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1. Introduction 

Small or declining populations are at increased risk of extinction because of stochasticity 

and Allee effects (Lande 1998, Courchamp et al. 1999, Stephens and Sutherland 1999, 

Bourbeau-Lemieux et al. 2011), and several genetic problems that include reduction in 

genetic variability, an accumulation of deleterious mutations due to random drift, and 

increased rates of inbreeding depression (Frankham et al. 2002, Hedrick 2005, Allendorf and 

Luikard 2007). Genetic problems are likely to reduce the average viability of individuals 

from generation to generation, and they reduce evolutionary potential and therefore the 

long-term survival expectancies, especially of small populations (Frankham et al. 2002, 

Hedrick 2005, Allendorf and Luikard 2007). However, genetic problems are only indirectly 

linked to the census size (Nc). Instead, they are directly dependent on the genetically 

effective population size (Ne) that is defined as the size of an ideal model population that 

looses genetic variability at the same rate as the observed population. Usually, Ne is 

significantly smaller than Nc because of variance in individual reproductive success, 

deviations from a 1:1 operational sex ratio, and other reasons. Risks of extinction are 

therefore increased if population sex ratios deviate from 1:1.  

We typically expect 1:1 sex ratios in natural populations because of strong frequency-
depended selection on the production of sons and daughters (Fisher 1930). However, 
population sex ratios can be biased by non-random harvest as a consequence of, for 
example, sex differences in behavior, size, or morphology, or simply as a consequence of 
hunter preferences (Bunnefeld et al. 2009, Tryjanowski et al. 2009, Marealle et al. 2010). Sex 
ratios can also be influenced by environmental changes such as, for example, different kinds 
of chemical pollution or changes in the temperature regime that may cause sex-specific 
mortality or growth. Environmental changes can even directly influence the production of 
males and females in species with environmental sex determination (Janzen 1994, Kamel 
and Mrosovsky 2006), or in species where the genetically determined sex can be reversed 
during a critical period in life. Such environmental sex reversal has been observed in several 
fish and amphibians (Wallace et al. 1999, Devlin and Nagahama 2002, Baroiller et al. 2009, 
Stelkens and Wedekind 2010), may potentially be more likely under many of the rapid 
environmental changes we are currently observing, but may well have happened frequently 
even before anthropogenic effects on the environment became ubiquitous (Perrin 2009). 
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Lastly, parents (especially mothers) of many species are able to manipulate family sex ratio, 
as will be explained below. There are examples where the combined effects of such parental 
life-history decisions have lead to distorted population sex ratios (Robertson et al. 2006). 

We may be able to manipulate and hence manage population sex ratios to benefit 

biodiversity if we understand how they are influenced under natural and artificial 

conditions. We may either aim for maximizing the evolutionary potential and hence the 

long-term perspectives of a given population, or wish to control the growth of problem 

populations (e.g. of exotic species). Among the various tools that have been proposed for 

manipulating sex ratios are the ‘sterile male’ strategy, the ‘Trojan Y chromosome’, and 

recombinant constructs that lead to gender distortion (Gutierrez and Teem 2006, Cotton and 

Wedekind 2007a, Bax and Thresher 2009). Alternatively, maternal life-history strategies can 

sometimes be manipulated in order to affect family sex ratios, and some species even allow 

for sex ratio manipulation by simple manipulations of the micro-ecological conditions 

during critical stages in ontogeny. 

In the following I summarize the current knowledge about how population sex ratios 

develop, and how they can change due to, for example, changed temperature regimes, 

different kinds of chemical pollution, or other environmental changes. I will then outline the 

various tools that could be used to manipulate sex ratios and give some examples from the 

literature. I will discuss the potential risks and benefits of such manipulations, and I will list 

a number of key questions that still need to be answered in order to optimize the 

management of population sex ratios. 

