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Measurement of Harmonic Voltage,  

Current, and Power at Industrial Frequency 

Lu Zuliang 
National Institute of Metrology 

P. R. China 

1. Introduction  

In recent years, power quality analyzers and revenue meters with harmonic analyzing 

function have increasingly been used to monitor the state of the power supply network. The 

precise capability of revenue meters to measure electrical energy under non-sinusoidal 

conditions has been questioned on the basis of some IEC [IEC, 2003] standards and 

international recommendations. For EMC, harmonic tests are prescribed in the IEC 

documents [IEC, 2001, 2002] to ensure that appliances including televisions, computers, 

lamps, and motors do not produce harmonic currents that exceed allowable limits when 

they are operated under sinusoidal voltage. The harmonic measurement is an important 

task too in the background of the smart grid. 

Many harmonic analyzers with variable levels and harmonic sources with determined 

accuracies have been offered in the market even as new instruments are being developed. At 

the same time, these have created a need for national laboratories to provide calibration 

facilities and traceability for harmonic quantities, including harmonic voltage, harmonic 

current, and harmonic power.  

To respond to the changing needs of the industry for non-traditional electrical 

measurements, many national laboratories (NMIs) have developed standards for power 

measurements under non-sinusoidal waveform conditions. A harmonic power standard 

equipment was also developed at the National Institute of Metrology of China (NIM) in 

2006. This equipment can accurately calibrate harmonic power analyzers and harmonic 

sources, and calibrate the harmonic-analyzing-function of the revenue meters, including its 

measuring capability for electrical energy under  non-sinusoidal conditions. The 

uncertainties of the standard equipment are less than 30 μV/V, 36 μA/A, and 42 μW/VA 

for harmonic voltage, harmonic current, and harmonic power measurements, respectively, 

at fundamental frequencies of 50 and 60 Hz and operating ranges of up to 50 A, 500 V, and 

60th order harmonics. 

The harmonic power standard equipment is introduced in this chapter as an example. Its 

measurement functions for harmonic voltage, harmonic current, and harmonic power at 

industrial frequency are described, with aspects such as its principle, setup, uncertainty 

evaluation, and experimental validation also covered.  
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The digital sampling technique is widely adopted for commercial harmonic analyzers. For 
standard equipment, this technique must be developed to a higher level to satisfy 
calibration requirements. The standard equipment of the NIM is also based on digital 
sampling techniques. Unlike that proposed in general sampling theory, however, the 
synchronization between sampling rate and signal frequency is not a stringent requirement 
for the NIM equipment. The leakage effect that results from such an asynchronous case is 
compensated for by the introduction of a novel algorithm. The engineering practicality of 
this algorithm is demonstrated and its calculation is limited to a couple of seconds, without 
the need for an especially large computing space. 

The uncertainty evaluation for the standard equipment is based primarily on experiments. 
The standard equipment is tested using the national AC voltage and AC current standards 
at variable frequency points to determine frequency characteristics. Some special factors for 
harmonic conditions are then considered; these include the small harmonic components, 
leakage between harmonics, noise, and nonlinear effect of frequency. Finally, some 
experiments are designed and implemented to validate the uncertainty. 

The principles and methods of the algorithm are designed to achieve higher accuracy. The 
uncertainty evaluation is carried out from the frequency to the harmonic feature. These attributes 
would be of significant reference for researchers, engineers, and students in developing higher 
quality commercial instruments or in general study. Based on these principles and methods the 
readers can improve system and reach a higher accuracy and a better function. 

Further investigation to extend the capability of the algorithm for impedance measurement, 
higher frequency measurement, or other AC measurements would also be valuable. 

The equipment system is introduced in Section 2. The algorithm is described in Section 3. The 

uncertainty of harmonic measurement is conceptually shown in Section 4. The harmonic 

voltage and harmonic current, their phase shifts, and harmonic power are discussed in 

Sections 5, 6, 7, and 8, respectively. The experimental validation is presented in Section 9. 

The core materials on which this chapter is based are taken from [Lu et al., 2010], and some 
concepts in [Lu et al., 2008a, 2008b, 2008c] are extended. A primary form of the algorithm is 
discussed in [Lu, 1988], and its detailed analysis and application can be found in [Lu, 1991]. 

2. System 

A block diagram of the NIM harmonic power standard equipment, including some general 
hardware, is shown in Fig. 2.1. Two commercial high-accuracy digital sampling voltmeters 
(DVMs) with type of HP3458A are employed as A/D converters (ADCs) to measure the 
instantaneous values of voltage and current signals. Non-sinusoidal signals are provided by 
two commercial programmable signal generators, one with the type of Fluke 6100A and 
another NST3500 from Chinese manufacturer. A set of resistive dividers have been 
developed to extend voltage ranges to 8, 15, 30, 60, 120, 240, and 500 V using selected 
resistors with a low time constant and low temperature coefficient. The resistance values are 
designed in such a way that the operating current does not introduce a significant heating 
effect. Another set of resistive dividers provide protection to reduce the effect of stray 
capacitance. A set of shunts (provided by SP of Sweden) are used to extend current ranges 
to 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 A, while a current transformer is adopted for 50 A.  
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Fig. 2.1. Block Diagram of the harmonic power standard equipment; where HPS is harmonic 
power source, RVD is resistive voltage divider, and DVM is digital voltage meter. 

The full-scale output signals of the voltage dividers and shunts are 0.8 V regardless of the 
voltage/current ranges, which are the input signals of the two corresponding DVMs. 

A sampling trigger is developed to enable equal interval sampling between two contiguous 
sampling data, and synchronization sampling between voltage and current signals. 

For the practical sampling strategy, 1680 samples over about four signal periods are 
computed on a PC, in accordance with the algorithm. The calculated results are voltage, 
current, and power at the DC, fundamental, and every harmonic order up to the 60th. 

3. Algorithm 

Generally, power sources and digital sampling meters have their own internal time clocks. 
Ensuring synchronous sampling capability in both instruments is difficult and often 
impossible. Such an asynchronous condition generates leakage errors in harmonic analysis 
because of the noncorrespondence between the accumulated values of the sampling data 
and the integral values in a precise period. 

To resolve this issue, the authors in [Ihlenfeld et al., 2003] developed a method in which one 
time clock is adopted in the standard equipment, not only for the source (source of standard 
equipment, SSE), but also for the meter (meter of standard equipment, MSE). When a meter 
under test (meter under test, MUT) is calibrated, the SSE provides output signals for the 
MSE and MUT, resulting in synchronous sampling and appropriate calibration results. 
However, problems occur when calibrating another source (source under test, SUT) that has 
its own time clock. In such a case, due to two different time clocks are used, MSE calibration 
under synchronous sampling is difficult to accomplish, consequently resulting in poor 
calibration.  

Non-integer-period sampling (NIPS) resolves this problem [Lu,1991]. It generates good 
results for both the MUT and SUT, without needing any special time clock and other 
equipment. The leakage effect persists, but can be overcome by the algorithm developed in 
this study for more general-purpose applications. The following section describes the 
algorithm. 
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3.1 Non-integer-period sampling 

A period signal can be written as 

 0
1

( ) sin cosk k
k

y x a a kx b kx



   ,  (3.1.1) 

where 2 /x t  ,  is the signal period or fundamental period, and k denotes the harmonic 

order. 

All cases can be expressed as  

 (n+Δ)h = 2πm ,         (3.1.2)  

and the sampling data become 

0
1

sin cosj k k
k

y a a jkh b jkh



    

 j = 0,1,2,…,n. , (3.1.3) 

where h is the sampling interval, n denotes the number of samples in m periods, and Δ 

represents a small quantity with the same means as n, noted as a deviation degree of the 

non-integer-period.  

