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1. Introduction 

Soft computing is an approximate solution to a precisely formulated problem or more 

typically, an approximate solution to an imprecisely formulated problem (Zadeh, 1993). It is 

a new field appearing in the recent past to solve some problems such as decision-making, 

modeling and control problems. Soft computing is an emerging approach to computing 

which parallels the remarkable ability of the human mind to reason and learn in an 

environment of uncertainty and imprecision (Jang el at., 1997). It consists of many 

complementary tools such as artificial neural network (ANN), fuzzy logic (FL), and adaptive 

neuro-fuzzy inference system (ANFIS). 

Artificial neural network (ANN) model is a system of interconnected computational 

neurons arranged in an organized fashion to carry out an extensive computing to perform a 

mathematical mapping (Rafiq et al., 2001). The first interest in neural network (or parallel 

distributed processing) emerged after the introduction of simplified neurons by McCulloch 

& Pitts, (1943). These neurons were presented as models of biological neurons and as 

conceptual components for circuits that could perform computational works. ANN can be 

most adequately characterized as a computational model with particular properties such as 

the ability to adapt or learn, to generalize, or to cluster or organize data in which the 

operation is based on parallel processing. 

ANN has a large number of highly interconnected processing elements (nodes or units) that 

usually operate in parallel and are configured in regular architectures. The collective 

behavior of an ANN, like a human brain, demonstrates the ability to learn, recall, and 

generalize from training patterns or data. ANN is inspired by modeling networks of 

biological neurons in the brain. Hence, the processing elements in ANN are also called 

artificial neurons (Rafiq et al., 2001). Artificial neural network described in this chapter is 

mostly applied to solve many civil engineering applications such as structural analysis and 

design (Cladera & Mar, 2004a, 2004b; Hajela & Berke, 1991; Sanad & Saka, 2001), structural 

damage assessment (Feng & Bahng, 1999; Mukherjee et al., 1996), structural dynamics and 

control (Chen et al., 1995; Feng & Kim, 1998) and pavement condition-rating modeling 

(Eldin & Senouuci, 1995). 
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The adaptive neuro-fuzzy inference system (ANFIS), first proposed by Jang, 1993, is one of 

the examples of neuro-fuzzy systems in which a fuzzy system is implemented in the 

framework of adaptive networks. ANFIS constructs an input-output mapping based both on 

human knowledge (in the form of fuzzy if-then rules) and on generated input-output data 

pairs by using a hybrid algorithm that is the combination of the gradient descent and least 

squares estimates. Readers are referred to References (Jang, 1993; Mashrei, 2010) for more 

details on the ANFIS. After generated input-output by training, the ANFIS can be used to 

recognize data that is similar to any of the examples shown during the training phase .The 

adaptive neuro-fuzzy inference system has been used in the area of civil engineering to 

solve many problems (Abdulkadir et al., 2006; Akbulut et al., 2004; Fonseca el at., 2007; 

Tesfamariam & Najjaran, 2007). 

Most of the problems solved in civil and structural engineering using ANFIS and ANN are 

prediction of behavior based on given experimental results that are used for training and 

testing data. The matter of modeling is to solve a problem by predicting which is obtained 

by mapping a set of variables in input space to a set of response variables in output space 

through a model as represented in Fig. 1. In the box representing a model in this figure, 

conventionally a mathematical model is used. However, the conventional modeling of the 

underlying systems often tends to become quite intractable and very difficult. Recently an 

alternative approach to modeling has emerged under the rubric of soft computing with 

neural network and fuzzy logic as its main constituents. The development of these models, 

however, requires a set of data. Fortunately, for many problems of civil engineering such 

data are available. 

The purpose of this chapter is to investigate the accuracy of an adaptive neuro-fuzzy 

inference system and neural network to solve civil engineering problems: The ANN and 

ANFIS are used to predict the shear strength of concrete beams reinforced with fiber 

reinforced polymer (FRP) bars and shear strength of ferrocement members. The 

performance of the ANFIS and ANN models are compared with experimental values and 

with those of the other methods to assess the efficiency of these models. The study is based 

on the available databases.  

 

Fig. 1. An input-output mapping 

2. Artificial neural network 

One type of network sees the nodes as artificial neurons. These are called artificial neural 

network (ANN). An artificial neuron is a computational model inspired in by natural 

neurons. Natural neurons receive signals through synapses located on the dendrites or 

membrane of the neuron. When the signals received are strong enough (surpass a certain 

threshold), the neuron is activated and emits a signal through the axon. This signal might be 

sent to another synapse, and might activate other neurons (Gershenson, 2003). Fig. 2 shows 

a natural neuron. 

Input OutputModel

www.intechopen.com



Neural Network and Adaptive Neuro-Fuzzy  
Inference System Applied to Civil Engineering Problems 473 

The complexity of real neurons is highly abstracted when modeling artificial neurons. These 
basically consist of inputs(like synapses), which are multiplied by weights (strength of the 
respective signals), and then computed by a mathematical function which determines the 
activation of the neuron. Another function (which may be the identity) computes the output 
of the artificial neuron (sometimes independent on a certain threshold). ANN combines 
artificial neurons in order to process information (Gershenson, 2003). 

Compared to conventional digital computing techniques, neural networks are advantageous 
because of their special features, such as the massively parallel processing, distributed 
storing of information, low sensitivity to error, their very robust operation after training, 
generalization and adaptability to new information (Waszczyszyn, 1998).  

 

Fig. 2. Natural (biological) neurons 

2.1 Learning process 

An artificial neuron is composed of five main parts: inputs, weights, sum function, 
activation function and outputs. Inputs are information that enters the cell from other cells 
of from external world. Weights are values that express the effect of an input set or another 
process element in the previous layer on this process element. Sum function is a function 
that calculates the effect of inputs and weights totally on this process element. This function 
calculates the net input that comes to a cell (Topcu & Sarıdemir, 2007). 

The information is propagated through the neural network layer by layer, always in the 
same direction. Besides the input and output layers there can be other intermediate layers of 
neurons, which are usually called hidden layers. Fig. 3 shows the structure of a typical 
neural network. 

The inputs to the jth node are represented as an input factor, a, with component ai (i=1 to n), 
and the output by bj. The values w1j, w2j, …, and wnj are weight factors associated with each 
input to the node. This is something like the varying synaptic strengths of biological 
neurons. Weights are adaptive coefficients within the network that determine the intensity 
of the input signal. Every input (a1, a2, …, an) is multiplied by its corresponding weight 
factor (w1j, w2j, …, wnj), and the node uses this weighted input (w1j a1, w2j a2, …, wnj an) to 
perform further calculations. If the weight factor is positive, (wijai) tends to excite the node. 
If the weight factor is negative, (wijai) inhibits the node. In the initial setup of a neural 
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network, weight factors may be chosen according to a specified statistical distribution. Then 
these weight factors are adjusted in the development of the network or “learning” process. 

The other input to the node is the node’s internal threshold, Tj. This is a randomly chosen 
value that governs the “activation” or total input of the node through the following equation 
(Baughman & Liu, 1995). 

Total Activation:     ݔ௜ =	∑ ൫ݓ௜௝൯.௡௜ୀଵ ܽ௜ − ௝ܶ       (1) 

The total activation depends on the magnitude of the internal threshold Tj. If Tj is large or 
positive, the node has a high internal threshold, thus inhibiting node-firing. If Tj is zero or 
negative, the node has a low internal threshold, which excites node-firing. If no internal 
threshold is specified, a zero value is assumed. This activity is then modified by transfer 
function and becomes the final output (bj)  of the neuron (Baughman & Liu, 1995). 

 bj = f( xi) = f (∑ ൫ݓ௜௝൯.௡௜ୀଵ ܽ௜ − ௝ܶ)    (2) 

This signal is then propagated to the neurons (process elements) of the next layer. Fig. 4 
depicts this process. 