2. What affects family sex ratios? 

When discussing family sex ratios, it is useful to distinguish between the different possible 

explanatory levels, especially between proximate and ultimate explanations (Tinbergen 

1963). Proximate (mechanistic) explanations of family sex ratio deal with questions about the 

genetic, physiological, and molecular aspects of, for example, sex determination. Ultimate 

(evolutionary) explanations concentrate on the adaptive value of a given family sex ratio, 

especially on the impact of a parent’s fitness, without necessarily explaining the proximate 

aspects. Obviously, proximate arguments often set constraints to what parents may be able 

to achieve in order to maximize fitness.  

If sex determination is purely environmental, as in most reptiles, sex is not determined at 

conception but later during a specific window of time during embryonic or larval 

development. The window is often called “the thermosensitive period” because incubation 

temperature is often the most important sex-determining factor in these species (Valenzuela 

and Lance 2004). Purely environmental sex determination has been assumed to be quite 

common also in fish. However, Ospina-Alvarez and Piferrer (2008) argued that among the 

many species for which sex-determining chromosome have not (yet) been identified, species 

should only be considered as having a purely environmental sex determination if sex is 

determined by environmental conditions that can be considered as normal and within the 

range usually experienced under natural conditions. Applying this condition leaves only 

few species of four teleost orders with purely environmental sex determination. Among 

them, three different types of reaction norms dominate: (i) decreased or (ii) increased 
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frequency of males with increasing temperature, or (iii) high frequency of males at extreme 

(high or low) temperatures (Devlin and Nagahama 2002, Ospina-Alvarez and Piferrer 2008, 

Baroiller et al. 2009). 

In species with environmental sex determination, the within-population variance in 

family sex ratio can be very high due to variance in the micro-ecological conditions that 

affect eggs or larvae. Moreover, regional changes in the environment can easily lead to 

skewed population sex ratios in some years (Janzen 1994, Kamel and Mrosovsky 2006). 

Rapid and consistent environmental changes could then have dramatic consequences on 

population growth especially in small population of limited genetic variability, or in 

fragmented populations with limited gene flow. However, correlated changes in nesting 

or spawning time (Janzen et al. 2006, Wedekind and Küng 2010) or other changes in 

behavior and life history could potentially mitigate some of these negative effects of 

environmental changes. Moreover, some species seem to have the potential for (rapid) 

evolution in response to changed environments (Conover and Van Voorhees 1990, 

Conover et al. 1992, Magerhans et al. 2009). 

In many fish and amphibians, sex determination is genetic but reversible by environmental 

factors during a sensitive period that is typically very early in life. Environmental sex 

reversal can be induced by various factors, including temperature changes or exposure to 

hormone active substances (Wallace et al. 1999, Devlin and Nagahama 2002, Baroiller et al. 

2009). It is nowadays even used in fish farming to produce more profitable one-sex cultures 

(Pandian and Sheela 1995, Piferrer 2001, Cnaani and Levavi-Sivan 2009). Distorted sex ratios 

in the wild could potentially be caused by environmental sex reversal (Olsen et al. 2006, 

Brykov et al. 2008, Alho et al. 2010). Sex hormones, hormone-active substances, and 

endocrine disrupting chemicals are frequently released into natural watercourses, for 

example, in effluents from domestic and industrial sources (Larsson et al. 2000, Parks et al. 

2001, Jobling and Tyler 2003). Fish exposed to such chemicals often display reduced 

reproductive performance (Vos et al. 2000), and exposure to such chemicals could well be 

responsible for gonadal malformations if, for example, sex reversal was incomplete leading 

to individuals that display gonadal characteristics of both sexes. A sudden increase in the 

prevalence of intersex or of other gonadal malformations is indeed frequently observed in 

natural populations (Harries et al. 1997, Bernet et al. 2004, Penáz et al. 2005, Jobling et al. 