A sampling will be entitled as integer-period sampling (IPS) when Δ = 0, and quasi-integer-

period sampling (QIPS) when |Δ|<1. Generally, it will be expressed as |Δh|<π; that is, 

NIPS. 

Fig. 3.1 explains this concept, in which three periods of a signal is divided by 13 samples at 

the same interval. For case (a), an IPS sample is obtained when 13 samples are computed; for 

case (b), an NIPS sample is derived when 7 samples are computed; for case (c), a QIPS 

sample is obtained when 4 samples are calculated.  

The key point lies in how many samples are obtained or treated. At any specified 

uncertainty, a certain IPS sample can always be found for any NIPS sample when the 

sample number is not limited, so that the NIPS sample is a part of the IPS sample [Lu, 1991].  

Similar QIPS samples also exist, as shown in Fig. 3.1. These are the groups of five, eight, and 

nine samples. 

3.2 Orthogonal check of the trigonometric function in NIPS 

An accumulation operation is used in measuring harmonic quantities from samples of 
periodic signals. It is denoted as a linear operator/calculator A.  

A few detailed forms of A were introduced in [Lu, 1988]. These are the trapezoid formula 

 
1

0
1

1
0.5 0.5

n

j j n
j

Ay y y y
n





 
   
 
 

 ,  (3.2.1) 
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rectangular (Stenbakken’s) compensation  

 
1

0

1 n

j j n
j

Ay y y
n





 
   
    
 ,   (3.2.2) 

trapezoid compensation 

   
1

0
1

1
0.5 1

n

j j n
j

Ay y y y
n





 
     

    
 .   (3.2.3) 

 

Fig. 3.1. (a) is an IPS sample, (b) is a NIPS sample, and (c) is a QIPS sample 
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In NIPS, the orthogonality of the trigonometric function appears as a deviation. 

If  

 sin kA jkh  ,   (3.2.4) 

 cos kA jkh  .  (3.2.5) 

Using the characteristic of the trigonometric function proves that 

 2 (sin cos ) k l k lA jkh jlh     , (3.2.6) 

 2 (sin sin ) k l k lA jkh jlh      , (3.2.7) 

 2 (cos cos ) k l k lA jkh jlh     . (3.2.8) 

In particular, when k = 0,  

 0 sin 0 0 0A j h A     , (3.2.9) 

 0 cos 0 1 1A j h A     . (3.2.10) 

3.3 Fourier coefficient of the signal in NIPS 

If the Fourier coefficients of the signal described in Eq. (3.1.1) are 0 , ,k ka a b
 

, the following 

hold: 

   0 0
1

k k k k
k

a a a b 



  

, (3.3.1) 

  
1,

0 22 ( ) (1 )k k k l k l l k k
l k

a a a a   


 


     
, 

 
1,

2( )k l k l l k k
l k

b b  


 


   , (3.3.2) 

1,

0 22 ( )k k k l k l l k k
l k

b a a a   


 


   


, 

        
1,

2( ) (1 )k l k l l k k
l k

b b  


 


    . (3.3.3) 

If w is the maximum limit of the harmonic order of the signal shown in Eq. (3.1.1), the 
Fourier coefficients of the signal can be denoted by a vector a with order 2w+1: 
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 a = (a0, a1, a2, ···, aw, b1, b2, ···, bw)T . (3.3.4)                        

Then, its DFT result can be expressed as another vector . â : 

 a 0 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , , , , , , , , )T

w wa a a a b b b    . (3.3.5)                          

According to Eqs. (3.3.1), (3.3.2), and (3.3.3), we have  

 R
ˆ a F a .   (3.3.6)   

Thus, the results of a can be calculated as follows:  

 
1

R
ˆa F a ,    (3.3.7) 

where FR is a matrix with order 2w+1: 

 

11 12 13

R 21 22 23

31 32 33

 
   
  

F F F

F F F F

F F F

.            (3.3.8) 

Its detailed form will be dependent on the sampling rate and signal period, and  will be 

independent of the amplitude and phase angle of the signal. That is, matrix FR is available 

for all signals when both the sampling rate and signal period are fixed. 

Some interesting and useful characteristics of FR are as follows: 

11 1F  

12 21 1 2

1
( ) ( , , , )

2
T

wa a a F F   

13 31 1 2

1
( ) ( , , , )

2
T

w   F F   

22( ) ( )kl k l k l    F  

23( ) ( )kl k l k la a  F  

32( ) ( )kl k l k la a  F  

33( ) ( )kl k l k l   F  

where k, l = 1,2, to w. 

When w = 3, the matrix of FR can be constructed as 
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1 2 3 1 2 3

1 2 1 3 2 4 2 3 1 4 2

2 1 3 4 1 5 3 1 4 5 1

3 2 4 1 5 6 4 2 5 1 6

1 2 3 1 4 2 2 1 3 2 4

2 3 1 4 5 1 1 3 4 1 5

3 4 2 5 1 6 2 4 1 5 6

1

2 1

2 1

2 1

2 1

2 1

2 1

     

          

          

          

          
          

          

    

    

    

    
    

    

 

3.4 Determination of the period 

In the algorithm, the period must first be determined. For the standard equipment, the 
signal period is cursorily known. A more accurate result can be calculated using Δ.  

The period end point can be assumed located between points yn and yn+1. Its value is exactly 
y0. The period exists in the relationship of (yn, y0, yn+1). The quantity is calculated [Lu, 1986] 
as 

 Δ = (y0-yn)/(-yn+yn+1) .     (3.4.1)    

The other similar relationships of (y0, yn+1, y1) can also be used. A more precise formula is 
[Zhang J.Q., 1996] 

 Δ = (y0+y1-yn-yn+1)/(-y0+y1-yn+ yn+1) . (3.4.2) 

The selection of the starting point of y0 is important; it must be located in a region with a 
large slope. Under sinusoidal conditions, for example, it should be a zero-crossing point, or 
a point with a minimum value among sampling data. 

Other approaches to determining the period are also available. For example, the 
relationships of the calculated values of phase angles as (5.1.5) about the first period and the 
second period [Dai, 1989] can be used. 

3.5 Practical implementation of DFT and compensation  

For input sampling data, the practical implementing process of DFT is as follows: 

1. to determine Δ according to Eq. (3.4.1) or (3.4.2); 
2. to calculate the sampling/discrete interval of h according to Eq. (3.1.2) 
3. to calculate the base functions of sin jkh  and cos jkh  which are needed by DFT; 

4. to implement DFT with the trapezoid compensation calculator A in Eq.(3.2.3). 

Where an important point is that the base functions of sin jkh  and cos jkh  needed by DFT 

come from the practical case including the signal period and the sampling rate, but not come 
only from the sampling rate of ADC. 

When application of Eq. (3.2.3) in DFT, the term of jy shall be replaced by sinjy jkh  or 

cosjy jkh , 0,1,2,j n  . 
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After this DFT a further compensation will be carried out for higher accuracy. For this aim, 

in the fact, the eqn. (3.3.7) is recognized by many researchers, but its calculation is very 

difficult. A large-capacity RAM and long computing time are required to calculate FR-1 

because of the huge matrix. Its 2w+1 order, for example, is 121 when w = 60 in the NIM 

standard equipment.  

For practical implementation, FR must be simplified. 

As mentioned in Section 3.3, only two types of quantities, ǂk and ǃk , are necessary for all the 

elements of the matrix. They should be expressed in analyzable forms. According to the 

expression of ǂk and ǃk in Eqs. (3.2.4) and (3.2.5), as well as the expression of trapezoid 

compensation operator A in Eq. (3.2.3), the quantities can be analyzed and described as 

 
21

sin sin
2 2 2

k

kh kh
ctg kh

n
         

,  (3.5.1) 

 
21 1

sin cos
2 2 2

k

kh kh
khctg

n
          

.  (3.5.2) 

However, ǃk =1, ǂk = 0 when k = 0. Alternatively, ǂ-k = -ǂk , ǃ-k = ǃk. 

