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1. Introduction 

The brain-computer interface (BCI) work is to provide humans an alternative channel that 

allows direct transmission of messages from the brain by analyzing the brain’s mental 

activities [1–7]. The brain activity is recorded by means of multi-electrode 

electroencephalographic (EEG) signals that are either invasive or noninvasive. Noninvasive 

recording is convenient and popular in BCI applications so it is commonly used. According 

to the definition suggested at the first international meeting for BCI technology, the term 

BCI is reserved for a system that must not depend on the brain’s normal output pathways of 

peripheral nerves and muscles [2]. It has become popular for BCI systems on motor imagery 

(MI) EEG signals in the last decade [8]. It reveals that there are special characteristics of 

event-related desynchronization (ERD) and synchronization (ERS) in mu and beta rhythms 

over the sensorimotor cortex during MI tasks by discriminating EEG signals between left 

and right MIs [9, 10]. ERD/ERS is the task-related or event-related change in the amplitude 

of the oscillatory behavior of specific cortical areas within various frequency bands. An 

amplitude (or power) increase is defined as event-related synchronization while an 

amplitude (or power) decrease is defined as event-related desynchronization. As other 

event-related potentials, ERD/ERS patterns are associated with sensory processing and 

motor behavior [2]. The principal objective of this study is to propose a BCI system, which 

combines neuro-fuzzy prediction and multiresolution fractal feature vectors (MFFVs) with 

support vector machine, for MI classification. 

A model is used for time series prediction to forecast future events based on known past 
events [11]. A variety of methods have been presented in time series prediction, such as 
linear regression, Kalman filtering [12], neural network (NN) [13], and fuzzy inference 
system (FIS) [14]. Linear regression is simple and common, but it has less adaptation. 
Kalman filtering is an adaptive method, but intrinsically linear. The NN can approximate 
any nonlinear functions, but it demands a great deal of training data and is hard to interpret. 
On contrary, FIS has good capability of interpretation, but its adaptability is relative low. 
FISs are fuzzy predictions that can learn fuzzy “if-then” rules to predict data. They are 
readable, extensible, and universally approximate [14]. Adaptive neuro-fuzzy inference 
system (ANFIS) [15] integrates the advantage of both NN and fuzzy system. That is, ANFIS 
not only has good learning capability, but can be also interpreted easily. In addition, the 
training of ANFIS is fast and it can usually converge only depending on a small data set. 
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These good properties are suitable for the prediction of non-stationary EEG signals. 
Therefore, ANFIS is used for time-series prediction in this study. 

An effective feature extraction method can enhance the classification accuracy. An 

important component for most BCIs is to extract significant features from the event-related 

area during different MI tasks. A great deal of feature extraction methods has been 

proposed. Among them, the band power and AAR parameters are commonly used [16–19]. 

Feature extraction based on band power is usually obtained by computing the powers at the 

alpha and beta bands. The features are then extracted from band powers by calculating their 

logarithm values [16] or averaging over them [17]. AAR parameters are another popular 

feature in mental tasks [18, 19]. The all-pole AAR model lends itself well to modeling EEG 

signals as filtered white noise with certain preferred energy bands. The EEG time series is 

fitted with an AAR model. 

Furthermore, fractal geometry [20] provides a proper mathematical model to describe complex 
and irregular shapes that exist in nature. Fractal dimension is a statistical quantity that 
effectively extracts fractal features. In the last decade, feature extraction characterized by 
fractal dimension has been widely applied in various kinds of biomedical image and signal 
analyses, such as texture extraction [21], seizure onset detection in epilepsy [22], routine 
detection of dementia [23], and EEG analyses of sleeping newborns [24]. In this study, discrete 
wavelet transform (DWT) together with modified fractal dimension is utilized for feature 
extraction. That is, MFFVs are extracted from wavelet data by modified fractal dimension. 
MFFVs contain not only multiple scale attributes, but important fractal information.  