2006, Bernet et al. 2008, Bittner et al. 2009). Other possible consequences of exposure to 

hormones or hormone-active substances may include reductions in gonadal growth, a 

delayed onset of sexual maturity, inhibition of spermatogenesis, lower egg production, or 

reduced egg quality (Sumpter and Jobling 1995) (Vos et al. 2000). However, sex ratios in the 

wild can be skewed for many reasons (Palmer 2000), and environmentally induced sex 

reversal is often difficult to prove (Nagler et al. 2001, Chowen and Nagler 2004, 2005, 

Williamson et al. 2008). The prevalence and significance of environmental sex reversal in the 

wild is therefore still unclear (Wedekind 2010). So far, the consequences of environmentally 

induced sex reversal have only been analyzed in theoretical studies (Kanaiwa and Harada 

2002, Hurley et al. 2004, Cotton and Wedekind 2009). These studies suggest that 

environmentally induced sex reversal can change population growth and population sex 

ratios in ways that may sometimes be counter-intuitive. A moderate rate of feminization, i.e. 

of an environmentally-induced development of the female phenotype despite male sex 
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chromosomes, could sometimes be beneficial for population growth, especially in the 

absence of strong viability effects of the sex reversal. However, most possible outcomes of 

environmental sex reversal are negative with regards to population growth or the 

persistence of sex chromosomes. For example, strong environmental feminization over 

several generations leads to high rates of YY individuals and can eventually lead to the 

extinction of X chromosomes (Cotton and Wedekind 2009). Analogously, continuous 

environmental masculinization increases the rate of XX individuals and can drive the Y 

chromosome to extinction (Cotton and Wedekind 2009). If sex chromosomes are lost, i.e. if 

populations loose their genetic sex determination in response to environmental factors that 

induce sex reversal, the affected population may quickly go extinct if the environmental 

forces that cause sex reversal cease.  

The frequency-dependent selection on the production of sons and daughters is a 
consequence of the fact that every sexually produced individual usually has exactly one 
father and one mother. This explains why 1:1 sex ratios are so common. Such equal sex 
ratios are easier to achieve if sex determination in purely genetic as compared to if sex 
determination is environmentally biased. Sex determination is purely genetic in all 
mammals and birds and in many species of other taxa. However, even in these taxa, equal 
primary sex ratios are a rule with exceptions, and parents of many species are often able to 
somehow manipulate family sex ratio. The physiology of such manipulations is often not 
clear yet, but there are good reasons why skewed family sex ratio may offer fitness benefits. 
If, for example, one sex is more costly to produce and raise than the other one, parents who 
are able to weight the relative investment into sons and daughters according to the expected 
fitness return would achieve higher fitness than parents who would not be able to do so 
(Charnov 1982).  

The relative value of sons and daughters may differ for different parents. This is especially 

so if the expected fitness return of one type of offspring is more dependent on resources 

received from the parents than the expected fitness return of the other type of offspring. 

This is a typical outcome in polygamous species where, for example, few dominant males 

receive an increased reproductive success at the expense of outcompeted males. In such 

cases, parents that are in good condition or experience favorable conditions would increase 

their fitness by producing more offspring of the sex with the greater requirements, while 

parents in suboptimal condition should rather “play safe” and produce the other sex that 

promises a lower variance in reproductive success (Trivers and Willard 1973). This 

hypothesis received much empirical support in a variety of taxa (Gomendio et al. 1990, 

Cassinello and Gomendio 1996, Bradbury and Blakey 1998). 

If family sex ratio can be adjusted in response to parental condition, it seems reasonable to 

assume that mate attractiveness could influence overall parental investment and maybe 

even family sex ratio. Indeed, females of various taxa have been observed to produce 

relatively more sons if mated with an attractive male rather than if mated with an less 

attractive male (Burley 1982, Ellegren et al. 1996), possibly because sons of attractive males 

may generally be more likely to achieve high reproductive success than sons of less 

attractive males. However, the effect could not always be observed (Westerdahl et al. 1997, 

Saino et al. 1999). Moreover, skewed family sex ratios do not necessarily reflect adaptive 

parental strategies (Krackow 1995).  
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3. Managing population sex ratio  