 

Fig. 3. Structure of a typical neural network 

A back-propagation neural network has been successfully applied in various fields such as 
in civil engineering problems. A learning with back-propagation technique starts with 
applying an input vector to the network, which is propagated in a forward propagation 
mode which ends with an output vector. Next, the network evaluates the errors between the 
desired output vector and the actual output vector. It uses these errors to shift the 
connection weights and biases according to a learning rule that tends to minimize the error. 
This process is generally referred to as “error back- propagation” or back-propagation. The 
adjusted weights and biases are then used to start a new cycle. A back-propagation cycle, 
also known as an epoch, in a neural network is illustrated in Fig. 5. For a number of epochs 
the weights and biases are shifted until the deviations from the outputs are minimized. 
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Transfer functions are the processing units of a neuron. The node’s output is determined by 
using a mathematical operation on the total activation of the node. These functions can be 
linear or non-linear. Three of the most common transfer functions are depicted in Fig. 6. 

 

Fig. 4. A single neuron 

The mathematical formulation of the functions is given as follows (Matlab Toolbox, 2009): 

Pure-Linear:   ݂ሺݔሻ =  (3)     ݔ

 Log sigmoid:  ݂ሺݔሻ = ͳ ͳ + ݁ି௫⁄ 																											Ͳ ൑ ݂ሺݔሻ ൑ ͳ       (4) 

Tangent sigmoid:  ݂ሺݔሻ = tanhሺݔሻ = ݁௫ − ݁ି௫ ݁௫ + ݁ି௫ 					− ͳ ൑ ݂ሺݔሻ ൑ ͳ⁄     (5) 

 

Fig. 5. Back-propagation cycle 
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Fig. 6. Commonly used transfer function 

2.2 Generalization 

After the training is completed, the network error is usually minimized and the network 

output shows reasonable similarities with the target output, and before a neural network 

can be used with any degree of confidence, there is a need to establish the validity of the 

results it generates. A network could provide almost perfect answers to the set of problems 

with which it was trained, but fail to produce meaningful answers to other examples. 

Usually, validation involves evaluating network performance on a set of test problem that 

were not used for training. Generalization (testing) is so named because it measures how 

well the network can generalize what it has learned and form rules with which to make 

decisions about data it has not previously seen. The error between the actual and predicted 

outputs of testing and training converges upon the same point corresponding to the best set 

of weight factors for the network. If the network is learning an accurate generalized solution 

to the problem, the average error curve for the test patterns decreases at a rate approaching 

that of the training patterns. Generalization capability can be used to evaluate the behavior 

of the neural network. 

2.3 Selecting the number of hidden layers 

The number of hidden layers and the number of nodes in one hidden layer are not 

straightforward to ascertain. No rules are available to determine the exact number. The 

choice of the number of hidden layers and the nodes in the hidden layer(s) depends on the 

network application. Determining the number of hidden layers is a critical part of designing 

a network and it is not straightforward as it is for input and output layers (Rafiq el at., 2001). 

To determine the optimal number of hidden layers, and the optimal number of nodes in each 

layer, the network is to be trained using various configurations, and then to select the 

configuration with the fewest number of layers and nodes that still yields the minimum mean-

a) A pure linear transfer 
function 

x

y

0
0.5

0 

y 

b) A sigmoid transfer 
function

1.0 

0

1.0 

-1.0 

x

y  

x 

c) A hyperbolic tangent transfer function 

www.intechopen.com



Neural Network and Adaptive Neuro-Fuzzy  
Inference System Applied to Civil Engineering Problems 477 

squares error (MSE) quickly and efficiently. (Eberhard & Dobbins, 1990) recommended the 

number of hidden-layer nodes be at least greater than the square root of the sum of the 

number of the components in the input and output vectors. (Carpenter & Barthelemy, 1994; 

Hajela & Berke, 1991) suggested that the number of nodes in the hidden layer is between the 

sum and the average of the number of nodes in the input and output layers.  

The number of nodes in the hidden layer will be selected according to the following rules: 

1. The maximum error of the output network parameters should be as small as possible 
for both training patterns and testing patterns. 

2. The training epochs (number of iteration) should be as few as possible. 

2.4 Pre-process and post-process of the training patterns 

Neural networks require that their input and output data are normalized to have the same 

order of magnitude. Normalization is very critical; if the input and the output variables are 

not of the same order of magnitude, some variables may appear to have more significance 

than they actually do. The normalization used in the training algorithm compensates for the 

order-of-differences in magnitude of variables by adjusting the network weights. To avoid 

such problems, normalization all input and output variables is recommended. The training 

patterns should be normalized before they are applied to the neural network so as to limit 

the input and output values within a specified range. This is due to the large difference in 

the values of the data provided to the neural network. Besides, the activation function used 

in the back-propagation neural network is a sigmoid function or hyperbolic tangent 

function. The lower and upper limits of the function are 0 and 1, respectively for sigmoid 

function and are -1 and +1 for hyperbolic tangent function. The following formula is used to 

pre-process the input data sets whose values are between -1 and 1(Baughman & Liu, 1995).  

  ,min.
, .

,max. ,min.

2. 1i i
i norm

i i

x x
x

x x


 


    (6) 

where: ݔ௜,௡௢௥௠: the normalized variable. ݔ௜,௠௜௡: the minimum value of variable xi (input). ݔ௜,௠௔௫: the maximum value of variable xi (input). 

However, for the sigmoid function the following function might be used. 

 ௜ܱ,௡௢௥௠ = ௧೔ି௧೔,೘೔೙௧೔,೘ೌೣି௧೔,೘೔೙    (7) 

where: ݐ௜,௠௜௡: the minimum value of variable it (output). ݐ௜,௠௔௫: the maximum value of variable it (output). 

3. Adaptive neuro-fuzzy inference system (ANFIS) 

The fuzzy set theory developed by (Zadeh, 1965) provides as a mathematical framework 
to deal with vagueness associated with the description of a variable. The commonly used 
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fuzzy inference system (FIS) is the actual process of mapping from a given input to output 
using fuzzy logic. 

Fuzzy logic is particularly useful in the development of expert systems. Expert systems are 
built by capturing the knowledge of humans: however, such knowledge is known to be 
qualitative and inexact. Experts may be only partially knowledgeable about the problem 
domain, or data may not be fully available, but decisions are still expected. In these 
situations, educated guesses need to be made to provide solutions to problems. This is 
where fuzzy logic can be employed as a tool to deal with imprecision and qualitative aspects 
that are associated with problem solving (Jang, 1993). 

A fuzzy set is a set without clear or sharp boundaries or without binary membership 
characteristics. Unlike a conventional set where object either belongs or do not belong to 
the set, partial membership in a fuzzy set is possible. In other words, there is a softness 
associated with the membership of elements in a fuzzy set (Jang, 1993).A fuzzy set may be 
represented by a membership function. This function gives the grade (degree) of 
membership within the set. The membership function maps the elements of the universe 
on to numerical values in the interval [0, 1]. The membership functions most commonly 
used in control theory are triangular, trapezoidal, Gaussian, generalized bell, sigmoidal 
and difference sigmoidal membership functions (Jang et al., 1997; Matlab toolbox, 2009; 
Zaho & Bose, 2002). 

As mentioned previously, the fuzzy inference system is the process of formulating the 
mapping from a given input to an output using fuzzy logic. The dynamic behavior of an FIS 
is characterized by a set of   linguistic description rules based on expert knowledge. 