The support vector machine (SVM) [25] recognizing the patterns into two categories from 

a set of data is usually used for the analyses of classification and regression. For example, 

the SVM is used to classify attention deficit hyperactivity disorder (ADHD) and bipolar 

mood disorder (BMD) patients by proposing an adaptive mutation to improve 

performance [26]. The SVM is used for seizure detection in an animal model of chronic 

epilepsy [27]. Since it can balance accuracy and generalization simultaneously [25], it is 

used for classification in this study. 

To evaluate the performance, several popular methods, including AAR-parameter approach 

and AAR time-series prediction, are implemented for comparison. This chapter is organized 

as follows: Section 2 presents the materials and methods. Section 3 describes experimental 

results. The discussion and conclusion are given in Sections 4 and 5, respectively. 

2. Problem formulation 

An analysis system is proposed for MI EEG classification, as illustrated in Fig. 1. The 

procedure is performed in several steps, including data configuration, neuron-fuzzy 

prediction, feature extraction, and classification. Raw EEG data are first filtered to the 

frequency range containing mu and beta rhythm components in data configuration. ANFIS 

time-series predictions are trained by the training data at offline. Information from ANFIS 

time-series predictions is directly applied to predict the test data. Modified fractal 

dimension combined with DWT is utilized for feature extraction. The extracted fractal 

features are used to train the parameters of SVM classifier at offline. Finally, the SVM 

together with trained parameters is utilized to discriminate the features. 
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Fig. 1. Flowchart of proposed system. 

3. Experimentation 

The EEG data was recorded by the Graz BCI group [19, 28–32]. Two data sets are used to 
evaluate the performance of all methods in the experiments. The first data sets were 
recorded from three subjects during a feedback experimental recording procedure. The task 
was to control a bar by means of imagery left or right hand movements [19, 28, 30, 31]. The 
order of left and right cues was random. The data was recorded on three subjects – the first 
subject S1 performs 280 trials, while the last two subjects, S2 and S3, hold 320 trials. The 
length of each trial was within 8–9s. The first 2s was quiet, an acoustic stimulus indicates the 
beginning of a trial at t = 2s, and a fixation cross + was displayed for 1s. Then at t = 3s, an 
arrow (left or right) was displayed as a cue (the data recorded between 3 and 8s are 
considered as event related). At the same time, each subject was asked to move a bar by 
imagining the left or right hand movements according to the direction of the cue. The 
recordings were made using a g.tec amplifier and Ag/AgCl electrodes. All signals were 
sampled at 128 Hz and filtered between 0.5 and 30 Hz. An example of a trial for C3 and C4 
channels is given in Fig. 2(a). 

The second data sets were recorded from three subjects by using a 64-channel Neuroscan 
EEG amplifier [29, 32]. The left and right mastoids served as a reference and ground, 
respectively. The EEG data was sampled at 250 Hz and filtered between 1 and 50 Hz. The 
subjects were asked to perform imagery movements prompted by a visual cue. Each trial 
started with an empty black screen; at t = 2s a short beep tone was presented and a cross ‘+’ 
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appeared on the screen to notify the subjects. Then at t = 3s an arrow lasting for 1.25s 
pointed to either the left or right direction. Each direction indicates the subjects to imagine 
either a left or right hand movement. The imagery movements were performed until the 
cross disappeared at t = 7s. No feedback was performed in the experiments. The data set 
recorded from subject S4 was 180 trials, while the data sets for subjects S5 and S6 were 120 
trials. For each subject, the first half of the trials were used as training data and the later half 
of the trials were used as test data in this study. 

 
(a) An example of a trial 

  
        (b) Actual and predicted signals (C3)         (c) Actual and predicted signals (C4) 

(Actual filtered signals: Red; Predicted signals: Blue) 

Fig. 2. Intermediate results. 