3.1 Why?  

There are several good reasons why conservation managers could potentially profit from 

manipulating population sex ratios (Table 1). First, sex ratios of a small and endangered 

population are sometimes significantly skewed towards too many females or too many 

males. Such non-equal sex ratios increase the negative effects of Allee effects and 

demographic stochasticity, sometimes leading to extinction. For example, the last six 

individuals of the Dusky Seaside Sparrow (Ammodramus maritimus nigrescens) that remained 

and were kept in a captive breeding program turned out to be all male. This subspecies is 

now believed to be extinct (en.wikipedia.org from Feb 6th 2012). Non-equal sex ratios also 

reduce the genetically effective population size because Ne = 4NmNf/(Nm+Nf) , with Nm and 

Nf being the number of mature males and females, respectively (Hartl 1988). In harem-based 

mating systems, Ne is even better described as Ne = 4NmNf/(2Nm+Nf) (Nomura 2002). 

Therefore, populations with non-equal sex ratios are expected to lose more genetic 

variability (i.e. evolutionary potential) and suffer more from the negative consequences of 

inbreeding than populations with equal sex ratios. Moreover, in species where population 

growth is limited by the availability of oocytes, male-biased sex ratios directly reduce 

population growth. For example, the remaining population of the critically endangered 

kakapo (Strigops habroptilus) of New Zealand has been found to be significantly male biased, 

probably as an undesirable side effect of supplementary feeding (Tella 2001, Clout et al. 

2002). Because this parrot is also a species for which population growth is severely limited 

by egg production, manipulating family sex ratios towards more daughters (by methods 

that are outlined below) quickly became one of the priorities of the conservation 

management of this species (Robertson et al. 2006).  

Second, if population sex ratios are not significantly skewed, but population size is small 

and population growth is limited by the availability of oocytes, manipulating sex ratio 

towards a female bias could sometimes be desirable, especially if very small or rapidly 

declining populations call for emergency actions. For example, captive breeding programs 

are typically not only meant as a refuge in response to a temporary ecological crisis, but they 

often aim at releasing additional individuals into the wild to support small or declining 

populations and to help preventing further losses of genetic diversity (Young and Clarke 

2000). Such captive breeding programs sometimes even include the use of assisted 

reproductive technologies (Gibbons et al. 1995, Dobson and Lyles 2000, Lanza et al. 2000). 

There are a number of potential risks that need to be considered in such programs. These 

risks include, among others, a general increase in the variance in reproductive success and 

hence a reduction in overall Ne (Ryman and Laikre 1991), potential negative effects of 

circumventing natural mate preferences (Grahn et al. 1998, Wedekind et al. 2001, Wedekind 

2002b, Jacob et al. 2010), and artificial selection favoring certain life-history characteristics 

(Heath et al. 2003, Wedekind et al. 2007). However, if we can assume that offspring have an 

enhanced survival in captivity and that the subsequent release of captive bred individuals 

into the wild has a positive effect of the long-term survival of the population, artificially 

changing family sex ratios towards a female bias could sometimes even further increase 

population growth rate. Such manipulations may be feasible within a captive breeding 

program, for example by manipulating female reproductive strategies, or directly within the  
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wild population, for example by releasing individuals that are more likely to produce 

daughters than sons (Cotton and Wedekind 2007b) (see below). It is important to note that 

such a sex-ratio manipulation has the immediate effect of reducing the Ne to Nc ratio 

(because Ne = 4NmNf/(Nm+Nf)), i.e. it increases the genetic bottleneck that the small 

population is going through. This increased bottleneck immediately increases demographic 

stochasticity and leads to a greater loss of genetic variance, higher inbreeding rates, and 

higher rates of genetic drift and hence of fixation of deleterious mutations. However, if the 

sex ratio manipulation is carefully applied, these immediate negative effects of the treatment 

can be outweighed by the increased reproduction rates and the accelerated population 

growth (Wedekind 2002a, Lenz et al. 2007, Cotton and Wedekind 2009).  

Third, invasions by exotic species, for example after a planned or accidental release of a non-

native species, are a major threat to biodiversity in most regions of the world (Myers et al. 