Some special controls are adopted in the NIM standard equipment to let  X  1, where FR 

= I + X and I is a unit matrix. Thus, FR
 -1 ≈ I – X, where X can be directly provided according to 

Eqs. (3.3.6), (3.5.1), and (3.5.2). The calculation of FR
 -1 becomes a very easy process. The author 

notes here that it will be not necessary for the hardware control in principle. 

The precision result, a, is directly calculated without any intermediate process. A complete 

calculation that includes DFT and compensation can be completed within a couple of 

seconds, without the necessity for an especially large computing space.  

The compensation results are dependent on the ratio of the computational error/uncertainty 

of Δ to n [Lu, 2008d]. 

3.6 Simulation and the effect of noise  

A simulation test is designed to verify the effect of the algorithm and results, as evaluated 

against those derived from the general DFT method with no compensation. In the general 

method the sampling interval is regarded as 2πm/n, but in the compensation method used 

in this study, it is 2πm/(n+Δ), as shown in Eq. (3.1.2). However in this DFT this Δ value is 

asked to calculated from the sampling data. 

The sampling data from a sinusoidal signal with an amplitude of 0.8 V (to check for 

potential computational errors) are simulated on a computer with same interval of 

2πm/(n+Δ) (it becomes a NIPS or QIPS precisenly) . The sampling rate is set at 60 sampling 

data in one period with different Δ values. The general DFT and proposed algorithm are 

then used to handle the same sampling data. Their computing values for signal amplitude 

are provided and then compared with the set value (0.8 V) to reveal the relative errors 

(Table 3.6.1). 
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Δ 
Rel. error/(V/V) 

General DFT 
Proposed 
algorithm 

0.5 3905 10.0 

0.2 1626 1.9 

0.1 822 0.8 

0.05 413 0.4 

0.02 166 0.1 

0.01 83 0.1 

Table 3.6.1. Simulation results for amplitude, 0.8siny t (V), n=60 

The results show that when n = 60 and  is controlled within 0.05, the magnitude of the 
compensation effect can be as much as 1000 times. The relative error reaches the 10-7 level. 

A similar simulation is conducted for the phase difference between two signals with the 
same sampling rate, but the phase difference is set at 60°. The results are shown in Table 
3.6.2. 

 
 

Δ 
Error/rad 

General DFT Proposed algorithm 

0.5 –3714 –13 

0.2 –1615 –2.7 

0.1 –828 –1.1 

0.05 –420 –0.5 

0.02 –169 –0.2 

0.01 –85 –0.1 

Table 3.6.2. Simulation results for phase difference, n=60 

On the basis of this analysis, we design a practical sampling method in which 1680 samples 

over about 4 periods and a  value controlled within 0.04 is applied in the equipment. 

For a fixed , the phase-angle values in units of rad are different in view of varied harmonic 

components. At the fundamental, if the value is 2 m  , but at the k-th harmonics, it is 

2 km  . Therefore, the same  for higher harmonics produces different errors. 

In simulating this case, the same sampling point construction is used for all the harmonics of 
the non-sinusoidal signal. This approach, which we call “harmonic discrete division,” is the 
foundation of the investigation on harmonic sampling measurement.   

This method is adopted to investigate the performance of the algorithm for harmonics. A 
practical condition is considered; i.e., 1680 samplers (with Δ) over 4 fundamental periods. 
When the 10th order harmonics is simulated, the 1680 points are constructed over 40 
sinusoidal waveforms. The results are shown in Table 3.6.3. 
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Order 1 10 20 30 40 50 60 

Error/(nV/V) 0.2 21 68 102 74 55 298 

Table 3.6.3. Amplitude error after compensation for harmonic components,  0.8siny t (V) 

for every harmonic,  =0.04, n=1680  

The errors that occur after compensation reaches the 10-10 level for the fundamental, and are 
less than 3  10-7 up to the 60th order harmonics. This result indicates that the leakage caused 
by the non-integer-period has been resolved. 

Many other tests, including some complex waveforms, are conducted. A characterizing 
waveform signal discussed below is tested, in which all harmonic components from DC to 
60th order harmonic exist with a relative high percent of amplitude, the largest error is 0.2 × 
10-6. This result can be disregarded for the final estimated uncertainty. 

The practical specifications are determined in experiments, such as the calibration traceable 
to the primary standard of the AC voltage and AC current of the NIM. In such cases, the 
noise becomes the primary determining factor for uncertainties. 

The experimental results show that the noise effect for sinusoidal signal is about (0.5 to 2.0) 
× 10-6, as validated by Monte Carlo test results [Xue, 2011]. This means that the error from 
the algorithm (less than 1.0 × 10-6) is smaller than the effect of noise, and additional efforts to 
derive higher level algorithm results are not necessary. 

4. Concept for the uncertainty of harmonic measurement 

4.1 Fiducial error and fiducial uncertainty 

Relative error and relative uncertainty are two concepts often used in calibrations for 
general quantities. These concepts have also been used in many expressions of harmonic 
measurement. However, the example given in this study illustrates the need to revisit these 
concepts. 

A harmonic analyzer is used to measure a non-sinusoidal voltage signal with a fundamental 
100 V and a 5th order harmonic 10 V. It measures the 5th order harmonics as 10.0101 V, of 
which 10 mV is a leakage error from the fundamental (100 V), whereas 0.1 mV is an error 
only from the 5th order harmonic (10 V). In this case, the relative measurement error of the 
5th order harmonic of the analyzer is 10.1 mV/10 V = 0.1%. 

In another measurement, the analyzer measures a signal with 100 V of the fundamental plus 
0.1 V of the 5th order harmonic. In this case, the leakage error from the fundamental (10 mV) 
persists because of the fact that the 100 V fundamental is unchanged, but the error that 
comes only from the 5th order harmonic may be 1 μV. Hence, the relative measurement error 
is 10 mV/0.1V = 10%, and not 0.1% as in the first case.  

The example illustrates that the specifications of an analyzer are dependent on the 
magnitude of the signal to be measured for the relative error concept. Some error 
components may come from the fundamental. In such a case, the harmonic relative error of 
the analyzer is variable when the harmonic amplitude varies. This attribute does not 
correspond with that indicated in the typical error concept. 
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The fundamental is the main component in a general non-sinusoidal signal, whereas the 

harmonics are secondary components. Therefore, the selection of the measurement range in 

characterizing harmonic analyzers is dependent/determined primarily by the value of the 

fundamental component. 

However, the concept of total harmonic distortion (THD) is related only to the fundamental 

component or the total RMS value of the harmonics including the fundamental, and not to 

the individual harmonic component itself. 

If the fundamental component is used as reference, then the error is the same in both cases, 

as shown in the earlier example. That is, 10 mV/100V = 0.01%. However, we introduce a 

new error concept called the fiducial harmonic error, developed by the International 

Vocabulary of Metrology (VIM, Second edition) [BIPM et al., 1993a] (regrettably, the term is 

not embodied in the Third edition, JCGM 200:2008). This concept is defined as follows: 

  Vk = Vk/V1 ,          (4.1.1) 

where Vk is the absolute error of the k-th harmonic, and V1 is value of the fundamental.  

The harmonic uncertainty concept is expanded with a relative uncertainty concept, u 

(Vk/Vk）, when the quantity itself, Vk, is taken as the reference and the absolute 

uncertainty is defined as u (Vk): 

 u ( Vk/Vk) = [ u ( Vk)]/Vk .    (4.1.2) 

Changing the reference from Vk into V1, we introduce a new harmonic uncertainty concept 

and denote it as u ( Vk/V1): 

 u (Vk/V1）=  [ u (Vk）]/V1 .  (4.1.3) 

This harmonic uncertainty is defined as the fiducial harmonic uncertainty. 