The fuzzy system and neural networks are complementary technologies.The most important 
reason for combining fuzzy systems with neural networks is to use the learning capability of 
neural network. While the learning capability is an advantage from the view point of a 
fuzzy system, from the viewpoint of a neural network there are additional advantages to a 
combined system. Because a neuro-fuzzy system is based on linguistic rules, we can easily 
integrate prior knowledge in to the system, and this can substantially shorten the learning 
process. One of the popular integrated systems is an ANFIS, which is an integration of a 
fuzzy inference system with a back-propagation algorithm (Jang et al., 1997; Lin & Lee 1996).  

There are two types of fuzzy inference systems that can be implemented: Mamdani-type 
and Sugeno-type (Mamdani & Assilian, 1975; Sugeno, 1985). Because the Sugeno system is 
more compact and computationally more efficient than a Mamdani system, it lends itself to 
the use of adaptive techniques for constructing the fuzzy models. These adaptive techniques 
can be used to customize the membership functions so that the fuzzy system best models 
the data. The fuzzy inference system based on neuro-adaptive learning techniques is termed 
adaptive neuro-fuzzy inference system (Hamidian & Seyedpoor, 2009). 

In order for an FIS to be mature and well established so that it can work appropriately in 
prediction mode, its initial structure and parameters (linear and non-linear) need to be 
tuned or adapted through a learning process using a sufficient input-output pattern of 
data. One of the most commonly used learning systems for adapting the linear and non-
linear parameters of an FIS, particularly the first order Sugeno fuzzy model, is the ANFIS. 
ANFIS is a class of adaptive networks that are functionally equivalent to fuzzy inference 
systems (Jang, 1993). 
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3.1 Architecture of ANFIS 

Fig. 7 shows the architecture of a typical ANFIS with two inputs X1 and X2, two rules and 
one output f, for the first order Sugeno fuzzy model, where each input is assumed to have 
two associated membership functions (MFs). For a first-order Sugeno fuzzy model a typical 
rule set with two fuzzy if–then rules can be expressed as (Jang, 1993): 

Rule (1): If X1 is A1 and X2 is B1, then f1 = m1 X1 + n1X2 + q1, 
Rule (2): If X1 is A2 and X2 is B2, then f2 = m2 X1 + n2X2 + q2. 

where: m1, n1, q1 and m2, n2,  q2 are the parameters of the output function. 

 

Fig. 7. Structure of the proposed ANFIS model 

The architecture of the proposed (ANFIS), it contains five layers where the node functions in 
the same layer are of the same function family. Inputs, outputs and implemented 
mathematical models of the nodes of each layer are explained below. 

Layer 1: The node function of every node i in this layer take the form: 

 ௜ܱଵ = 	μܣ௜ሺܺሻ       (8) 

where X is the input to node i, μAi is the membership function (which can be triangular, 
trapezoidal, gaussian functions or other shapes) of the linguistic label Ai associated with this 
node and Oi is the degree of match to which the input X satisfies the quantifier Ai. In the 
current study, the Gaussian shaped MFs defined below are utilized. 

௜ሺܺሻܣߤ  = ݌ݔ݁ ൜− ଵଶ ሺ௑ି௖೔ሻమఙ೔మ ൠ   (9) 

where { ܿ௜ ,  ௜} are the parameters of the MFs governing the Gaussian functions. Theߪ
parameters in this layer are usually referred to as premise parameters. 

Layer 2: Every node in this layer multiplies the incoming signals from layer 1 and sends the 
product out as follows, 

௜ݓ  = 	μܣ௜ሺ ଵܺሻ × μܤ௜ሺܺଶሻ, ݅ = ͳ,ʹ				     (10) 

where the output of this layer ( wi) represents the firing strength of a rule.  
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Layer 3: Every node i in this layer is a node labeled N, determine the ratio of the i-th rule’s 
firing strength to the sum of all rules’ firing strengths as: 

௜ିݓ = +ଵݓ௜ݓ ଶ (11)ݓ

where the output of this layer represent the normalized firing strengths.  

Layer 4: Every node i in this layer is an adaptive node with a node function of the form: 

 ௜ܱସ ௜ିݓ	= ௜݂ ௜ିݓ	= ሺ݉௜ ଵܺ +	݊௜ܺଶ ,௜ሻݍ	+ ݅ = ͳ,ʹ	   (12) 

where ݓ௜ି  is the output to layer 3, and {mi, ni, qi} is the parameter set of this node. 
Parameters in this layer are referred to as consequent parameters. 

Layer 5: There is only a single node in this layer that computes the overall output as the 
weighted average of all incoming signals from layer 4 as: 

 ௜ܱହ = ∑ ௜ିݓ ௜݂௜ = ∑ ௪೔௙೔೔∑ ௪೔೔ , ݅ = ͳ,ʹ		   (13) 

3.2 Learning process 

As mentioned earlier, both the premise (non-linear) and consequent (linear) parameters of 
the ANFIS should be tuned, utilizing the so-called learning process, to optimally represent 
the factual mathematical relationship between the input space and output space. Normally, 
as a first step, an approximate fuzzy model is initiated by the system and then improved 
through an iterative adaptive learning process. Basically, ANFIS takes the initial fuzzy 
model and tunes it by means of a hybrid technique combining gradient descent back-
propagation and mean least-squares optimization algorithms. At each epoch, an error 
measure, usually defined as the sum of the squared difference between actual and desired 
output, is reduced. Training stops when either the predefined epoch number or error rate is 
obtained. There are two passes in the hybrid learning procedure for ANFIS. In the forward 
pass of the hybrid learning algorithm, functional signals go forward till layer 4 and the 
consequent parameters are identified by the least squares estimate. In the backward pass, 
the error rates propagate backward and the premise parameters are updated by the gradient 
descent. When the values of the premise parameters are learned, the overall output (f) can 
be expressed as a linear combination of the consequent parameters (Jang, 1993): 

݂ = ଵݓଵݓ ଶݓ+ ଵ݂ + ଵݓଶݓ ଶݓ+ ଶ݂ = ଵିݓ ଵ݂ ଶିݓ+ ଶ݂ 

= ሺݓଵି ଵܺሻ݉ଵ + ሺݓଵି ܺଶሻ݊ଵ + ሺݓଵି ሻݍଵ + ሺݓଶି ܺଶሻ݉ଶ + ሺݓଶି ܺଶሻ݊ଶ + ሺݓଶି ሻݍଶ 

(14)

which is linear in the consequent parameters ݉ଵ, ݊ଵ, ,ଵݍ ݉ଶ, ݊ଶ	and	ݍଶ. 
4. Cases studies 

There are two case studies considered in this chapter: 

1. Predicting of shear strength of ferrocement members using ANN and ANFIS. 
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2. Predicting of shear strength of concrete beams reinforced with FRP bars using ANN 
and ANFIS. 

4.1 Case study 1 

In this study the back-propagation neural networks (BPNN) model and adaptive neuro-
fuzzy inference system (ANFIS) are utilized to predict the shear strength of ferrocement 
members. A database of the shear strength of ferrocement members obtained from the 
literature alongside the experimental study conducted by the author is used for the 
development of these models. The models are developed within MATLAB using BPNN and 
Sugeno ANFIS. 

4.1.1 Review of shear strength of ferrocement members 

In recent years, ferrocement has been widely accepted and utilized. Research and 
development on ferrocement has progressed at a tremendous pace. Many innovative 
applications are being explored and constructed throughout the world. The application of 
ferrocement in low cost housing is well known. However, as ferrocement elements are thin, 

their use for roofing and exterior walls raises doubts regarding the thermal comfort inside 
the building (Naaman, 2000). Ferrocement is a composite material constructed by cement 
mortar reinforced with closely spaced layers of wire mesh (Naaman, 2000; Shah, 1974). The 
ultimate tensile resistance of ferrocement is provided solely by the reinforcement in the 

direction of loading. The compressive strength is equal to that of the unreinforced mortar. 
However, in case of flexure and shear, the analysis and design of ferrocement elements is 
complex and are based primarily on the reinforced concrete analysis using the principles of 

equilibrium and compatibility. 