4. Methodologies 

4.1 Data configuration 

The mu and beta rhythms of the EEG are those components with frequencies distributed 
between 8-30 Hz and located over the sensorimotor cortex. In addition, using a wider 
frequency range from the acquired EEG signals can generally achieve higher classification 
accuracy in comparison with a narrower one [33]. A wide frequency range containing all mu 
and beta rhythm components is adopted to include all the important signal spectra for MI 
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classification. In this study, the raw EEG data are filtered to the frequency range between 8 
and 30 Hz with a Butterworth band-pass filter. 

To make a prediction at sample t, the measured signals extracted from the recorded EEG 

time-series data are used from samples t-Ld to t-d. The parameters L and d are the 

embedding dimension and time delay, respectively. Each training input data for ANFIS 

prediction consist of respective measured signals of length L on both the C3 and C4 

channels, which are important for BCI works because they are located in the sensorimotor 

cortex [34]. The training input data are represented as follows: 

       
 
  

3 ,..., 3 , 4 ,..., 4 | 3 , 4
t t

t Ld t d t Ld t d t tC C C C C C  (1) 

There are event related data of approximately 5s length in each trial. All parameter selection 

is performed from the training data. All training data are used to train the parameters of 

prediction models, which will be further used for feature extraction. The test data are finally 

tested to evaluate the performance of the system by using the trained parameters. 

4.2 Neuro-fuzzy prediction 

Time series prediction is the use of a model to forecast future events based on known past 

events. Although all kinds of methods in time series prediction have been presented, ANFIS 

time-series prediction is slightly modified and adopted in this study since it integrates the 

advantages of NN and fuzzy system. 

The ANFIS network architecture applied for the time-series prediction of EEG data is 

introduced. A detailed description of ANFIS can be found in [15]. ANFIS enhances fuzzy 

parameter tuning with self-learning capability for achieving optimal prediction objectives. 

An ANFIS network is a multilayer feed-forward network where each node performs a 

particular node function on incoming signals. It is characterized with a set of parameters 

pertaining to that node. To reflect different adaptive capabilities, both square and circle 

node symbols are used. A square node (adaptive node) has parameters needed to trained, 

while a circle node (fixed node) has none. The parameters of the ANFIS network consist of 

the union of the parameter sets associated to each adaptive node. To achieve a desired 

input-output mapping, these parameters are updated according to given training data and a 

recursive least square (RLS) estimate. 

In this study, the ANFIS network applied for time-series prediction contains L inputs and 

one output. There are 2L fuzzy if-then rules of Takagi and Sugeno’s type [35] in the 

representation of rule base. The output is a current sample, and the inputs are the past L 

samples in the time delay t. The output of the ith node in the lth layer is denoted by l
iO . The 

node function for each layer is then described as follows. 

Layer 1: Each node in this layer is a square node, where the degree of membership functions 
of input data is calculated. The output of each node in this layer is represented as 

        1
( 1)( ), 1,2, , ; 1,2; 1,2, ,2

jki M t L j dO C j L k i L  (2) 
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where    2 1i j k , C representing C3 or C4 is the input to node i, and Mjk is the linguistic 

label associated with this node function. The bell-shape Gaussian membership function 

 ( )
jkM C  is used 

 


  
  

          

2
( 1)

( 1)( ) exp
jk

t L j d jk
M t L j d

jk

C a
C  (3) 

where the parameter set  ,jk jka  adjusts the shape of the Gaussian membership function. 

Parameters Mjk in this layer are referred to as premise parameters. 

Layer 2: Each node in this layer is a circle node labeled   multiplying the incoming signals 

together and sends out their product. 

    


   2
( 1)

1
( ), 1,2

ji

L

i i M t L j d
j

O w C i  (4) 

Each node output represents the firing strength of a rule. 

Layer 3: Each node in this layer is a circle node labeled N. The firing strength of a rule for 
each node in this layer is normalized. 