2000). Various methods have been proposed to deal with this threat, but some of these 

methods have frequently created further problems, e.g. the introduction of secondary 

controlling species (Louda and Stiling 2004). Biasing the sex ratio in such problem 

populations towards more males could be a largely reversible method that may not only 

reduce population growth but could even reduce average female fitness. Male harassment 

of females over mating could by itself accelerate population decline (Rankin and Kokko 

2007). At very low population sizes, induced male biases could even enhance Allee effects 

(Stephens and Sutherland 1999). Sex ratio manipulation may hence be an attractive option in 

fighting or controlling exotic species. 

Family sex ratio manipulation is possible in many taxa. The degree of the invasiveness of the 
manipulation spans from manipulating environmental conditions during embryo and larval 
development or manipulating female perception of certain environmental key factors to, for 
example, sperm sexing prior to assisted reproductive technology in captive breeding 
programs (Gibbons et al. 1995, Dobson and Lyles 2000, Lanza et al. 2000). With regard to the 
latter, some methods of micromanipulation and some in vitro culture conditions have been 
discussed as potentially having an effect on embryo sex ratio in mice and cattle (King et al. 
1992, Gutierrez et al. 1995). It therefore seems possible that sex ratios could be manipulated 
if assisted reproductive technology is used to propagate a species. However, in the 
following discussion of sex ratio manipulation, I will concentrate on methods that are 
arguably less invasive and comparatively less expensive.  

3.2 Manipulating the rearing environment or maternal decisions  

Obviously, if sex determination is purely environmental, a simple manipulation of the 
environment that embryos, larvae, or juveniles experience during the critical window in 
time in which sex is determined can be sufficient. If this critical time is during egg 
development, as for example in most if not all turtles, eggs could be collected and incubated 
at temperatures that result in the desired family sex ratio. Alternatively, the conditions at 
the egg laying site could be artificially changed (Girondot et al. 1998). Analogous 
manipulations have been suggested from some amphibians (Solari 1994). 

Manipulating family sex ratio is less straightforward in species with genetic sex 
determination. However, the frequent observation that females are somehow able to 
manipulate family sex ratio (or the sex of their one offspring) in response to ecological or 
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social characteristics of the rearing environment may provide a number of options. If, for 
example, females adjust their family sex ratio in response to a perceived skew in the 
population sex ratio, skewed sex ratios could potentially be simulated in captive 
populations, for example by removing and housing members of one sex separately. 
Alternatively, the sensory stimuli that females use to perceive their social environment 
could be manipulated, for example by exposing the female to urine of different individuals 
in order to simulate a skewed population sex ratio (Perret 1996). 

The Trivers-Willard hypothesis (Trivers and Willard 1973) predicts that in polygynous species, 
females in good conditions are more likely to have sons than daughters (see above). Such 
parental decisions could potentially be manipulated by manipulating the females’ condition, 
for example by a changed feeding regime. The kakapo may be an example here. 
Supplementary feeding of the few remaining individuals of that species may have led to male-
biased sex ratios because females in good conditions turned out to be more likely to have sons 
than daughters (Tella 2001, Clout et al. 2002). At one point in time, about 70% of all recorded 
offspring of this species were sons. Robertson et al. (2006) found that the male bias was 
significantly reduced when female condition was altered. Lenz et al. (2007) used this line of 
thought to work out the likely genetic and demographic consequences of analogous 
management actions in an existing captive breeding program for a Spanish population of the 
lesser kestrel (Falco naumanni), another polygynous bird that shows a correlation between 
family sex ratio and female condition: more daughters are born by mothers of average 
conditions, while more son are born by mothers of good condition (Aparicio and Cordero 
2001). The authors found that a sex-ratio management within the range that seems possible 
would significantly increase the efficiency of an existing captive breeding program. 