The relationship between the fiducial and relative harmonic uncertainty is  

 u(Vk/V1) = u(Vk/Vk) × (Vk/V1).  (4.1.4)   

The fiducial harmonic uncertainty is a reasonable choice in expressing harmonic 
measurement uncertainties, as explained previously.  

4.2 Characterizing waveform signal 

In Eq. (4.1.4), the ratio of Vk/V1 is an indeterminate variable. To estimate the uncertainty of 
the equipment, this ratio should be a fixed value to cover all the possible calibration cases. 
The IEC documents, international recommendations for electricity meters, and EMC provide 
some typical waveforms [IEC, 2001, 2002, 2003] that can be used to estimate these fixed ratio 
values. The National Research Council of Canada (NRC) proposed eight different reference 
waveforms based on actual field-recorded distorted waveforms that can be used for same 
aim [Arseneau et al., 1995a].   

In conclusion, after considering all the different potential test waveforms that can be used, 
some rules can be assumed as follows:   
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V 0 /V 1  0.5 , 

V k /V 1  1 ,  when 2  k  10, 

V k/V 1   Ǆ/k ,  when 10  k  60, 

where V k is the amplitude of the k-th harmonic component, V 0 denotes the DC component, 
V 1 represents the fundamental, and Ǆ is a ratio factor. 

A characterizing waveform signal, determined according to the aforementioned limit 
values, is proposed (Table 4.2.1). Its corresponding waveform is shown in Fig 4.2.1. This is 
only a theoretical signal (THD = 280%), conjured to estimate the uncertainty of the harmonic 
power standard equipment. The signal covers all the possible cases under calibration, so 
that the harmonic uncertainty claim has universality. It is frequently used for the general 
analysis and digital evaluation of uncertainty for the harmonic power standard of the NIM 
[Lu, 2010]. 

 

Order γ Ratio Order γ Ratio Order γ Ratio 

0  0.500 21 3 0.143 41 1 0.024 

1  1.000 22 3 0.136 42 1 0.024 

2  0.900 23 3 0.130 43 1 0.023 

3  0.900 24 3 0.125 44 1 0.023 

4  0.900 25 3 0.120 45 1 0.022 

5  0.900 26 3 0.115 46 1 0.022 

6  0.800 27 3 0.111 47 1 0.021 

7  0.800 28 3 0.107 48 1 0.021 

8  0.800 29 3 0.103 49 1 0.020 

9  0.800 30 3 0.100 50 1 0.020 

10  0.750 31 2 0.065 51 1 0.020 

11 8 0.727 32 2 0.063 52 1 0.019 

12 7 0.583 33 2 0.061 53 1 0.019 

13 6 0.462 34 2 0.059 54 1 0.019 

14 5 0.357 35 2 0.057 55 1 0.018 

15 4 0.267 36 2 0.056 56 1 0.018 

16 3 0.188 37 2 0.054 57 1 0.018 

17 3 0.176 38 2 0.053 58 1 0.017 

18 3 0.167 39 2 0.051 59 1 0.017 

19 3 0.158 40 2 0.050 60 1 0.017 

20 3 0.150       

Table 4.2.1. Amplitude ratio of the characterizing signal, Vk/V1 
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Fig. 4.2.1. Waveform of the characterizing signal. 

5. Traceability of harmonic voltage and its uncertainty 

5.1 Determination of harmonic voltage 

When Eq. (3.1.1) expresses a non-sinusoidal voltage signal and Eq. (3.1.3) denotes the 
sampling data under the sampling model of Eq. (3.1.2), the DC voltage, fundamental 
voltage, and harmonic voltage components can be obtained after calculation according to 
Eq. (3.3.7). These are expressed as follows: 

 0 0V a , (5.1.1) 

 2 2
1 1 1V a b  , (5.1.2) 

 1 1 1arctan( / )V b a  , (5.1.3) 

 2 2
k k kV a b  , (5.1.4) 

 arctan( / )Vk k kb a  ,  (5.1.5) 

where φV1, φVk are the phase angles (against a reference time point) of the fundamental and 
harmonics, respectively, and k = 2,3,…w.  

The experimental determination of the technical specifications of the NIM harmonic power 
standard equipment is discussed next, beginning with harmonic voltage. 

5.2 Frequency characteristic 

The frequency characteristic of the standard equipment can be initially determined by 
adopting the existing National AC Voltage Primary Standard for thermo-converters. In this 
process, the stable sinusoidal signals are exported at the selected frequency points that 
correspond to the fundamental, 10th, 20th, 30th, 40th, 50th, and 60th orders. Their amplitudes 
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are set to correspond to the full range. Such signals are connected in parallel to the AC 
Voltage Standard and the harmonic power standard equipment (DVM or/and RVD). The 
experimental results show the differences than the AC Voltage Standard and its 
uncertainties. 

This frequency characteristic is a special frequency attribute. The principal difference is that 
in the sampling measurement for high frequencies, harmonic discrete division is adopted 
(see Section 3.6). A similar case exists for the current discussed in Section 5.1 and the phase 
shift mentioned in Section 7.4, but this is not discussed for simplification. 

5.2.1 Digital Voltage Meter  

Two DVMs (one for voltage, and another for current) are tested. The input range of 0.8 V is 
set as the test voltage. The DVMs are self-calibrated in advance through short input 
operation, and are connected to the reference voltage.  

The results indicate that both DVMs have similar characteristics. The relative 

differences/errors ( Vk/Vk ) are 

less than 1 V/V at the fundamental , 

less than 10 V/V within the 50th order,  

less than 20 V/V at the 60th order.  

Their standard deviations are all less than 3 V/V.  

5.2.2 Resistive Voltage Divider 

In this experiment, test voltages of 50, 100, 200, and 500 V are set. The resistive voltage 

dividers and buffers are tested together with the DVM. The relative differences/errors ( 
Vk/Vk ) in the results are not considered for correction, but are taken as a part of 
uncertainty according to GUM [BIPM et al., 1995b], so that relevant correction will not be 
necessary in future simplified practical operations. After evaluating these results and their 
standard deviations, the uncertainties of the resistive voltage divider (RVD) are obtained 
(Table 5.2.1).  

 
 

Order 1 10 20 30 40 50 60 

50 V 5.22 8.05 7.36 5.25 12.6 14.4 36.3 

100 V 8.45 9.95 10.6 10.0 8.83 6.58 35.6 

200 V 7.68 8.53 7.86 10.8 15.1 19.2 47.6 

500 V 9.50 8.81 12.6 19.6 29.2 26.7 64.2 

Table 5.2.1. Relative uncertainties of the voltage without correction, u(Vk/Vk)/(V/V)   
(k = 1) 

5.3 Harmonic characteristic 

The frequency characteristic of the standard equipment obtained in the section above is not 
the harmonic characteristic required by harmonic measurement. Some other factors that 
focus on the fiducial uncertainty in Eq. (4.1.3) are considered. 
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5.3.1 Effect of the small component  

The harmonic components are smaller in practical non-sinusoidal signals. The uncertainty 

estimation at full range in Table 5.2.1 cannot be directly applied to smaller amplitudes.  