   


3 , 1,2i
i i

j

j

w
O w i

w
 (5) 

Layer 4: Each node in this layer is a square node with its node function represented as 

 



 
      
 
4

1

, 1,2

L

i i i i ij j i

j

O w f w p x r i  (6) 

where the output fi is a linear combination of the parameter set  ,ij ip r . Parameters fi in this 

layer is referred to as consequent parameters. 

Layer 5: The single node in this layer is a circle node labeled   computing the overall output 
y as the sum of all incoming signals. 

   


 

5
1

j j

j
i i

ji
j

w f

O y w f
w

 (7) 

The architecture of neuron-fuzzy prediction in this chapter is shown in Fig. 3. The 
consequent parameters are updated by the RLS learning procedure in the forward pass for 
ANFIS network learning, while the antecedent parameters are adjusted by using the error 
between the predicted and actual signals. The parameter optimization for ANFIS training is 
adopted an approach that is mixed least squares and back-propagation method. Two 
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ANFISs are used to perform prediction. That is, they labeled lANFIS and rANFIS are used to 
predict left and right training MI EEG data, respectively. The actual filtered signals and their 
predicted results for C3 and C4 channels are shown in Fig. 2(b) and 2(c), respectively. 

 

Fig. 3. Architecture of neuro-fuzzy prediction. 

4.3 Feature extraction 

After lANFIS and rANFIS are trained by using the left and right MI training data trial by 
trial respectively, they are used to perform one-step-ahead prediction. The test data are 
then input to these two ANFISs sample by sample, and features are extracted by 
continually calculating the difference of MFFVs between the predicted and actual signals 
as the length of predicted signals achieves 1-s window. The MFFV will be outlined in the 
next paragraph. In this study, feature extraction is performed on the 1-s window of 
predicted signals instead of directly classifying native predicted signals. A flowchart of 
feature extraction is shown in Fig. 4. 

 

Fig. 4. Flowchart of feature extraction. 

A signal is decomposed into numerous details in multiresolution analysis, where each scale 
represents a class of distinct physical characteristics within the signal. Wavelet transform is 
used to achieve multiresolutional representation in this study [21, 33, 36–39]. The 1-s 
segment is decomposed into numerous non-overlapping subbands by wavelet transform. 

Fractal geometry provides a proper mathematical model to describe a complex shape that 
exists in nature with fractal features. Since fractal dimension is relatively insensitive to 
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signal scaling and shows a strong correlation with human judgment of surface roughness 
[20], it is chosen as the feature extraction method. A variety of approaches were proposed to 
estimate fractal dimension from signals or images [21–24]. A differential box counting (DBC) 
method covering a wide dynamic range with a low computational complexity is modified 
and used in this study [33]. A MFFV is extracted by modified fractal dimension from all the 
non-overlapping subbands of a 1-s segment. 

The MFFV reflects the roughness and complexity of non-overlapping subbands of a signal. 

These MFFV calculations reduce prediction cost from a 1-s window to a feature vector for 

each signal. Features are extracted by continually calculating the difference of MFFVs 

between the predicted and actual signals as the length of predicted signals achieves 1-s 

window. In other words, two sets of MFFV features are first extracted from the predicted 

and actual signals respectively as the length of predicted signals achieves 1-s window. They 

are then subtracted for each respective subband. Finally, features are obtained by 

continually calculating their difference. The left and right test data are input to both the 

lANFIS and rANFIS, and each ANFIS provides two predictions from the C3 and C4 

channels. Accordingly, four sets of MFFVs can be extracted after each new set of predictions 

is obtained. Each time a new set of predictions is produced, the oldest one is removed from 

the 1-s segment and a new MFFV is then extracted from the signals within the window. 

Since a large window is too redundant for the real time application, a 1-s window is short 

and selected for feature extraction. The length of a 1-s segment is a compromise between the 

computation cost and event-related potential (ERP) component applications. If the window 

length is selected properly, the extracted MFFVs will produce the maximum feature 

separability and obtain the highest classification accuracy. 