If females adjust their investment into sons and daughters according to male characteristics, it 
may be possible to exploit the rules that females use to determine the attractiveness of a male 
relative to all potential mates. Such decision rules are not likely to be entirely genetically fixed 
but may be rather flexible (Real 1991). Mate choice decisions can be the outcome of simple 
cost/benefit analyses (Milinski and Bakker 1992), and the perception of the attractiveness of a 
given male is expected to depend on female experience and hence on a sampling template 
given by the population. Such a sampling template could be manipulated in order to increase 
or decrease the perceived attractiveness of a given male. If, for example, the size or the color of 
a secondary sexual ornament determines sexual attractiveness, exposing the female to several 
(real or dummy) individuals with very weak sexual ornaments may make a male with 
medium-sized or medium–colored ornament more attractive. Analogously, exposing the 
female to several individuals with strong sexual ornaments may make the male with a 
medium-sized or a medium-colored ornament less attractive. Alternatively, many secondary 
sexual ornaments could be directly manipulated. Structural ornaments could be artificially 
elongated, colors could be enhanced painting the ornament, or the male could be presented 
under light conditions that accentuate the colors in question.  

3.3 ‘Trojan Y chromosomes’ and genetic constructs that distort sex ratios  

Conservation practice sometimes includes managing potential problem populations (Kolar 
and Lodge 2002, Hanfling et al. 2011, Poulin et al. 2011). The ‘sterile male’ strategy is one of 
the various techniques that has been proposed. The idea is that large numbers of sterile 
males are produced and released into the wild in order to outcompete wild males for 
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mating. So far, the application of this idea has largely concentrated on disease-transmitting 
insects (Thailayil et al. 2011). However, if females mate with only few males each, and the 
mating frequency of introduced sterile males is not significantly smaller than the mating 
frequency of wild males, the ‘sterile male’ strategy could potentially be applied more widely 
and also in the context of exotic species that need to be controlled. And even if the idea 
behind this technique is not primarily based on changing population sex ratio in order to 
manipulate population growth, it should nevertheless be discussed in the present context. 
Obviously, releasing large numbers of sterile males leads to a male-biased sex ratio that 
may, by itself, increase intra-individual competition and lead to a reduction of average 
female fitness not only because of the increased rate of non-fertilized eggs but also because 
of the likely negative effects of male-biased sex ratios in some sort of species (Rankin and 
Kokko 2007). Further recombination methods that have been discussed as possible pest 
control include sex-specific lethality constructs (Schliekelman and Gould 2000, Schliekelman 
et al. 2005). The effectiveness of the release of such constructs can be greatly enhanced by 
complementary management options such as selective harvest of males or females (Bax and 
Thresher 2009). However, the recombinant approach could lead to undesirable results if, for 
example, the gene construct jumps to other species (Kapuscinski et al. 2007). 

Species with predominantly genetic but environmentally reversible sex determination (i.e. 
many fish and amphibians) offer another approach, the so-called ‘Trojan Y chromosomes’ 
strategy (‘Trojan’ genetic elements were originally defined as elements that have the 
potential of driving local populations to extinction (Muir and Howard 2004)). The necessary 
prerequisites are that (i) the species in question displays male heterogamety (i.e. XX = 
female and XY = male), and that (ii) the Y-chromosome should not be significantly decayed 
as it usually is, for example, in most mammals because of the suppressed recombination 
between the sex chromosomes (Bull 1983, Rice et al. 2008) and the thereby resulting 
accumulation of deleterious mutations on the Y-chromosome (Muller 1932, Felsenstein 
1974). Interestingly, in fish and amphibians with genetic but environmentally reversible sex 
determination, sex chromosomes are typically not heteromorphic, and the functionality of Y 
chromosomes seems mostly unrestricted. This for itself leads to a number of interesting 
evolutionary questions (Perrin 2009), but what is probably most interesting in the present 
context is the fact that YY individuals are therefore often viable. Such YY individuals can be 
produced by mating feminized XY individuals with wild-type XY males. YY individuals 
would normally be males who can only produce XY sons if mated with wild-type XX 
females. Sex-reversed YY individuals (i.e. females without X chromosomes) would also be 
expected to have only sons if mated with a wild-type XY male. Moreover, half of these sons 
would have the YY genotype and could hence only have sons themselves. Gutierrez and 
Teem (2006) modeled the repeated introduction of YY females as potential tool in 
conservation management. They found that such introduction of ‘Trojan Y chromosomes’ 
can potentially be used to control the growth of problem populations. Critical variables in 
these scenarios are the relative viability of carriers of these ‘Trojan Y chromosomes’ and 
their attractiveness in mate choice, i.e. their mating success relative to the wild-type females 
and males (Cotton and Wedekind 2009).  