A general method for non-linear amplitudes can be employed, where the ratio of (Vk /V1 ) is 

replaced by [0.8(Vk/V1)+0.2], in which a minimum value of 0.2 (or 20%) is maintained even 

if Vk = 0. The ratio 0.8:0.2 (or 80%:20%) is taken from the experimental results. Eq. (4.1.4) 

then becomes 

 u(Vk/V1) = [0.8(Vk/V1)）+0.2] × u(Vk/Vk) .             (5.3.1) 

5.3.2 Leakage and noise 

When a frequency signal (for example, a sinusoidal signal corresponding to the 10th order 

harmonics) is tested in the single tone experiment, other components (from the DC to the 

60th order) aside from the input signal itself appear in the DFT computational results. These 

components should be zero but are non-zero in practice possibly because the output of the 

source is not a pure single tone but with side bands; this result may also be attributed to 

both leakage due to faulty compensation and noise.  

To overcome the side bands of the source, 3 sets of data (7th, 8th, 9th) ahead of the input 

signal (10th) and 3 sets of data behind (11th, 12th, 13th) that same signal in the DFT 

computational results are excluded in the analysis below. 

The rest of the data reflect mainly leakage and noise. An “enlargement test” is designed 

and implemented to distinguish between both parts. The effect of the non-integer-period 

is enlarged 10 times (Δ is enlarged from 0.04 to 0.4). The difference between the two 

groups of data is regarded as the influence from leakage only, and the remainder is 

regarded as noise. 

The error of the k-th harmonic includes all leakages from the DC to the 60th order aside from 

itself. Therefore, all the contributions from the other harmonics are accumulated into the 

uncertainty of the k-th harmonic.  

The contribution of the leakage from the experimental results is 2.5 μV/V, and the noise 

dependent on frequency is 6.0 μV/(k = 1).  

5.3.3 Non-linearity effect 

When two sinusoidal signals are simultaneously input, such as the 1st and 5th orders, and 

when the input circuit of the meter (or the output circuit of the source) exhibits non-linearity 

of frequencies, two new sinusoidal signals, the 4th and 6th orders, appear in the results. This 

effect occurs too in the single tone experiment. 

We design and implement an experiment, in which a signal with the fundamental and 5th 

order is measured. Another signal with only the 5th order is measured. The difference 

between the two above-mentioned DFT results at the 4th and 6th orders reflects this non-

linearity. According to the experimental results, the contribution of this effect is 2.2 μV/V  

(k = 1), including other possible influences from the signal source.    
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5.4 Conclusion 

The small component effect of Eq. (5.3.1) is a part of the uncertainty. This component is 
called the traceability component because of its dependence on the voltage unit. 

The leakage, noise, and non-linearity are other parts, but they are independent of the 
voltage unit. They can be regarded as the resolution component, expressed as SQR (2.52 
+6.02 +2.22) = 6.85 μV/V (k = 1) on the basis of the results in Section 5.3. 

Considering the two components (traceability and resolution), the fiducial uncertainty of Eq. 
(5.3.1) becomes  

 uc2(Vk/V1) = [ 0.8(Vk/V1) + 0.2]2 u2(Vk/Vk) +6.85 2,  (5.4.1) 

where the parameters of u(Vk/Vk) can be introduced from Table 5.2.1, and the ratio of 
(Vk/V1) can be adopted from the characterizing signal in Table 4.2.1. The final uncertainties 
are calculated and shown in Table 5.4.1.  

 

Order 1 10 20 30 40 50 60 

50 V 8.6  9.4  7.2  7.0  7.5  7.5  10.3  

100 V 10.9  10.5  7.6  7.4  7.2  7.0  10.2  

200 V 10.3  9.7  7.3  7.5  7.7  8.0  12.3  

500 V 11.7  9.8  7.9  8.8  9.8  8.9  15.3  

Table 5.4.1. Fiducial uncertainty under the characterizing signal condition,  

uc (Vk/V1)/(V/V)  (k = 1) 

An estimation of 30 V/V (k = 2) for all the voltage ranges can be obtained. At 100 V, 

however, this estimation amounts to 20 V/V. 

6. Traceability of harmonic current and its uncertainty 

6.1 Determination of harmonic current 

When Eq. (3.1.1) expresses a non-sinusoidal current signal, and Eq. (3.1.3) denotes the 
sampling data under the sampling model of Eq. (3.1.2), after computation according to Eq. 
(3.3.7), the DC current, fundamental current, and harmonic current components can be 
obtained thus: 

 0 0I a , (6.1.1) 

 2 2
1 1 1I a b  , (6.1.2) 

 1 1 1arctan( / )I b a  , (6.1.3) 

 2 2
k k kI a b  , (6.1.4) 

 arctan( / )Ik k kb a  ,  (6.1.5) 
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where φI1, φIk are the phase angles (against a reference time point) of the fundamental and 
harmonics, respectively, and k = 2,3,…w.  

Similar experiments and computations are carried out for the harmonic current 
specifications of the NIM harmonic power standard equipment. 

6.2 Frequency characteristic 

The shunts in the equipment are tested. The relative differences/errors are not considered as 
corrections. The current traceability uncertainty in the full range of every shunt is estimated 
and shown in Table 6.2.1, including the contribution from the Primary Standards (DC 
resistance, AC/DC transfer, and DC voltage).  

 

Order 1 10 20 30 40 50 60 

≤5A 10.6 11.8 11.8 11.7 10.3 11.3 17.0 

10 A, 
20 A 

14.6 15.5 19.1 19.0 22.5 27.4 34.5 

Table 6.2.1. Traceability uncertainty in the full range of shunts without correction, 

u(Ik/Ik)/(A/A)  (k = 1) 

An experiment is designed and performed to check the aforementioned estimation (Fig. 
6.2.1). An inductive shunt is developed [Zhang J.T. et al., 2007] to produce two equal 
currents with very high accuracy. In a general series connection of two resistors, a potential 
at the middle point causes error. The defect is addressed in this study. The results obtained 
satisfy the estimation in Table 6.2.1. 

 

Fig. 6.2.1. Circuit of current traceability. 
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6.3 Harmonic characteristic 

Similar to the voltage case, the fiducial uncertainty of harmonic current u(Ik/I1) is obtained 
as  

 uc2(Ik/I1) = u2 (Ik/I1) + 7.282 ,       (6.3.1) 

where  

 u (Ik/I1) = [0.7(Ik/I1) + 0.3] u (Ik/Ik)   (6.3.2) 

is the traceability component in which non-linearity of amplitude is considered. For the 

resolution component, 2.5, 6.0, and 3.3 A/A are experimentally determined for leakage, 
noise, and non-linearity of frequencies, respectively. 

The digital computational results for the characteristic signal condition are expressed in 
Table 6.3.1.  

 
 

Order 1 10 20 30 40 50 60 

≤5 A 14 14 11 11 10 10 11 

10 A,  
20 A 

18 16 12 12 12 13 15 

50 A 18 16 12 12 12 13 15 

Table 6.3.1. Combined fiducial uncertainty in the characteristic signal, uc (Ik/I1)/(A/A)   
(k = 1) 

The table shows that the experimental results for 50 A are derived from the current 

transformer. It also shows that the maximum result is 36 A/A (k = 2), which can be used as 
an estimation for the harmonic measurement of the standard equipment. 

7. Determination of phase shift and its uncertainty 

The phase difference between voltage and current is an important quantity in power 

measurement. In harmonic power measurement, every phase difference between the 

harmonic voltage and harmonic current at the same order from the 2nd to the 60th must be 

determined. Two problems are discussed: how the phase difference is measured and how its 

uncertainty is evaluated.  

7.1 Measurement of the phase difference of two signals 

7.1.1 Phase difference of two voltage signals 

Phase difference can be measured using the sampling approach. The phase difference 
between two voltages can be calculated using the DFT sampling data results [Lu et al., 2006]:  

 2 2 1 1arctan( / ) arctan( / )k k k k kb a b a   ,     (7.1.1) 

where φk is the phase difference of the k-th harmonics between voltages y2 and y1:  
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a1k, b1k  (a2k, b2k) are the Fourier coefficients of y1 (y2). 