4.4 Classification 

It can be difficult to establish stable NNs since appropriate number of hidden layers and 

neurons usually need to carefully choose to approximate the function in question to the 

desired accuracy. The SVM first proposed by Vapnik [25] not only has a very steady theory 

in statistical learning, but guarantees to obtain the optimal decision function from a set of 

training data. The main idea of SVM is to construct a hyperplane as the decision surface in 

such a way that the margin of separation between positive and negative examples is 

maximized. The SVM optimization problem is 

 

 



 




      




1

1
min

2

subject to 0, ,  and 1 , 1,2,

N
T

i
w

i

T
i i i i

w w C

i d w x b i N

 (8) 

 

where  ( ) Tg x w x b  represents the hyperplane, w is the weighting vector, b is the bias 

term, x is the training vector with label d, C is the weighting constant, and   is the slack 

variable. It is then transformed into a convex quadratic dual problem. The discriminant 

function with optimal w and b,  ( ) T
o og x w x b , posterior to the optimization form becomes 
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  


 
1

( ) ,

N

i i i o

i

g x d K x x b  (9) 

where  is a Lagrange multiplier and ( , )iK x x  is a kernel function. Generally, appropriate 

kernel functions are the polynomial kernel function   ( , ) 1
pT

i j i jK x x x x  and the radial 

basis function (RBF) kernel function      
 

22( , ) exp 1 2i j i jK x x x x . In this study, the 

latter is chosen for the SVM. 

In the proposed system, classification is performed on MFFVs for recognizing the 
corresponding state at the sample rate. A different SVM classifier at each sample point is 
produced to classify each set of MFFVs for the training data. The classification sample point 
possessing maximal classification rate for training data is used as the standard classifier, 
which will be used for all classification performed on the test data. The best parameters 
selected from the training data are then applied to the test data to estimate the classification 
accuracy of test data. 

5. Results 

5.1 Performance of prediction methods 

To assess the performance of proposed time-series prediction method, several prediction 
methods combined with power spectra features are implemented for comparison. They are 
AAR-parameter approach and AAR time-series prediction. The power spectra features are 
obtained by calculating the powers at the alpha and beta bands [16, 17]. The AAR-parameter 
method is an AAR signal modeling approach. The all-pole AAR model lends itself well to 
modeling the EEG as filtered white noise with certain preferred energy bands. The EEG time 
series is fitted with an AAR model. In the experiments, the order of AAR model is chosen as 
six and the AAR parameters are estimated with the RLS algorithm. To select the best value 
for the order of AAR model, an information theoretic approach is adopted [3]. The AAR 
parameters are used as features at each sample point for each trial. The AAR time-series 
prediction method is a time-series prediction approach, where left and rights ANFISs in the  

 

Classification 
Accuracy [%] 

AAR 
Parameters 

AAR 
Prediction 

Neuro-Fuzzy 
Prediction 

S1 71.5 81.4 86.9 

S2 66.3 76.6 84.2 

S3 64.9 78.3 77.2 

S4 72.6 79.6 88.6 

S5 65.7 73.1 80.1 

S6 61.0 77.0 79.8 

Average 67.0 77.7 82.8 

Table 1. Comparison of performance among different time-series prediction frameworks 
using power spectra features 
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ANFIS time-series prediction method are replaced by left and right AAR models. The 
lengths of windows for the AAR-parameter approach and AAR time-series prediction are all 
1-s windows, which are the same as that for the ANFIS time-series prediction. 

The comparison results of classification accuracy among different time-series prediction 

using power spectra features are listed in Table 1. The average classification accuracy of 

AAR-parameter approach is 67.0%, while AAR time-series prediction is 77.7% in the average 

classification accuracy. ANFIS time-series prediction obtains the best average classification 

accuracy (82.8%). 