Few methods have been proposed for the estimation of the shear strength of ferrocement 

specimens. One of these methods is considered in this study which is given by Rao et al., 

(2006). They proposed an empirical expression to estimate the shear strength of ferrocement 

elements by considering the shear resistance of ferrocement elements as the sum of shear 

resistance due to mortar and reinforcement. The shear resistance of ferrocement element 

(Vu) was given as: 

௨ܸܾ. ݀ = ඥ ௖݂ᇱܽ ݀ൗ ቊͲ.Ͳͺͷ͸ + Ͳ.ͲͲʹͺݒ௙ ௬݂ඥ ௖݂ᇱቋ (15)

4.1.2 ANN for predicted the shear strength of ferrocement members 

An artificial neural network was developed to predict the shear strength of ferrocement. 

This section describes the data selection for training and testing patterns, the topology of the 

constructed network, the training process and the verification of the neural network results. 

A relative importance is carried out which is based on the artificial neural network 

predictions. Finally, the results of the shear strength of ferrocement members predicted by 

BPNN and ANFIS are compared with the results of the experimental program and empirical 

method. The empirical method was proposed by (Rao et al., 2006). 
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4.1.2.1 Selection of the training and testing patterns  

The experimental data that are used to train the neural network are obtained from 
literature (Mansur & Ong, 1987; Mashrei, 2010; Rao et al., 2006) as shown in Table A  in 
appendix. The data used to build the neural network model should be divided into two 
subsets: training set and testing set. The testing set contains approximately 13% from total 
database. The training phase is needed to produce a neural network that is both stable 
and convergent. Therefore, selecting what data to use for training a network is one of the 
most important steps in building a neural network model. The total numbers of 69 test 
specimens was utilized. The training set contained 60 specimens and the testing set was 
comprised of 9 specimens. 

Neural networks interpolate data very well. Therefore, patterns chosen for training set must 
cover upper and lower boundaries and a sufficient number of samples representing 
particular features over the entire training domain (Rafiq et al., 2001).An important aspect of 
developing neural networks is determining how well the network performs once training is 
complete. The performance of a trained network is checked by involving two main criteria: 

1. How well the neural network recalls the predicted response from data sets used to train 
the network (called the recall step). A well trained network should be able to produce 
an output that deviates very little from desired value. 

2. How well the network predicts responses from data sets that were not used in the 
training (called the generalization step). Generalization is affected by three factors: the 
size and the efficiency of the training data set, the architecture of the network, and the 
physical complexity of the problem. A well generalized network should be able to sense 
the new input patterns. 

To effectively visualize how well a network performs recall and generalization steps, the 
learning curve is generated which represents the mean square error (MSE) for both the recall 
of training data sets and generalization of testing set with the number of iteration or epoch. 
The error between the training data sets and the generalization of testing sets should converge 
upon the same point corresponding to the best set of weight factors for the network.    

4.1.2.2 Input and output layers 

In the developed neural network model there is an input layer, where input data are 
presented to the network, and an output layer of one neuron representing the shear strength 
of ferrocement member. In this study the parameters which may be introduced as the 
components of the input vector consist of six inputs: the total depth of specimens cross  

 

Parameters Range 

Width of specimens (b)  (mm) 100-200 

Total depth of specimens (d)   (mm) 25-50 

Shear span to depth ratio (a/d) 1-7 

Compressive strength of mortar (fc’)   26.5-44.1 

yield strength of wire mesh (fy)   (MPa) 380-410 

Volume fraction of wire mesh (vf)  % 0-5.7 

Table 1. Range of parameters in the database 
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section (d), the width of specimens cross section (b),yield tensile strength of wire mesh 
reinforcement (fy), cylinder compressive strength of mortar (fc'),  total volume fraction of 
wire mesh (vf) and shear span to depth ratio (a/d). The shear strength of ferrocement member 
represents the target variable. Table 1 summarizes the ranges of each different variable. 

4.1.2.3 Normalizing input and output data sets  

Normalization (scaling down) of input and output data sets within a uniform range before 
they are applied to the neural network is essential to prevent larger numbers from 
overriding smaller ones, and to prevent premature saturation of hidden nodes, which 
impedes the learning process. The limitation of input and output values within a specified 
range are due to the large difference in the values of the data provided to the neural 
network. Besides, the activation function used in the back-propagation neural network is a 
hyperbolic tangent function, the lower and upper limits of this function are -1 and +1 
respectively. In this study Eq. 5  mentioned above is used to normalize the input and output 
parameters. That equation gives the required results with a certain mean square error by a 
small number of epochs. 

4.1.2.4 Number of hidden layers and nodes in each hidden layer 

The network is tested with an increasing number of nodes in hidden layer.  It is found that 
one-hidden layer network with four nodes gives the optimal configurations with minimum 
mean square error (MSE). As an activation function, a hyperbolic tangent function is 
selected for the hidden layer and a purelin function is used for the output layer.  

In this study the initial weights are randomly chosen. The network has been trained 
continually through updating weights until the final error achieved is 8.48*10-4.   

Fig. 8 shows the performance for training and generalization (testing) sets using resilient 
back-propagation training algorithm, the network is trained for 420 epochs to check if the 
performance (MSE) for either training or testing sets might diverge. The network 
performance with resilient back-propagation training algorithm have been tested for 
training and generalizing patterns, as shown in Fig. 9 (a) and (b). A good agreement has 
been noted in the predicted values compared with the actual (targets) values. 

 

Fig. 8. Convergence of the BPNN for training and testing sets 
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                      (a)  For training pattern                                    (b) For testing pattern  

Fig. 9. Comparison between BPNN results and target results 

4.1.2.5 Relative importance 

Once the artificial neural network has been trained, a relative importance is used to 
investigate the influence of the various parameters on the shear strength. The effect of each 
parameter on the shear strength of ferrocement is clear in Table 2. After training all the data 
sets with the final model, the relative importance of each input variable is evaluated. The 
methodology suggested by Garson, (1991) is used. The relative importance of the various 
input factors can be assessed by examining input-hidden-output layer connection weights. 
This is carried out by partitioning the hidden-output connection weights into components 
connected with each input neuron. Table 2 lists the relative importance of the input 
variables in the BPNN model. It can be observed that for shear strength of the ferrocement 
member, the shear span to depth ratio (a dൗ ) is the most important factor among the input 

variables and volume fraction of wire mesh is the second most important factor comparing 
with the others. Therefore, it can be concluded that (a dൗ ) ratio has the most influence on the 

shear strength of ferrocement. 