The method involves sampling the two voltage signals simultaneously using two ADCs (i.e., 
DVMs in the standard equipment), and applying DFT to the sampling data and then 
computing phase difference according to Eq. (7.1.1). 

The algorithm introduced in Section 3 can be applied here for precise Fourier coefficients to 
result in precise phase difference. 

Because two different ADCs are used, an intrinsic phase difference occurs, thereby affecting the 
results. A voltage can be connected parallel to the two channels and the above-mentioned 
method can be implemented to determine this intrinsic error, which can then be corrected in 
succeeding measurements [Svensson,1998]. This process can be called producing a 0° standard. 

7.1.2 Uncertainty of phase difference 

The phase angle definition is included in Eq. (7.1.1); that is, 

  = arctan(b/a).       (7.1.2) 

Therefore, its uncertainty can be expressed by the amplitude 

u2( ) = u2(arc tan(b/a) ) = [b u(a)/(a2 + b2)]2 + [a u(b)/(a2 + b2)]2 . 

If u(a) ≥ u(b), 

 u( )  u(a)/sqrt(a2 + b2) = u(a)/c,      (7.1.3) 

where u(a) is an absolute uncertainty, whose concept is similar to absolute uncertainty 
u(Vk) in Section 4. 

In general, a = (10.71) c  c; thus,                                   

u(Vk ) = (10.71) u(Vk)/Vk  u(Vk)/Vk  = u(Vk/Vk) . 

The uncertainty of phase difference u (Vk) between two voltages can be expressed as 

 u2(Vk) = u2(V1k/V1k) + u2(V2k/V2k).    (7.1.4) 

The relative uncertainty of u(Vk/Vk) is discussed in Section 5 for voltage (and Section 6 for 
current), and determined in experiments. However, some uncertainty factors can be 
discussed further: 

1. Given that the phase angle is dependent on the ratio of Fourier coefficients, the 
uncertainty of the voltage standard from traceability has no function here. 

2. The standard deviation of measurement is an important factor. 
3. Leakage and noise are also factors. 
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4. The starting point of sampling brings about variation in Fourier coefficients a and b. 
However, the experiment shows that their influence can be disregarded. 

5. The compensation of the algorithms is also a primary factor. However, the experiment 
proves that the residual effect occurring after the compensation using Eq. (3.3.7) is less 
than the noise. This effect can also be disregarded.  

7.1.3 Phase difference between a voltage signal and a current signal 

Only the shunt in the equipment is discussed in this section. The input signal is a current 
and the output signal is a voltage, shown in its equivalent circuit in Fig. 7.1.1, wherein 
points A and B denote the current input terminal, and C and D represent the voltage output 
terminal. R denotes resistance, L represents inductance, and C denotes capacitance. When 
the input current is taken as reference, the output voltage has a phase shift φ: 

 /L R RC    . (7.1.5) 

 

Fig. 7.1.1. Equivalent circuit of shunts. 

When an ADC is used to measure the voltage, its input capacitor CD may generate a new 
measurement result: 

 / DL R RC RC      , (7.1.6) 

where the function of CD cannot be disregarded. To overcome such influencing factors, a 
substitution method-based sampling measurement is developed [Wang et al., 2008]. 

 

Fig. 7.1.2A. Phase shift measurement step 1. 
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Fig. 7.1.2B. Phase shift measurement step 2. 

In Fig.7.1.2A, the shunts, one’s phase shift known and another’s unknown, are connected in 
series. Two ADCs simultaneously measure the voltages: one for a shunt near the earth point, 
and another for the full voltage. The relevant phase difference of φ1-φ2 as the measurement 
result can be obtained according to Eq. (7.1.2). Fig.7.1.2B shows that the positions of the two 
shunts are carefully exchanged, and the new phase difference of φ3-φ4 can be obtained. 

The influence function of CD1 and CD2 can be eliminated in the difference of both results of 
Δφ = (φ1-φ2)-( φ3-φ4). Suitable wiring may enable CS1, CS2 to be disregarded, and yields 

 2 2 2 2 1 1 1 1( / ) ( / )L R R C L R R C       .   (7.1.7) 

On the basis of the phase shift definition of the shunt in Eq. (7.1.5), we infer that the result 
from Eq. (7.1.7) requires measurement, and then the phase shift of the unknown shunt is 
determined using the known shunt. 

7.2 Phase shift of voltage dividers 

7.2.1 Phase shift measurement 

The phase shift of the voltage divider between its output and input, and relative uncertainty 
is determined in an experiment. Every one of the sets of dividers at the ranges 8, 15, 30, 60, 
120, 240, and 500 V is measured. The experiment is based on a step-up procedure, discussed 
below. 

Step-up Procedure  Fig. 7.2.1 depicts the step-up procedure for measuring the phase shift of 
the dividers. 

Preparation: A voltage of 0.8 V is connected in parallel to both DVMs to eliminate their 
intrinsic phase difference; that is, the 0º standard is formulated. 

Step 1. A voltage of 0.8 V is applied parallel to both DVMs (DVM2 at 10 V and DVM1 at 1 
V) without any divider. The phase difference between the 10 and 1 V range of 
DVM2 is measured. 

Step 2. A voltage of 8 V is applied parallel to the 8 V divider (a divider with a range of 8 V) 
and DVM2 in its 10 V range. The output of the divider (i.e., 0.8 V) is connected to 
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DVM1 in its 1 V range. The phase difference between the output and input of the 8 
V divider is measured. 

Step 3. The 15 V divider is measured, and the 8 V divider is taken as a standard. A voltage 
of 8 V is applied parallel to both dividers, and the outputs of both dividers are 
connected to two DVMs. The phase shift of the 15 V divider is measured. 

Similar procedures are repeated up to the 480 V divider. The measurement results are 
shown in Table 7.2.1 and their standard deviations are listed in Table 7.2. 2. 

 

Fig. 7.2.1. Step-up procedure for measuring the phase shift of the voltage dividers. 

 

Order 1 10 20 30 40 50 60 

60 V 13.0 131.9 260.3 396.1 515.4 639.5 785.9 

120 V 14.6 143.0 282.7 430.2 559.4 694.0 851.3 

240 V 12.2 118.2 233.4 356.8 459.8 567.7 701.9 

480 V –14.4 –150.8 –305.7 –451.1 –614.9 –776.7 –918.4 

Table 7.2.1. Test results of phase shift φVk/rad  

 

Order 1 10 20 30 40 50 60 

60 V 0.0 0.5 2.7 0.6 7.1 1.1 10.3 

120 V 0.3 4.0 5.9 10.3 12.5 14.7 20.9 

240 V 0.4 0.5 1.5 1.3 2.4 4.4 3.0 

480 V 0.6 1.4 3.7 6.1 8.7 14.2 4.7 

Table 7.2.2.  Standard deviation /rad 
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7.2.2 Uncertainty of phase shift measurement 

The uncertainty of the phase shift is evaluated according to Eq. (7.1.4). 

The 0º standard uncertainty, determined in an experiment, is shown in Table 7.2.3. 

 

 

Order 1 10 20 30 40 50 60 

u() 3.01 2.12 1.84 2.06 1.70 3.14 3.66 

Table 7.2.3. Uncertainty of the 0° standard/(rad) (k = 1) 

Another factor, the half range effect, is considered. A divider obtains the value in its half 

range but provides the value in its full range to the next divider. 

This effect can be measured by comparing two cases: the full and 50% ranges. The results 

are shown in Table 7.2.4. 

 

 

Order 1 10 20 30 40 50 60 

 2.0 2.0 3.0 4.0 5.0 6.0 6.5 

Table 7.2.4. Variation of phase difference between half and full range/(rad) 

Thus, Table 7.2.5 shows the uncertainty of the phase shift of every divider, including the 

standard deviation in Table 7.2.2, uncertainty of the 0° standard in Table 7.2.3, half range 

effect in Table 7.2.4, and uncertainty of its foregoing divider.  

