A., 2007, An Introduction to Modern Astrophysics 2nd Ed.

(Pearson Eduction Inc., NewJersey, 2007).
[16] Chou C.W., Hume D.R., Koelemeij J.C.J., Wineland D.J. and Rosenband T., 2010a,

Frequency Comparison of Two High-Accuracy Al+ Optical Clocks, Phys.Rev.Lett. 104,
070802 (2010).

[17] Chou C.W., Hume D.B., Rosenband T. and Wineland D.J., 2010b, Optical Clocks and
Relativity, Science 329, 1630 (2010).

[18] Circular T 263 of the BIPM, 2009, f tp : // f tp2.bipm.org/pub/tai/publication/cirt.263.
[19] Ciufolini I. and Wheeler J.A., 1995, Gravitation and Inertia (Princeton Univ.Press,

Princeton, 1995).
[20] Coppola V., Seago J.H. and Vallado D.A., 2009, The IAU2000A and IAU2006

Precession-Nutation Theories and their Implementation, AAS 09-159 (http :
//www.center f orspace.com/downloads/ f iles/pubs/AAS − 09 − 159.pd f ).

[21] Damour T., Soffel M.H. and Xu C., 1991, General Relativistic Celestial Mechanics.1. Method
and Definition of Reference Systems, Phys.Rev. D43, 3273 (1991).

[22] Damour T., Soffel M.H. and Xu C., 1992, General Relativistic Celestial Mechanics. 2.
Translational Equations of Motion, Phys.Rev. D45, 1017 (1992).

[23] Damour T., Soffel M.H. and Xu C., 1993, General Relativistic Celestial Mechanics. 3.
Rotational Equations of Motion, Phys.Rev. D47, 3124 (1993).

[24] Damour T., Soffel M.H. and Xu C., 1994, General Relativistic Celestial Mechanics. 4. Theory
of Satellite Motion, Phys.Rev. 49, 618 (1994).

[25] Durrer R., 2011, What do we Really Know about Dark Energy?, (arXiv 1103.5331).
[26] Fey A., Gordon G. and Jacobs C. (eds.), 2009, The Second Realization of the International

Celestial Reference Frame by Very Long Baseline Interferometry, IERS Technical Notes 35.
[27] Finkleman D., Allen S., Seaman J.H. and Seidelmann P.K., 2011, The Future of Time: UTC

and the Leap Second, American Scientist 99, 312 (2011).
[28] Garret K. and Duda G., 2011, Dark Matter: A Primer, Adv.Astron. 2011, 968283 (2011)

(arXiv 1006.2483).
[29] Gill P., 2005, Optical Frequency Standards, Metrologia 42, S125 (2005).
[30] Guinot B., 1997, Application of General Relativity to Metrology, Metrologia 34, 261 (1997).
[31] IAU 2006 General Assembly (http://www.iau2006.org/mirror/www.iau.org/iau0603

/index.html).
[32] IBWM International Bureau of Weights and Measures, 2006, The International System of

Units SI, p.126 (http : //www.bipm.org/utils/common/pd f /si−brochure−8−en.pd f )

413Relativistic Metrology: From Earth to Astrophysics

www.intechopen.com



20 Will-be-set-by-IN-TECH

[33] IERS Conventions (2003), eds. McCarthy D.D. and Petit G., IERS TN 32 (2004), Verlag des
BKG.

[34] ITUR International Telecommunications Union Recommendation ITU-R TF.460-6, 2007,
Standard-Frequency and Time-Signal Emissions.

[35] Johnstone K.J. and de Vegt Chr., 1999, Reference Frames in Astronomy, Annu. Rev. Astron.
Astrophys. 37, 97 (1999).

[36] Jordan S., 2008, The GAIA Project: Technique, Performance and Status, Astron.Nachr. 329,
875 (2008) (DOI 10.1002/asna.200811065).

[37] Jordi C., 2011, The European Space Agency Gaia Mission: Exploring the Galaxy, (arXiv
1105.6166).

[38] Kaplan G.H., 2005, The IAU Resolutions on Astronomical Reference Systems, Time Scales
and Earth Rotation Models, U.S.Naval Observatory circular No. 179 (2005) (arXiv
astro-ph/0602086).

[39] Klioner S.A. and Soffel M.H., 2004, Refining the Relativistic Model for GAIA: Cosmological
Effects in the BCRS, Proc. of the Symposium The Three-Dimensional Universe with GAIA,
Paris, pp. 305-309 (ESA SP-576, January 2005) (arXiv astro-ph/0411363).