5.2 Performance of features 

To further estimate the performance of proposed ANFIS time-series prediction method 

and MFFV features, ANFIS time-series prediction method combined with power spectra 

features is used for comparison in Table 2. The average classification accuracy for ANFIS 

time-series prediction method combined with power spectra features is 82.8%, while 

MFFV features under ANFIS time-series prediction method obtain 91.0 in the average 

classification accuracy. 

 

Classification 
Accuracy [%] 

Power Spectra MFFV 

S1 86.9 92.8 

S2 84.2 88.5 

S3 77.2 90.3 

S4 88.6 93.9 

S5 80.1 88.2 

S6 79.8 92.0 

Average 82.8 91.0 

Table 2. Comparison of performance between power spectra and MFFV features under the 
use of ANFIS time-series prediction 

5.3 Statistical analysis 

Two-way analysis of variance (ANOVA) and multiple comparison tests [40] are 

performed in the experiments. The statistical analyses with two-way ANOVA are used to 

evaluate that the difference is significant or not for the two factors, methods and subjects. 

After analyzing with the two-way ANOVA, multiple comparison tests are used to 

estimate the p-values and significance of each pair of methods. The results of tests will be 

discussed in detail in the next section. 

6. Discussion 

6.1 Statistical evaluation of prediction methods 

ANFIS combines the advantage of NN with that of FIS. Moreover, the training of ANFIS is 

fast and it can generally converge from small data sets. These attractive properties are 
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suitable for the prediction of non-stationary EEG signals. Table 1 lists the comparisons of 

performance among different prediction frameworks using power spectra features. In 

addition, two-way ANOVA and multiple comparison tests are performed to verify if the 

prediction methods are significantly different or not. The results indicate that AAR time-

series prediction method is much better than AAR parameter approach in classification 

accuracy (p-value 0.0007) that is improved by 10.7% on average, while ANFIS time-series 

prediction method is slightly better than AAR prediction method (p-value 0.0195). The 

classification accuracy increases by 5.1%. Accordingly, ANFIS time-series prediction has the 

best performance in classification accuracy among these three methods. The results deduce 

that ANFIS time-series prediction is the best prediction framework in MI classification. 

6.2 Statistical evaluation of features 

Wavelet-fractal features are extracted from wavelet data by modified fractal dimension. 

MFFVs are utilized to describe the characteristic of fractal features in different wavelet 

scales, which are greatly beneficial for the analysis of EEG data. The comparison of 

performance between power spectra and MFFV features under the use of ANFIS time-series 

prediction is listed in Table 2. In addition, two-way ANOVA and multiple comparison tests 

are performed again to validate whether the two features are significantly different. The 

results indicate that MFFV features are significantly better than power spectra features in 

classification accuracy (p-value 0.0030), which is improved by 8.2% on average. The results 

indicate that MFFV features are better. These two results also suggest that ANFIS prediction 

framework together with MFFV features is a good combination in BCI applications. 

6.3 Advantage of proposed method 

The proposed ANFIS prediction framework combined with MFFV features provides a good 

potential for EEG-based MI classification. Furthermore, the proposed method has other 

potential advantages as follows: Firstly, the MFFV features really improve the separability 

of MI data, because the power spectra feature extracted from the predicted signals results in 

poorer performance. Secondly, the MFFV features can effectively reduce the degradation of 

noise. In other words, the MFFV features are extracted by DWT and modified fractal 

dimension. The former obtains multiscale information of EEG signals while the latter 

decreases the effect of noise. It is because the calculation of an improved DBC method is 

proposed and applied to modified fractal dimension. 

7. Conclusion 

We have proposed a BCI system embedding neuro-fuzzy prediction in feature extraction in 

this work. The results demonstrate the potential for the use of neuro-fuzzy prediction 

together with support vector machine in MI classification. It also shows that the proposed 

system is robust for the inter-subject use under careful parameter training, which is 

important for BCI applications. Compared with other well-known approaches, neuro-fuzzy 

prediction together with SVM achieves better results in BCI applications. In future works, 

more effective prediction/features and powerful classifiers will be used to further improve 

classification results. 
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