 

Input 
variables 

b 
(mm) 

d 
(mm) 

௖݂′ 
(MPa) 

௬݂
(MPa) 

ܽ ݀ൗ  
 ௙ݒ

(%) 

RI (%) 7.11 20.0 8.89 5.28 38.32 20.4 

Table 2. Relative importance (RI) (%) of BPNN model 

4.1.3 Adaptive neural fuzzy inference system (ANFIS) model  

In the developed ANFIS, six variables consisting of width (b) and depth (d) of the 
specimens, yield tensile strength of wire mesh reinforcement ( ௬݂), cylinder compressive 

strength of mortar ( ௖݂′),  total volume fraction of wire mesh (ݒ௙) and shear span to depth 

ratio (ܽ ݀ൗ ) are selected as input variables to predict the shear strength of ferrocement 

members, which is the target variable. In this investigation the subtractive clustering 
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technique introduced by (Chiu, 1994)with (genfis2) function was used. Given separate sets 
of input and output data, the genfis2 uses a subtractive clustering method to generate a 
Fuzzy Inference System (FIS). When there is only one output, genfis2 may be used to 
generate an initial FIS for ANFIS training by first implementing subtractive clustering on the 
data. The genfis2 function uses the subclust function to estimate the antecedent membership 
functions and a set of rules. This function returns an FIS structure that contains a set of 
fuzzy rules to cover the feature space (Fuzzy Logic Toolbox, 2009). For a given set of data, 
subtractive clustering method was used for estimating the number of clusters and the 
cluster centers in a set of data. It assumes each data point is a potential cluster center and 
calculates a measure of the potential for each data point based on the density of surrounding 
data points. The algorithm selects the data point with the highest potential as the first cluster 
center and then delimits the potential of data points near the first cluster center. The 
algorithm then selects the data point with the highest remaining potential as the next cluster 
center and delimits the potential of data points near this new cluster center. This process of 
acquiring a new cluster center and delimiting the potential of surrounding data points 
repeats until the potential of all data points falls below a threshold. The range of influence of 
a cluster center in each of the data dimensions is called cluster radius. A small cluster radius 
will lead to finding many small clusters in the data (resulting in many rules) and vice versa 
(Jang, 1997; Jonic', 1999). Membership functions (MFs) and numbers are appropriately 
decided when testing data set. 

4.1.3.1 Database 

The adaptive neuro-fuzzy inference system model is developed to predict the shear strength 
of ferrocement members. The same database of (69) specimens as in the previous BPNN 
model is used for the development of this model. The total data is divided at random into 
two groups (training data set, and testing data set), as shown in Table A in Appendix. 

4.1.3.2 Modeling and results 

The ANFIS model is developed to predict shear strength of ferrocement specimens with 
MFs of type (gussmf) for all input variables and linear for the output. The number of MFs 
assigned to each input variable is chosen by trial and error. After training and testing, the  

 

Fig. 10. Structure of the proposed ANFIS model  
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number of MFs is fixed as six MFs for each input variable. This is chosen when the ANFIS 
model reaches an acceptable satisfactory level. The structure of ANFIS model is developed 
as shown in Fig. 10.  The basic flow diagram of computations in ANFIS is illustrated in Fig. 
11. A comparison between the prediction from ANFIS and target value for each of training 
and testing data set is shown in Fig. 12(a) and (b) respectively. The predictions appear to be 
quite good with correlation coefficient R approaches one. 

4.1.4 Comparison between experimental and theoretical results 

The predictions of shear strength of ferrocement members as obtained from BPNN, ANFIS, 
and the empirical available method (Eq.15) (Rao et al., 2006) are compared with the 
experimental results and shown for both  training and testing sets in Figs.13 and 14 and 
Table 3 . In Table 3 the ratios of experimental (Ve) to theoretical predictions of the shear 
strength (Vi) of the ferrocement specimens are calculated. The theoretical predications 
include those obtained by BPNN (V1), ANFIS (V2), and empirical method (Eq.15) (V3). The 
average and the standard deviation of the ratios Ve/Vi are given in this table for both 
training and testing set. It can be seen that BPNN and ANFIS models give average values of 
Ve/V1 and Ve/V2 of 1.01 and standard deviations of 0.14 and 0.13, respectively for training 
set and the average values of Ve/V1 and Ve/V2 of 1.03 and standard deviations of 0.09 and 
0.08, respectively for testing set , which are better than the values obtained for the empirical 
method. Figs. 13 and 14 confirm the same conclusion the predictions of BPNN and ANFIS  

 

Fig. 11. The basic flow diagram of computations in ANFIS 
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models are better than those of the empirical method. Also in Table 3 the correlation coefficient 
R of predicted shear strength by BPNN, ANFIS, and the empirical method are summarized. As 
shown in Table 4, both ANFIS and BPNN produce a higher correlation coefficient R as 
compared with the empirical method. Therefore, the BPNN as well as ANFIS can serve as 
reliable and simple tools for the prediction of shear strength of ferrocement. 

 
              (a)  For training pattern                                 (b) For training pattern 

Fig. 12. Comparison between ANFIS results and target results 

 

Specimens 
 

No.
 

Average of  of Ve / Vi STDEV  of Ve / Vi VୣVଵ 
VୣVଶ 

VୣVଷ 
VVୣଵ 

VୣVଶ 
VୣVଷ 

Training set 60 1.01 1.01 1.21 0.14 0.13 0.27 
Testing set 9 1.03 1.03 1.23 0.09 0.08 0.31 

Table 3. Comparison between experimental and predicted results for training and testing sets  

 

Fig. 13. Comparison experimental and predicted values for training data Set 
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Fig. 14. Comparison experimental and predicted values for testing data Set 

 

Type 
Correlation R 

Training Testing 

BPNN 0.9981 0.9983 

ANFIS 0.9980 0.9976 

Empirical Method 0.9500 0.9600 

Table 4. Comparison summary of correlation R 

4.2 Case study 2 

In this part the PBNN and ANFIS models are developed to predict the shear strength of 

concrete beams reinforced with FRP bars. A database from tests on concrete beams 

reinforced with FRP bars obtained from the review of literature is used in this study. The 

structure of ANN and ANFIS models and the results of this study will be described below. 

4.2.1 Review on shear strength of concrete beams reinforced with FRP bars 

An FRP bar is made from filaments or fibers held in a polymeric resin matrix binder. The 

FRP Bar can be made from various types of fibers such as Glass (GFRP) or Carbon (CFRP). 

FRP bars have a surface treatment that facilitates a bond between the finished bar and the 

structural element into which they are placed (Bank, 2006). 

During the last two decades, fiber reinforced polymer (FRP) materials have been used in a 

variety of configurations as an alternative reinforcement for new and strengthening civil 

engineering structures and bridges. The attractiveness of the material lies mainly in their 

high corrosion resistance, high strength and fatigue resistance. In some cases, the non-

magnetic characteristics became more important for some special structures. An important 

application of FRP, which is becoming more popular (Tan, 2003, as cited in Al-Sayed et at., 
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2005a) is the use of FRP for reinforcement in concrete structures. The use of FRP in concrete 

structures include: (a) the internal reinforcing (rod or bar) which is used instead of the steel 

wire (rod) equivalent; and (b) the external bonded reinforcement, which is typically used to 

repair/strengthen the structure by plating or wrapping FRP tape, sheet or fabric around the 

member (Wu & Bailey, 2005). 

There are fundamental differences between the steel and FRP reinforcements: the latter has a 
lower modulus of elasticity, the modulus of elasticity for commercially available glass and 
aramid FRP bars is 20 to 25 % that of steel compared to 60 to 75 % for carbon FRP bars 
(Bank, 2006) linear stress–strain diagram up to rupture with no discernible yield point and 
different bond strength according to the type of FRP product. These characteristics affect the 
shear capacity of FRP reinforced concrete members. Due to the relatively low modulus of 
elasticity of FRP bars, concrete members reinforced longitudinally with FRP bars experience 
reduced shear strength compared to the shear strength of those reinforced with the same 
amounts of steel reinforcement. 

Some of empirical equations have been developed to estimate shear strength of concrete 
beams reinforced with FRP. Most of the shear design provisions incorporated in these codes 
and guides are based on the design formulas of members reinforced with conventional steel 
considering some modifications to account for the substantial differences between FRP and 
steel reinforcement. These provisions use the well-known Vc + Vs method of shear design, 
which is based on the truss analogy. This section reviews the concrete shear strength of 
members longitudinally reinforced with FRP bars, ௖ܸ௙, as recommended by the American 
Concrete Institute (ACI 440.1R-03, 2003), Tureyen and Frosch Equation (2003), and the 
proposed equation by El-Sayed et al. (2005a).  