[40] Kovalevski J., Mueller I.I. and Kolaczek B., 1989, Reference Frames in Astronomy and
Geophysics (Kluwer, Dordrecht, 1989).

[41] Lemonde P., Laurent P., Santarelli G., Abgrall M., Sortais Y., Bize S., Nicolas C., Zhang S.,
Clairon A., Dimarcq N., Petit P., Mann A., Luiten A., Chang S. and Salomon C., 2001 Cold
Atom Clocks on Earth and Space, in Frequency Measurement and Control, Advanced Techniques
and Future Trends, ed.A.N.Luiten (Springer, Berlin, 2001).

[42] Lindegren L. and Dravins D., 2003, The Fundamental Definition of ’Radial Velocity’,
Astron.Astrophys. 401, 1185 (2003) (arXiv astro-ph/0302522).

[43] Ludlow A.D., Zelevinsky T., Campbell G.K., Blatt S., Boyd M.M., de Miranda M.H.G.,
Martin M.J., Thomsen J.W., Foreman S.M., Jun Ye, Fortier T.M., Stalnaker J.E., Diddams
S.A., Le Coq Y., Barber Z.W., Poli N., Lemke N.D., Beck K.M., and Oates C.W., 2008, Sr
Lattice Clock at 1 Œ 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca
Clock, Science 319, 1805 (2008).

[44] Lusanna L., 2011, Canonical Gravity and Relativistic Metrology: from Clock Synchronization
to Dark Matter as a Relativistic Effect, (arXiv 1108.3224).

[45] Ma C., Arias E.F., Eubanks T.M., Fey A.L., Gontier A.M., Jacobs C.S., Sovers O.J.,
Archinal B.A. and Charlot P., 1998, The International Celestial Reference Frame as Realized
by Very Long Baseline Interferometry, AJ 116, 516 (1998).

[46] McCarthy D.D. and Seidelmann P.K., 2009, Time: from Earth Rotation to Atomic Physics
(Wiley, NewYork, 2009).

[47] 15th Meeting of the General Conference on Weights and Measures, Resolution 2, 1975 (http :
//www.bipm.org/en/CGPM/db/15/2/).

[48] 17th Meeting of the General Conference on Weights and Measures, Resolution 1, 1983 (http :
//www.bipm.org/en/CGPM/db/17/1/).

[49] Moyer T.D., 2003, Formulation for Observed and Computed Values of Deep Space Network
Data Types for Navigation (John Wiley, New York, 2003).

[50] Parker T.E., 2010, Long-Term Comparison of Caesium Fountain Primary Frequency Standards,
Metrologia 47, 1 (2010).

[51] Perlick V., 1987, Characterization of Standard Clocks by means of Light Rays and Freely Falling
Particles, Gen.Rel.Grav. 19, 1059 (1987).

414 Modern Metrology Concerns

www.intechopen.com



Relativistic Metrology: from

Earth to Astrophysics 21

[52] Perlick V., 1994, Characterization of Standard Clocks in General Relativity, in Semantic
Aspects of Space-Time Theories, eds. Majer U. and Schimdt H.J. (Bl-Wissenschaftsverlag,
Mannheim, 1994).

[53] G.Petit and Wolf P., 2005, Relativistic Theory for Time Comparisons: a Review, Metrologia,
42, S138-S144, (2005).

[54] Resolution 1 of the 13th General Conference on Weights and Measures (CGPM) 1956.
See the Official Definition of the International Bureau of Weights and Measures (BIPM)
in http : //www.bimp.org/en/si/si−brochure/chapter2/2 − 1/second.htlm.

[55] Resolution 10 of the XVIth General Assembly of the IAU, Grenoble 1976 (http :
//www.iau.org/static/resolutions/IAU1976−French.pd f ).

[56] Reynaud S., Salomon C. and Wolf P., 2009, Testing General Relativity with Atomic Clocks,
Space Sci.Rev. 148, 233 (2009).

[57] Rosenbad T., Hume D.B., Schmidt P.O., Chou C.W., Brusch A., Lorini L., Oskay W.H.,
Drullinger R.E., Fortier T.M., Stalnaker J.E., Diddams S.A., Swann W.C., Newbury N.R.,
Itano W.M., Wineland D.J. and Bergquist J.C., 2008, Frequency Ratio of Al+ and Hg+
Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , Science 319, 1808 (2008).