 

 

Order 1 10 20 30 40 50 60 

60 V 6.03 5.41 7.64 9.22 11.4 13.9 15.2

120 V 6.38 6.11 8.56 10.6 12.9 15.6 17.2

240 V 6.71 6.47 9.16 11.3 14.0 16.9 18.5

480 V 7.04 6.91 10.3 13.5 17.2 22.8 20.1

Table 7.2.5. Uncertainty of phase shift of dividers after correction, u(Vk)/(rad) (k = 1) 

The 120 V divider under a 100 V fundamental has a phase shift of 14.6 rad, and its 

uncertainty is 13 rad (k = 2). However, these results can be applied only to the sinusoidal 

signal and in full range because the experiments are implemented under these conditions.  

7.3 Phase shift of shunts 

A similar step-up procedure (Fig. 7.3.1) is conducted for the shunts from 0.1 to 20 A, and 50 

A. An original standard is necessary; that is, a standard resistor of a known time constant 

developed early at the NIM. With the parameters R = 10 Ω, τ = 0.03 × 10-9, phase shift is less 

than 6 × 10-7 within 3 kHz.  
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Fig. 7.3.1. Step-up procedure for measuring the phase shift of shunts. 

  

Fig. 7.3.2. Measurement the half range effect of the shunts. 

All the shunts and 50 A transformers are measured using the method described in Section 
7.1.3. The measurement results for all the shunts are obtained. The results for the shunt of 5 
A, including its phase shift and uncertainty, are expressed in Table 7.3.1.  

In the uncertainty, all the factors are considered and computed. The half range effect is 
determined in an experiment, as shown in Fig. 7.3.2. R2 is measured initially at the half 
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current of 0.5I, and then at the full current of I. The half range effect can be determined 
when R4 is used as reference.  

 
 

Order 1 10 20 30 40 50 60 

Ik –1.3 –3.0 –0.7 –.3 –7.0 –12.4 –0.5 

u(Ik) 5.99 5.38 7.64 10.1 12.4 15.2 16.9 

Table 7.3.1. Phase shift and its uncertainty (after correction) of the 5A shunt, /rad, (k = 1) 

The 5 A shunt under a 5 A fundamental has a phase shift of –1.3 rad, and its uncertainty is 

12 rad (k = 2). The results can be applied only to the sinusoidal signal and in full range.  

7.4 Conclusion 

The uncertainty evaluation is discussed to measure phase difference by applying DFT to 
sampling data in NIPS. The step-up procedures are described for the voltage dividers and 
shunts. The phase shifts and their uncertainties are given. The uncertainty of the phase shift 

in the fundamental is 13 rad (k = 2) for the 120 V divider, and 12 rad (k = 2) for the 5 A 
shunt. These specifications fall under the special frequency characteristic. They are 
discussed further when the results are applied to harmonic power measurement. 

8. Harmonic power measurement  

8.1 Determination of Harmonic Power  

In the Section 5, DC component V0, fundamental component V1 and its phase angle φV1, and 
k-th harmonic components Vk and their phase angle φVk, (k = 2,3,…,w) are obtained for a 
non-sinusoidal voltage signal. 

Section 6 details the derivation of DC component I0, fundamental component I1 and its 
phase angle φI1, k-th harmonic components Ik and their phase angle φIk, and (k = 2,3,…,w) for 
a non-sinusoidal current signal. 

From these, we can calculate the harmonic power. 

DC power is 

 P0 = V0I0. (8.1.1) 

Fundamental active power, reactive power, and apparent power are 

 P1 = V1I1cosφ1, (8.1.2) 

 Q1 = V1I1sinφ1, (8.1.3) 

 S1 = V1I1. (8.1.4) 

The k-th harmonic active power, reactive power, and apparent power are as follows: 

 Pk = VkIkcosφk , (8.1.5) 
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 Qk = VkIksinφk , (8.1.6) 

 Sk = VkIk , (8.1.7) 

where φ1 = φV1–φI1, φk = φVk–φIk, and k = 2,3,…,w. 

8.2 Uncertainty analysis  

According to the definition in Section 4.1, the fiducial error of harmonic active power can be 

written as  

  Pk =  Pk/(V1 I1)  ,    (8.2.1)   

where k = 1,2,…,w. 

The cases of reactive power and apparent power can be similarly analyzed. 

The uncertainty of Pk, fiducial uncertainty of harmonic active power, u(Pk/(V1I1)) in 

reference to fundamental apparent power has four parts: 

 u2(Pk/(V1 I1)) = u12 + u22 + u32 + u42 ,  (8.2.2) 

where 

 u1 = (Ik/I1) cosk  u (  Vk/V1) ,   (8.2.3)    

 u2 = (Vk/V1) cosk  u ( Ik/I1) ,    (8.2.4)     

 u3 = [sink Ik Vk/(V1 I1)] u(Vk) , (8.2.5)    

 u4 = [sink Ik Vk/(V1 I1)] u(Ik) . (8.2.6)    

Eqs. (8.2.3) and (8.2.4) are dependent on the fiducial uncertainty of the harmonic voltage and 

current, or u ( Vk/V1) and u (Ik/I1), respectively. They result from the ratio errors of the 

dividers and shunts. 

Eqs. (8.2.5) and (8.2.6) are dependent on the relative uncertainty of the phase difference of 

the harmonic voltage and current, or u(Vk) and u(Ik), respectively. These are analyzed in 

Section 7. They result from phase angle errors.  

When k = 0, Eqs. (8.2.5) and (8.2.6) equal zero; when k = 90, Eqs. (8.2.3) and (8.2.4) equal 

zero. 

Eq. (8.2.5), u3, can be re-written as 

u3 = [sink × (Ik/I1)] [u(Vk) × (Vk/V1)].   

where u(Vk) is a relative uncertainty of the phase difference of harmonic voltage, which is 
related to Vk, and its values in the standard equipment are determined by sampling 

measurement. The product of u(Vk)×(Vk/V1) indicates that the reference of u(Vk) should 
be converted from Vk to V1. As a concept of fiducial uncertainty, this product can be called 

fiducial uncertainty of the phase difference of voltage, denoted as u(Vk/V1). Similar to the 
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case of voltage (current), we consider the effects of the small component, leakage, noise, and 
non-linearity.  

u(Vk/V1) = (Vk/V1) u(Vk). 

Considering the non-linearity of amplitude under the harmonic conditions in Section 5.2, the 
ratio of (Vk/V1) can be converted to [0.8(Vk/V1) + 0.2]. With the addition of the resolution 
component, a new expression is derived:              

u2(Vk/V1) =[0.8(Vk/V1)+0.2]2 u2(Vk)+ 6.852.                                                  

Thus, Eq. (8.2.5) becomes 

 u3 = [sin k (Ik/I1)] u(Vk/V1).     (8.2.7) 

Eq. (8.2.6), u4, can be similarly treated. 

 u4 = [sin k (Vk/V1) ]  u(Ik/I1),  (8.2.8) 

u2(Ik/I1) = [0.7(Ik/I1) + 0.3]2 u2(Ik)+ 7.28 2.                                                

The digital estimation of u3 and u4 can be provided. 

8.3 Uncertainty evaluation 

The uncertainty of harmonic active power can be calculated according to Eq. (8.1.5), where 
parameters Vk/V1, Ik/I1 are taken from the characterizing signal in Table 4.2.1, and 

uncertainties u(Vk/V1), u (Ik/I1), u(Vk), and u(Ik) are taken from the experimental 

results in Tables 5.4.1, 6.3.1, 7.2.5, and 7.3.1, respectively. For the cases k = 0, 30, 60, and 

90, the calculated results are shown in Table 8.3.1. 