4.2.1.1 American Concrete Institute (ACI 440.1R-03) 

The equation for shear strength proposed by the American Concrete Institute (ACI 440.1R-
03), can be expressed as follows: 

 ௖ܸ௙ = ఘ೑ா೑ଽ଴ఉభ௙೎ᇲ ሺ	ඥ௙೎ᇲ଺ ܾ௪݀	ሻ 	൑ ඥ௙೎ᇲ଺ ܾ௪݀  (16) 

4.2.1.2 Tureyen and Frosch equation (2003) 

This equation was developed by Tureyen and Frosch, 2003. It was developed from a 
model that calculates the concrete contribution to shear strength of reinforced concrete 
beams. The equation was simplified to provide a design formula applicable FRP 
reinforced beams as follows: 

 ௖ܸ௙ = ଶହ ሺ	ඥ௙೎ᇲ଺ ܾ௪ܿሻ	  (17) 

where:  ܿ	 = ݇݀= cracked transformed section neutral axis depth ( mm). 

 ݇ = ටʹߩ௙݊௙ + ሺߩ௙݊௙ሻଶ −  ௙݊௙       (18)ߩ

4.2.1.3 El-Sayed et al. equation (2005a) 

They applied the same procedure in ACI 440.1R-03 to derive Eq. 1 above, with some 
modification for proposing the Eq. below: 
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 ௖ܸ௙ = Ͳ.Ͳ͵͹	ሺఘ೑ா೑ඥ௙೎ᇲఉభ ሻଵ ଷ⁄ ܾ௪݀ ൑ ඥ௙೎ᇲ଺ ܾ௪݀	  (19) 

According to ACI 440.1R-03, the factor ߚଵ in the denominator of Eq. 3 is a function of the 
concrete compressive strength. It can be simply expressed by the following equation: 

 Ͳ.ͺͷ ൒ ଵߚ = Ͳ.ͺͷ − Ͳ.ͲͲ͹ሺ ௖݂ᇱ − ʹͺሻ ൒ Ͳ.͸ͷ  (20) 

4.2.2 Shear strength database  

From the review of literature ( Deitz, et al., 1999;  El-Sayed et al. , 2005b, 2006a, 2006b, 2006c; 

Gross et al., 2003, 2004; Omeman et al., 2008; Razaqpur et al., 2004; Tariq & Newhook, 

2003; Tureyen & Frosch, 2002, 2003; Wegian & Abdalla , 2005; Yost et al., 2001), a number 

(74) of shear strength tests are used for developing the ANN and ANFIS as shown in 

Table B  in appendix. All specimens were simply supported and were tested in three-

point loading. The main reinforcement of all specimens is FRP. All specimens had no 

transverse reinforcement and failed in shear. These data are divided into two sets: a 

training set containing 64 members, and testing set comprised of 10 members. Six input 

variables are selected to build the ANN and ANFIS models. These variables are width 

(ܾ௪), and depth (݀) of the beams, modulus of elasticity of FRP (ܧ௙), compressive strength 

of concrete ( ௖݂ᇱ), reinforcement ratio of FRP (ߩ௙) and the shear span to depth ratio (ܽ ݀ൗ ). 

The output value is the shear strength of concrete beams reinforced with FRP bars. Table 5 

summarizes the ranges of each different variable. 

 

Parameters Range 

Width of beams (ܾ௪)  mm 89-1000 

Effective depth of beams (݀) mm 143-360 

Shear span to depth ratio (ܽ ݀ൗ ) 1.3-6.5 

Compressive strength of concrete ( ௖݂′) MPa 24-81 

Modulus of elasticity of FRP (ܧ௙) (GPa) 37-145 

Reinforcement ratio of FRP (ߩ௙) 0.25-2.63 

Table 5. Summarizes the ranges of the different variables. 

4.2.3 ANN model and results 

ANN is used to investigate the shear strength of concrete beams reinforced with FRP bars. 

The configuration and training of neural networks is a trail-and-error process due to such 

undetermined parameters as the number of nodes in the hidden layer, and the number of 

training patterns. In the developed ANN, there is an input layer, where six parameters are 

presented to network and an output layer, with one neuron representing shear strength of 

concrete beams reinforced with FRP bars. One hidden layer as intermediate layer is also 

included. The network with one hidden layer and four nodes in the hidden layer gave the 

optimal configuration with minimum mean square error (MSE). 

The back-propagation neural network model used for this study is trained by feeding a set 

of mapping data with input and target variables as explained previously. After the errors 
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are minimized, the model with all the parameters including the connection weights is tested 

with a separate set of “testing” data that is not used in the training phase. 

The network has trained continually through updating of the weights until error goal of 

15.1*10-4 is achieved. Fig. 15 shows the performance for training and generalization 

(testing). A resilient back propagation training algorithm is used to train the network, for 

800 epochs to check if the performance (MSE) for either training or testing sets might 

diverge. 

The network performance with resilient back propagation training algorithm have been tested 

for training and testing patterns, as shown in Fig. 16 (a) and (b). A good agreement has been 

noted in the predicting values compared with the actual (targets) values. 

Based on the same idea used to study the effect of the parameters on shear strength of 

ferrocement members, the effect of each parameter used in the input layer on shear strength 

of concrete beams reinforced with FRP bars is investigated. Table 6 lists the relative 

importance of the input variables in BPNN model. It can be observed that for shear strength 

of concrete beams reinforced with FRP, the shear span to depth ratio(a dൗ ) is also the most 

important factor among the input variables. This result is very match with the experimental 

results of many papers published in this field. 

 

 
 

Fig. 15. Convergence of the BPNN for training and testing sets 

 

Input 
variables 

bw 

(mm) 
d 

(mm) 
௖݂′ 

(MPa) 
௙ܧ

(MPa) 
ܽ ݀ൗ  

 ௙ߩ

(%) 

RI (%) 24.76 18.26 11.11 5.23 37.50 3.19 

 

Table 6. Relative importance (RI) (%) of BPNN model 
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                     (a)  For training pattern                                 (b) For training pattern 

Fig. 16. Comparison between BPNN results and target results 

4.2.4 ANFIS model and results 

The same technique used to build the ANFIS to predict shear strength of ferrocement 
members is used to build of ANFIS to predict the shear strength of concrete beams 
reinforced with FRP bars. Fig. 17 presents the structure of an adaptive neuro-fuzzy inference 
system developed to predict shear strength of concrete beams reinforced with FRP bars. The 
membership functions (MFs) of type (Gauss) for all input variables and linear for output 
present the best prediction in this study. The number of MFs assigned to each input variable 
is chosen by trial and error. After training and testing the number of MFs was fixed at two 
MFs for each input variable, when the ANFIS model reaches an acceptable satisfactory level. 
A comparison between the predictions from ANFIS and target value for both the training 
and testing data set is presented in Fig. 18(a) and(b) respectively. A good agreement has 
been noted in the predicting values compared with the experimental (target) values with 
reasonably high correlation R. 

 

Fig. 17. Structure of the proposed ANFIS model  
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                           (a) For training pattern                                 (b) For training pattern 

Fig. 18. Comparison between BPNN results and target results 

4.2.5 Comparison between experimental and theoretical results 

The predictions of shear strength of beams reinforced with FRP as that obtained from 
BPNN, ANFIS, ACI 440.1R-03, Tureyen and Frosch's equation, and the proposed equation 
by El-Sayed et al. (2005a), are compared with the experimental results and shown for both 
training and testing sets in Figs. 19 and 20 and Table 7. 