[58] Ross M., 2010, Dark Matter: the Evidence from Astronomy, Astrophysics and Cosmology,
(arXiv 1001.0316).

[59] Seeber G., 2003, Satellite Geodesy (Walter de Gruyter, Berlin NewYork, 2003).
[60] SIGRAV 2006 - See the talks at the SIGRAV Graduate School on

Experimental Gravitation in Space(Firenze, September 25-27, 2006)
(http://www.fi.infn.it/GGI-grav-space/egss.html) and at the Workshop Advances
in Precision Tests and Experimental Gravitation in Space (Firenze, September 28/30, 2006)
(http://www.fi.infn.it/GGI-grav-space/egsw.html).

[61] Soffel M.H., 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer,
Berlin, 1989).

[62] Soffel M.H., Klioner S.A., Petit G., Wolf P., Kopeikin S.M., Bretagnon P., Brumberg
V.A., Capitaine N., Damour T., Fukushima T., Guinot B., Huang T., Lindegren L., Ma
C., Nordtvedt K., Ries J., Seidelmann P.K., Vokroulicky’ D., Will C.M. and Xu Ch.,
2003, The IAU 2000 Resolutions for Astrometry, Celestial Mechanics and Metrology in the
Relativistic Framework: Explanatory Supplement Astron.J., 126, pp.2687-2706, (2003) (arXiv
astro-ph/0303376).

[63] Sovers O.J. and Fanselow J.L., 1998, Astrometry and Geodesy with Radio Interferometry:
Experiments, Models, Results, Rev.Mod.Phs. 70, 1393 (1998).

[64] Standish E.M., 1998, The Time Scales in the JPL and CfA Ephemerides, Astronomy
Astrophysics 336, 381 (1998).

[65] Svehla D., Rothacher M., Salomon C., Bayerle G., Wickert J., Helm A., Ziebart M. and
Dow J., 2008, Geodesy Part of the ACES Mission: GALILEO on Board the International Space
Station, talk at the ACES Topical Team Meeting ACES and GNSS-Based Earth Observation
and Navigation, Institute of Astronomical and Physical Geodesy Technische Universitaet,
München, Germany.

[66] UCLA 2007, The ABC’s of Distances, (http : //www.astro.ucla.edu/ wright/distance.htm).
[67] Turyshev S.G., Shao M. and Nordtvedt K.L., 2006, Science, technology and mission design

for the laser astrometric test of relativity (LATOR) (arXiv gr-qc/0601035).
[68] Turyshev S.G. and Toth V.T., 2010, The Pioneer Anomaly, Living Rev.Rel. 13, 4 (2010)

(arXiv 1001.3686).

415Relativistic Metrology: From Earth to Astrophysics

www.intechopen.com



22 Will-be-set-by-IN-TECH

[69] WGS World Geodetic System website of the National Geospatial-Intelligence
Agency NGA 1984 (http://wwwl.nga.mil/ProductsServices/GeodesyGeophysics /World
GeodeticSystem/Pages/default.aspx).

[70] Will C.M., 2011, Finally, Results from Gravity Probe B, Physics 4, 43 (2011).
[71] Will C.M., 2006, The Confrontation between General Relativity and Experiment, Living Rev.

Relativ. 9, 3 (2006) (arXiv gr-qc/0510072).
[72] Will C.M., 1993, Theory and Experiment in Gravitational Physics, rev.ed. (Cambridge

Univ.Press, Cambridge, 1993).

416 Modern Metrology Concerns

www.intechopen.com



Modern Metrology Concerns

Edited by Dr. Luigi Cocco

ISBN 978-953-51-0584-8

Hard cover, 458 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

"What are the recent developments in the field of Metrology?" International leading experts answer this

question providing both state of the art presentation and a road map to the future of measurement science.

The book is organized in six sections according to the areas of expertise, namely: Introduction; Length,

Distance and Surface; Voltage, Current and Frequency; Optics; Time and Relativity; Biology and Medicine.

Theoretical basis and applications are explained in accurate and comprehensive manner, providing a valuable

reference to researchers and professionals.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luca Lusanna (2012). Relativistic Metrology: From Earth to Astrophysics, Modern Metrology Concerns, Dr.

Luigi Cocco (Ed.), ISBN: 978-953-51-0584-8, InTech, Available from:

http://www.intechopen.com/books/modern-metrology-concerns/relativistic-metrology-from-earth-to-

astrophysics



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