 
 

Order 1 10 20 30 40 50 60 

0 42 28 4.4 3.0 1.6 0.63 0.70  

30 39 26 4.2 2.9 1.5 0.61 0.65  

60 32 22 3.8 2.6 1.3 0.55 0.52  

90 28 19 3.6 2.4 1.3 0.52 0.44  

Table 8.3.1. Fiducial uncertainty of active power at 500 V, 20 A under the characterizing 

signal condition, U (Pk/(V1I1))/(W/VA) (k = 2) 

In Table 8.3.1 the maximum estimated uncertainty (k = 2) is 42 W/VA, which is the 
uncertainty index of the harmonic active power. At 100 V and 5 A, however, the maximum 

estimated uncertainty (k = 2) is 36 W/VA. 

In practical measurement, in order to obtain the best uncertianty of measurement, for 
example in the important comparison, the parameters of Vk/V1, Ik/I1 may use of the 
measuring values instead of the values of the characteristic signal. When the measuring 
signal consists of only a few harmonics, the resolution component in eqn.(5.4.1), (6.3.1), 
(8.2.7), (8.2.8) may take smaller values according the practical case. In the NIM’s standard 
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equipment for the non-sinusoidal signal including 1 to 2 harmonics only, under the best 
experimental conditions, the value may take 1.00 but not 6.85 or 7.28.  

Some factors of interest, such as noise and jitter effects, are already included in the 

experimental results. For jitter, it exists practically as an uncertainty factor in the time 

point of sampling. However the author takes the concept that the sampling was at the 

precise time points still according to the Section 3.1, but, as equivalence, the signal 

instantaneous amplitudes (the sampling values) were attached additional errors. As far as 

the aliasing effect is concerned, no analysis can be carried out beyond the 40th harmonic 

component; the analysis is restricted because the power source of the standard equipment 

does not provide harmonic component signals with orders higher than the 40th in 

satisfying the specified maximum harmonic components of the 40th order, as per the IEC 

standard [IEC, 2002, 2003].  

9. Experimental validation 

The specifications of the standard equipment analyzed and determined in the above-

mentioned sections are validated in a series of experiments. 

9.1 Orthogonality check  

According to the orthogonality of the trigonometric function, power can be produced when, 

and only when, voltage and current are at the same frequency. Fundamental voltage and 

harmonic current do not produce power, a constraint that can be applied to validate the 

effectiveness of the equipment [Arseneau et al., 1995b, 2001]. 

Four steps are designed in the experiment to verify the performance of the standard 

equipment of the NIM. A time division-type power converter with an accuracy of 50 ppm is 

selected as a reference standard.  

Step 1. The input voltage and current signals are fundamental. 

Step 2. Voltage is fundamental, and current is a combination of fundamental and a 

harmonic. 

Step 3. Voltage is a combination of fundamental and a harmonic, and current is 

fundamental. 

Step 4. Return to Step 1. 

Two sets of non-sinusoidal signals are selected on the basis of (a) IEC61000-3-2 [IEC, 2001] 

(fundamental voltage, 100 V; current, 3 A; 5th order voltage, 10%; 5th order current, 40%), 

and (b) NRC [Arseneau et al., 1995a, 1997] (voltage, 120 V with THD = 9.5%; current, 5 A 

with THD = 19.5%).  

With the set of IEC signals at PF = 1.0, the errors are –1.4 and –0.7 W/VA with the 5th order 

current harmonics and 5th order voltage harmonics included, respectively. With the set of 

NRC signals, the corresponding errors are –0.6 and –0.4 W/VA, which can be disregarded. 

Two other commercial power meters, one operating under the principle of a thermo-
converter and the other under the principle of sampling, are also subjected to the same test. 
Similar results were obtained for these power meters. 
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9.2 Test on the commercial programmable signal generator  

The commercial programmable signal generator not only provides sinusoidal fundamental 
waveform voltage and current signals, but also enables the modification of these waveforms 
to include harmonic components for the calibrations of harmonic meters. It is specified as a 
0.02% device (a standard source).  

The performance of the programmable signal generator is also verified using the harmonic 
power standard equipment. The generator is programmed to produce the set of IEC signals 

of fundamental 50 Hz 100 V, 3 A, and cos = 1, and 5th harmonic 10 V, 1.2 A, and cos = 1. 
The measured results are compared with the set values of the signal generator. The fiducial 
harmonic errors of voltage, current, and power from the DC to the 7th order harmonics are 
shown in Table 9.2.1 They basically confirm the specifications of the signal generator.   

However, a small non-linearity effect in the current output is observed. Larger errors are 
generated at the DC, 2nd, 4th, and 6th order harmonic currents. This result may be 
indicative of a non-linearity effect. Given the square of the fundamental component that 
produces the DC and 2nd order harmonic components, the cross term of the fundamental 
and 5th order harmonic component produces the 4th and 6th harmonic components. A 
similar but less noticeable phenomenon can also be observed in the voltage output. The 
occurrence of the non-linearity effect should be confirmed through other tests.  

 
Order Voltage/(V/V) Current/(A/A) Power/(W/VA) 

0 79.5 –237.0 0.0 

1 -12.9 -6.6 -19.5 

2 12.1 26.3 0.0 

3 8.7 7.1 0.0 

4 4.9 32.7 0.0 

5 -9.8 –6.3 -4.6 

6 6.2 51.3 0.0 

7 11.0 6.9 0.0 

Table 9.2.1. Fiducial harmonic errors of the signal generator at the IEC signal 

9.3 Comparison with the national energy standard 

Although the harmonic power standard equipment is designed for harmonic power 

measurements, it can also be used to measure power/energy under sinusoidal waveform 
conditions. A comparison against the National Primary Power Standard of the NIM is 

conducted under test conditions of 100 V, 5 A, 50 Hz, cos = 1, 0.5 lag, 0.5 lead, zero lag, and 
zero lead. The errors of the harmonic power standard equipment are no more than –18.6 

W/VA at all the test conditions. This result is in agreement with previous findings within 
the evaluated uncertainties of the calibration/experiment. 

Bilateral comparisons with the power standards of the National Metrology Institute of 
Germany PTB and USA NIST are also carried out using a traveling transfer standard under 
the test conditions 120 V, 5 A, 50 Hz, power factors of unity, 0.5 lag and lead, and zero lag 

and lead. The agreement is within 4 μW/VA at all the test points. 
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10. Conclusion 

The harmonic power standard equipment of the NIM is introduced. It is based on the digital 
sampling technique, which does not require synchronous sampling. It features a special 
algorithm that compensates for the leakage effect caused by asynchronous sampling. When 
applied to power measurements with harmonic components of up to the 60th order, 
computation time is less than 2 seconds even without a large computer memory. 

We propose a new concept of uncertainty expression that is related to the fundamental, and 
define it as the fiducial harmonic uncertainty. This concept is designed to evaluate harmonic 
measurements. A characterizing waveform signal is reported for the universality of the 
harmonic uncertainty claim of the NIM standard.  

The harmonic power standard operates at fundamental frequencies ranging from 45 to 65 Hz 
with harmonic components of up to the 60th order, voltage range from 60 to 500 V, current 
range from 0.1 to 50 A, and any power factor from zero lag through unity to zero lead. The 
evaluated uncertainties (k = 2) of the harmonic voltages relative to the fundamental voltage, 
harmonic currents relative to the fundamental current, and harmonic power to the 
fundamental apparent power are 30 μV/V, 36 μA/A, and 42 μVA/W, respectively. These 
parameters may indicate the function of the principles and the methods described in this 
chapter, but will not be a limit for the future work. 
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