In Table 6 the ratios of experimental (Ve) to theoretical (Vi) predictions of the shear strength 
of beams reinforced with FRP are calculated, the theoretical predictions include those 
obtained by BPNN (V1), ANFIS (V2), proposed equation by El-Sayed et al. (V3),  ACI 440.1R-
03 (V4), and Tureyen and Frosch's equation (V5). The average and the standard deviation of 
the ratios Ve/Vi are also given in this table. It can be seen that the BPNN and ANFIS models 
give average values for the testing set of Ve/V1 and Ve/V2 of 0.97 and 1.03 and standard 
deviations of 0.1 and 0.167 respectively which are much better than the values obtained 
from other methods as shown in table 7. Figs. 19 and 20 confirm the same conclusion that 
the predictions of the ANN and ANFIS models are better than those of the other methods.  

Also in Table 8 the correlation coefficient R of predicted shear strength that was evaluated 
by BPNN, ANFIS and the other methods are summarized. As shown in Table 8, the  BPNN 
and ANFIS produces a higher correlation coefficient R as compared with the other methods. 
These results indicate that the BPNN and ANFIS is a reliable and simple model for 
predicting the shear strength of beams reinforced with FRP bars. 

 

Specimens 
 

No 
 

Average of  of Ve / Vi STDEV  of Ve / Vi VVୣଵ 
VୣVଶ 

VୣVଷ 
VୣVସ 

VୣVହ 
VୣVଵ 

VୣVଶ 
VୣVଷ 

VୣVସ 
VୣVହ 

Training set 64 1.01 1.04 2.30 5.32 3.17 0.16 0.23 2.31 3.94 2.98 

Testing set 10 0.96 1.03 2.01 3.93 2.73 0.103 0.17 1.72 1.62 2.27 

Table 7. Comparison between experimental and Predicted results for training and testing sets  
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Fig. 19. Comparison experimental and predicted values for testing data set 

 

 

Fig. 20. Comparison experimental and predicted values for testing data set 

 

Type Correlation R
Training Testing 

ANN 0.995 0.993
ANFIS 0.99 0.97

El-Sayed's Eq. 0..32 0.63
ACI 440 0.51 0.78

Tureyen and Frosch's Eq. 0.37 0.69

Table 8. Comparison summary of correlation R 
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5. Conclusion     

Two civil engineering applications are preformed using back-propagation neural network 

(BPNN)and adaptive neuro fuzzy inference system (ANFIS). The models were developed by 

predicting the shear strength of ferrocement members and the shear strength of concrete 

beams reinforced with fiber reinforced polymer (FRP) bars using BPNN and ANFIS based 

on the results of experimental lab work conducted by different authors. From the results of 

this study, the following conclusions can be stated: 

1. BPNN and ANFIS have the ability to predict the shear strength of ferrocement 
members and the shear strength of concrete beams reinforced with FRP with a high 
degree of accuracy when they are compared with experimental and available 

methods results. 
2. The relative importance of each input parameter is estimated  using ANN. The relative 

importance study indicated that the predicted shear strength for both ferrocement and 
concrete beams with FRP by ANN models are in agreement with the underlying 

behavior of shear strength prediction based on the prior knowledge. 
3. The ANN and ANFIS techniques offer an alternative approach to conventional 

techniques and, from them, some advantages can be obtained. Conventional models 

are based on the assumption of predefined empirical equations dependent on 

unknown parameters. However, in problems for which the modeling rules are either 

not known or extremely difficult to discover, such as in our problem, the 

conventional methods do not work well as shown in results. By using artificial neural 

network and the adaptive neuro fuzzy inference system,  these difficulties are 

overcome since they are based on the learning and generalization from experimental 

data. ANN and ANFIS models can serve as reliable and simple predictive tools for 

the prediction of shear strength for both ferrocement and concrete beams with FRP of 

ferrocement members. Therefore, these models can be applied to solve most of civil 

engineering problems as a future research. 

6. Nomenclature 

௨ܸ: Shear strength. ௖ܸ௙: The shear resistance of members reinforced with FRP bars as flexural reinforcement. ܾ: Width of the specimen. ݀: Depth of the specimen. ݒ௙: Volume fraction of the mesh reinforcement (100*Als/ bd). ܣ௟௦: Cross sectional area of the longitudinal reinforcing mesh ܾ௪: Width of the concrete specimen reinforced wih FRP ߩ௙: Reinforcement ratio of flexural FRP. ܧ௙: Modulus of elasticity of fiber reinforced polymers. ݊௙: Ratio of the modulus of elasticity of FRP bars to the modulus of elasticity of concrete. ௖݂′: Compressive strength of  concrete or mortar. ௬݂: Yield strength of reinforcement (wire mesh or FRP). ܽ ݀ൗ : Shear span to depth ratio. ߚଵ: Is a function of the concrete compressive strength. 
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6.1 Appendix 

 

Test 
No. 

b 
(mm) 

d
(mm) 

௖݂′ 
(MPa) 

௬݂
(MPa)

ܽ ݀ൗ  
௙ݒ  

%

Vu

(kN) 
Reference 

1 100 40 35.20 410.00 1.00 1.80 8.60

Mansur 
Ong, 1987 

2 100 40 35.20 410.00 1.50 1.80 5.40

3 100 40 35.20 410.00 2.00 1.80 3.90

4 100 40 35.20 410.00 2.50 1.80 3.00

5 100 40 35.20 410.00 3.00 1.80 2.50

6 100 40 35.20 410.00 1.00 2.72 10.80

7 100 40 35.20 410.00 1.50 2.72 7.00

8 100 40 35.20 410.00 2.00 2.72 5.70

9 100 40 35.20 410.00 2.50 2.72 4.00

10 100 40 35.20 410.00 3.00 2.72 3.30

11 100 40 36.00 410.00 1.00 3.62 14.00

12 100 40 36.00 410.00 1.50 3.62 9.70

13 100 40 36.00 410.00 2.00 3.62 7.50

14 100 40 36.00 410.00 2.50 3.62 5.90

15 100 40 36.00 410.00 3.00 3.62 4.80

16 100 40 36.00 410.00 1.00 4.52 17.20

17 100 40 36.00 410.00 1.50 4.52 11.60

18 100 40 36.00 410.00 2.00 4.52 8.60

19 100 40 36.00 410.00 2.50 4.52 6.80

20 100 40 36.00 410.00 3.00 4.52 5.60

21 100 40 44.10 410.00 1.00 4.52 19.00

Mansur & 
Ong, 1987 

22 100 40 44.10 410.00 1.50 4.52 13.00

23 100 40 44.10 410.00 2.00 4.52 9.50

24 100 40 44.10 410.00 2.50 4.52 7.50

25 100 40 44.10 410.00 3.00 4.52 5.90

26 100 40 26.50 410.00 1.00 4.52 15.50

27 100 40 26.50 410.00 1.50 4.52 9.00

28 100 40 26.50 410.00 2.00 4.52 7.90

29 100 40 26.50 410.00 2.50 4.52 6.20

30 100 40 26.50 410.00 3.00 4.52 5.00

31 150 25 32.20 0 1.00 0 1.84

Rao et al., 
2006 

32 150 25 32.20 380.00 1.00 2.85 8.24

33 150 25 32.20 380.00 1.00 3.80 9.93

34 150 25 32.20 380.00 1.00 4.75 12.00
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Test 
No. 

b 
(mm) 

d
(mm) 

௖݂′ 
(MPa) 

௬݂
(MPa)