Some species that display environmentally reversible sex determination have a sex 
determination mechanism that is based on female heterogamety (i.e. ZZ = male and ZW = 
female). Introducing sex-reversed WW individuals would then lead to an increased 
population growth, especially if the induced sex change had no significant effect on viability 
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and mating success (Cotton and Wedekind 2007b). Boosting population growth with ‘Trojan 
sex chromosomes’ may currently have the highest potential in the conservation of 
amphibians. Many amphibian display female heterogamety (Hillis and Green 1990), are 
susceptible to environmental influences during sex determination (Wallace et al. 1999), and 
WW genotypes may generally be viable and fertile because W chromosomes do typically 
not seem to be decayed (Perrin 2009). 

The potential of ‘Trojan sex chromosomes’ for boosting or reducing population growth still 
needs to be experimentally analysed. For now, the concept seems entirely theoretical, i.e. to the 
best of my knowledge no empirical test of this idea has been published so far. The same seems 
to be true for a genetic construct that has recently been suggested and modeled by Bax and 
Thresher (2009) and that would induce a shift in the sex ratio of fish population. The idea here 
is that if individuals with multiple copies of a genetically engineered aromatase inhibitor gene 
(D) are introduced into a problem population, all offspring of the D gene carrier that inherit 
the D gene would phenotypically develop into males regardless of the composition of their sex 
chromosome. Analogously to Gutierrez and Teem’s (2006) original ‘Trojan sex chromosomes’ 
idea, the introduction of the D gene into a population could shift the sex ratio in future 
generations to a male bias that potentially reduces population growth.  

4. Conclusions 

It may often be possible to manipulate population sex ratios, for example by changing 
certain ecological or social factors that influence maternal decisions about family sex ratio, 
or by invasive techniques like, for example, introducing sex-reversed individuals into 
natural populations to boost or reduce population growth on the long run. If the aim of such 
manipulations is to support a small and endangered population, it is important to consider 
the possible dangers of the manipulation. If the sex ratio of a small population is found to be 
male-biased prior to the intervention, reducing this bias in future generations may generally 
be beneficial because this would be increasing the Ne to Nc ratio and thereby reducing the 
negative effects of small population size on population genetics. However, even if we deal 
with populations in which sex ratio directly determines population growth, any deviation 
from equal sex ratio towards a female-biased sex ratio reduces the Ne to Nc ratio, i.e. It may 
create a genetic bottleneck. On the long run, the likely negative effects of such a bottleneck 
would need to be compensated by the increased population growth that was achieved 
through the sex ratio manipulation (as, for example, modeled in Lenz et al. (2007)). 
Furthermore, by changing a population sex ratio we are changing demographic parameters 
that may significantly influence breeding systems, mate choice, sex-specific use of resources, 
or other life-history aspects (Emlen and Oring 1977, Andersson 1994). It may even be 
possible that we thereby risk losing culturally transmitted characteristics that could be 
linked to, for example, natural breeding systems. The potential costs and benefits of a sex 
ratio manipulation should therefore carefully optimized for any given situation, i.e. the 
optimal sex ratio manipulation is likely to differ from case to case.  

In the case of small and declining populations, any kind of sex ratio manipulation is likely to 
fail if the underlying stressors and threats to the population are not appropriately dealt 
with. Moreover, many of the ideas discussed here are relatively new and lack empirical 
support. For example, the potential of manipulating female strategies in a given species is 
often unclear, and we need to learn more about the viability and the fertility of sex-reversed 
individuals in the wild to better estimate the potential of the ‘Trojan Y chromosome’ 
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strategies to control or boost populations. However, it is clear that population sex ratio can 
be managed in attempting to reduce genetic bottlenecks and the effects of stochasticity in 
small or declining populations, and to control the spread of invasive species. 
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