ܽ ݀ൗ  
௙ݒ  

%

Vu

(kN) 
Reference 

35 150 25 32.20 380.00 1.00 5.70 13.50

36 150 25 32.20 380.00 2.00 0 0.93

37 150 25 32.20 380.00 2.00 2.85 3.92

38 150 25 32.20 380.00 2.00 3.80 4.95

39 150 25 32.20 380.00 2.00 4.75 5.79

40 150 25 32.20 380.00 2.00 5.70 6.57

41 150 25 32.20 0 3.00 0 0.49

42 150 25 32.20 380.00 3.00 2.85 2.20

43 150 25 32.20 380.00 3.00 3.80 2.55

44 150 25 32.20 380.00 3.00 4.75 2.97

45 150 25 32.20 380.00 3.00 5.70 3.36

46 150 25 32.20 0 4.00 0 0.44

 

47 150 25 32.20 380.00 4.00 2.85 1.60

48 150 25 32.20 380.00 4.00 3.80 1.99

49 150 25 32.20 380.00 4.00 4.75 2.35

50 150 25 32.20 380.00 4.00 5.70 2.65

51 150 25 32.20 0 5.00 0 0.40

52 150 25 32.20 380.00 5.00 2.85 1.42

53 150 25 32.20 380.00 5.00 3.80 1.86

54 150 25 32.20 380.00 5.00 4.75 2.16

55 150 25 32.20 380.00 5.00 5.70 2.40

56 150 25 32.20 0 6.00 0 0.34

57 150 25 32.20 380.00 6.00 2.85 1.37

58 150 25 32.20 380.00 6.00 3.80 1.84

59 150 25 32.20 380.00 6.00 4.75 2.15

60 150 25 32.20 380.00 6.00 5.70 2.40

61 200 50 33.80 390.00 7.00 0.25 1.16

Mashrei, 
2010 

62 200 50 33.80 390.00 7.00 0.50 1.47

63 200 50 36.90 390.00 7.00 0.99 2.25

64 200 50 40.40 390.00 3.00 0.25 2.94

65 200 50 40.40 390.00 3.00 0.50 3.53

66 200 50 40.40 390.00 3.00 0.99 7.16

67 200 50 41.20 390.00 2.00 0.25 5.40

68 200 50 41.20 390.00 2.00 0.50 7.85

69 200 50 41.20 390.00 2.00 0.99 12.75

Table A. Experimental data used to construct the BPNN and ANFIS for shear strength of 
ferrocement members 
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Test 
No. 

b 
(mm) 

d
(mm) 

௖݂′ 
(MPa) 

௙ߩ
%

௙ܧ
(Gpa)

ܽ ݀ൗ  
Vu

(kN) 
Reference 

1 1000 165.3 40 0.39 114 6.05 140 

El-Sayed et 
al., 2005b 

2 1000 159 40 1.7 40 6.29 142 

3 1000 165.3 40 0.78 114 6.05 167 

4 1000 160.5 40 1.18 114 6.23 190 

5 1000 162.1 40 0.86 40 6.16 113 

6 1000 162.1 40 1.71 40 6.16 163 

7 1000 159 40 2.44 40 6.29 163 

8 1000 154.1 40 2.63 40 6.49 168 

9 250 326 44.6 1.22 42 3.07 60 

El-Sayed et 
al., 2006a, 

2006b 

10 250 326 50 0.87 128 3.07 77.5 

11 250 326 50 0.87 39 3.07 70.5 

12 250 326 44.6 1.24 134 3.07 104 

13 250 326 43.6 1.72 134 3.07 124.5 

14 250 326 43.6 1.71 42 3.07 77.5 

15 250 326 63 1.71 135 3.07 130 

16 250 326 63 2.2 135 3.07 174 

17 250 326 63 1.71 42 3.07 87 

18 250 326 63 2.2 42 3.07 115.5 

19 200 225 40.5 0.25 145 2.67 36.1 

Razaqpur et 
al., 2004 

20 200 225 49 0.5 145 2.67 47 

21 200 225 40.5 0.63 145 2.67 47.2 

22 200 225 40.5 0.88 145 2.67 42.7 

23 200 225 40.5 0.5 145 3.56 49.7 

24 200 225 40.5 0.5 145 4.22 38.5 

25 127 143 60.3 0.33 139 6.36 14 
Gross et al., 

2004 
26 159 141 61.8 0.58 139 6.45 20 

27 121 141 81.4 0.76 139 6.45 15.4 

28 160 346 37.3 0.72 42 2.75 59.1  

29 160 346 43.2 1.1 42 3.32 44.1 

Tariq & 
Newhook, 

2003 

30 160 325 34.1 1.54 42 3.54 46.8 

31 130 310 37.3 0.72 120 3.06 47.5 

32 130 310 43.2 1.1 120 3.71 50.15 

33 130 310 34.1 1.54 120 3.71 57.1 

34 203 225 79.6 1.25 40.3 4.06 38 

Gross et al., 
2003 

35 152 225 79.6 1.66 40.3 4.06 32.53 

36 165 224 79.6 2.1 40.3 4.08 35.77 

37 203 224 79.6 2.56 40.3 4.08 46.4 
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Test 
No. 

b 
(mm) 

d
(mm) 

௖݂′ 
(MPa) 

௙ߩ
%

௙ܧ
(Gpa)

ܽ ݀ൗ  
Vu

(kN) 
Reference 

38 457 360 39.7 0.96 40.5 3.39 108.1

Tureyen & 
Frosch, 2002 

39 457 360 40.3 0.96 47.1 3.39 114.8

40 457 360 39.9 0.96 37.6 3.39 94.7

41 457 360 42.3 1.92 40.5 3.39 137

42 457 360 42.5 1.92 37.6 3.39 152.6

43 457 360 42.6 1.92 47.1 3.39 177

44 229 225 36.3 1.11 40.3 4.06 38.13

Yost et al., 
2001 

45 229 225 36.3 1.66 40.3 4.06 44.43

46 279 225 36.3 1.81 40.3 4.06 45.27

47 254 224 36.3 2.05 40.3 4.08 45.1

48 229 224 36.3 2.27 40.3 4.08 42.2

49 178 279 24.1 2.3 40 2.69 53.4

50 178 287 24.1 0.77 40 2.61 36.1

51 178 287 24.1 1.34 40 2.61 40.1

52 305 157.5 28.6 0.73 40 4.5 26.8

Deitz et al., 
1999 

53 305 157.5 30.1 0.73 40 5.8 28.3

54 305 157.5 28.2 0.73 40 5.8 28.5

55 305 157.5 27 0.73 40 5.8 29.2

56 305 157.5 30.8 0.73 40 5.8 27.6

57 150 150 34.7 1.13 134 1.55 185.2

Omeman et 
al.,2008 

58 150 150 38.9 1.13 134 1.83 154.9

59 150 150 37.4 1.7 134 1.83 162.3

60 150 150 40.6 1.13 134 2.33 91.5

61 150 150 39.6 2.26 134 1.83 185.5

62 150 250 41.7 1.35 134 1.41 298.1

63 150 350 37.6 1.21 134 1.36 468.2

64 150 150 63.1 1.13 134 1.83 226.9

65 250 326 40 0.78 134 1.69 179.5

Al-Sayed, 
2006 

66 250 326 40 0.78 40 1.69 164.5

67 250 326 40 1.24 40 1.69 175

68 250 326 40 1.24 134 1.69 195

69 250 326 40 1.71 134 1.69 233.5

70 250 326 40 1.71 40 1.69 196

71 250 326 40 1.24 134 1.3 372

72 250 326 40 1.24 40 1.3 269

73 1000 112 60 0.95 41.3 8.93 42.6 Wegian& 
Abdalla, 2005 74 1000 162 60 0.77 41.3 6.17 86.1

Table B. Experimental data used to construct the BPNN and ANFIS for shear strength of 
concrete beams reinforced with FRP. 
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