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1. Introduction 

HLA-G is a non-classical HLA class Ib molecule belonging to the Major Histocompatibility 
Complex (MHC) located on the short arm of chromosome 6. The tissue-restricted 
distribution of HLA-G, the low polymorphism in the coding region, the fact that HLA-G 
primary transcript is alternatively spliced in seven isoforms, and the inhibitory action on 
immune cells, constitute four hallmarks of HLA-G, which distinguish it from other HLA 
class I molecules (Carosella et al., 1999). In healthy conditions, a basal level of HLA-G gene 
transcription is observed in most cells and tissues. However, translation into HLA-G protein 
is restricted to trophoblasts at the fetal-maternal interface (Carosella et al., 2003), and in 

adults, to thymic epitelial, cornea, mesenchymal stem cells (MSCs), nail matrix, pancreatic- 
cells, erythroid and endothelial precursors. HLA-G can be also neo-expressed in 
pathological conditions including malignant transformation, viral infections, inflammatory 
and autoimmune diseases, and allogeneic transplantation (Carosella, 2011). 

HLA-G locus is very low polymorphic and, due to its structure, HLA-G molecule can 
recognize and present only a restricted peptide repertoire compared to classical HLA class I 
molecules (Clements et al., 2005). These peculiarities render HLA-G exclusively oriented 
towards immune inhibition and tolerance. In the late ninety, Rouas-Freiss et al. showed that 
HLA-G expressing trophoblasts were protected from maternal NK cell-mediated cytolysis, 
indicating for the first time HLA-G as a key molecule in fetal-maternal tolerance (Rouas-
Freiss et al., 1997). From this first observation, several groups have worked to define the 
mode of action of HLA-G and in which settings it is involved in promoting tolerance. It is 
now generally accepted that HLA-G is a unique molecule with several immuno-modulatory 
properties: it plays an important role not only in fetal-maternal tolerance, but also in 
modulating immune responses and promoting and maintaining peripheral tolerance in 
healthy and pathological conditions. HLA-G can indeed act on both the innate and the 
adaptive branches of immunity and regulate short- and long-term immune-responses. 

2. HLA-G molecule  

The alternative splicing of HLA-G primary transcript results in seven different isoforms, 
four of which are membrane bound (HLA-G1 to –G4) and three are soluble (HLA-G5 to –
G7) forms (Fujii et al., 1994; Ishitani and Geraghty, 1992) (Fig. 1A).  
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Fig. 1. HLA-G isoforms, monomers and dimers 

A. The alternative splicing of a unique primary transcript yields 7 protein isoforms: 

truncated isoforms are generated by excision of one or two exons encoding globular () 
domains, whereas translation of intron 4 (i4) or intron 2 (i2) yields soluble isoforms that lack 
the transmembrane domain. B. HLA-G molecules can form homodimers through the 
generation of Cys42-Cys42 disulfide bonds.  

In addition, a soluble HLA-G1 isoform (shed HLA-G1) can be generated by the membrane 
HLA-G1 proteolytic cleavage that is dependent on metalloproteinase activity (Park et al., 
2004), and is regulated by Nitric Oxide (NO) concentration (Diaz-Lagares et al., 2009) and 

Tumor Necrosis Factor (TNF)-/NFkB pathway activation (Zidi et al., 2006). Soluble and 
membrane-bound HLA-G isoforms have similar functions. HLA-G1, HLA-G5, and shed 
HLA-G1 are the most described isoforms in healthy tissues (Paul et al., 2000) and their 
structure is similar to that of classical HLA class I molecules: a heavy chain of three globular 

domains non-covalently associated with 2-microglobulin (2m) and a nona-peptide 

(Clements et al., 2005). The other HLA-G isoforms contain the 1 domain but lack one or 

two of the other globular domains, and are not associated with 2m and the peptide. The 
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presence of the 3 domain is important to HLA-G functions since it represents a binding site 
for HLA-G receptors (Clements et al., 2005; Clements et al., 2007). 

HLA-G possesses two unique cysteine residues, in position 42 of the 1 domain and in 

position 147 of the 2 domain. Through these residues, HLA-G may dimerize by intra-
molecular disulfide bonds (Boyson et al., 2002). Membrane-bound or soluble HLA-G dimers 
were detected both in vitro and in vivo (Apps et al., 2007; Boyson et al., 2002; Gonen-Gross et 
al., 2005)  (Fig. 1B). Dimerization of HLA-G is one of its key features since dimers bind to 
HLA-G receptors with  higher affinity and slower dissociation rates compared to monomers 
(Shiroishi et al., 2006a) and, as a consequence, dimers, but not monomers, carry most of the 
HLA-G functions (Gonen-Gross et al., 2003; Li et al., 2009). 

HLA-G acts through three inhibitory receptors: immunoglobulin-like transcript (ILT)2 
(CD85j/LILRB1), ILT4 (CD85d/LILRB2), the killer cell immunoglobulin-like receptor 
(KIR)2DL4 (CD158d), and the co-receptor CD8 (Colonna et al., 1997; Colonna et al., 1998; 
Rajagopalan and Long, 1999) (Fig. 2).  

 

Fig. 2. HLA-G receptors 

Inhibitory receptors known to bind HLA-G. Basic structural organization and expression 
patterns are shown. The HLA-G structural configuration that these receptors are known to 
bind are indicated as ‘+’ (reported binding) and ‘–’ (reported absence of binding or minor 
binding). 

ILT2 is expressed by B cells, some T cells (both CD4+ and CD8+), a sub-population of NK 
cells, and all monocytes/Dendritic Cells (DCs) (Colonna et al., 1997), whereas ILT4 is only 
expressed by mono/macrophages and DCs (Colonna et al., 1998). KIR2DL4 is expressed by 
some CD8+ T and NK cells (Goodridge et al., 2003). 

Even if ILT2 and ILT4 recognize other HLA Class I molecules, HLA-G is their ligand of 
highest affinity and they bind HLA-G dimers even more strongly (Shiroishi et al., 2006a; 
Shiroishi et al., 2003). ILT2 and ILT4 can recognize different HLA-G structures: ILT2 binds 

only 2m-associated HLA-G1/G5 isoforms, whereas ILT4 also recognizes their 2m-free 
counterparts (Gonen-Gross et al., 2005; Shiroishi et al., 2006b). Finally, significantly higher 
expression of ILT2 was necessary for efficient HLA-G tetramer binding, suggesting that this 
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interaction may have relatively lower affinity compared to that of ILT4 (Allan et al., 1999). 
Interestingly, HLA-G can directly influence the expression rate of its receptors both at 
mRNA level and at the protein level (LeMaoult et al., 2005). Thus, HLA-G is unique in its 
ability to be expressed in different isoforms and to act through inhibitory receptors. 

3. Mechanisms underlying HLA-G expression 

Even if theoretically any tissue might express HLA-G, its physiological expression is 
restricted to few tissues such as trophoblasts, thymic epithelium, cornea, MSC and 

pancreatic -cells (Carosella, 2011). Nonetheless, in pathological conditions, HLA-G 
expression can be induced and/or up-regulated. So far the reason why HLA-G can be 
expressed in some, but not in all tissues has not been fully elucidated. However, several 
factors such as immune-modulatory cytokines and hormones, were described to potentially 
affect transcriptional mechanisms responsible for HLA-G expression (Moreau et al., 2009).  
In contrast to classical HLA class I molecules, HLA-G expression is not influenced by the 
transcription factor NF-kB (Gobin et al., 1998) or by classical pro-inflammatory cytokines 

such as Interferon (IFN)- (Gobin et al., 1999), since responsive elements for IFN- are 
missed in HLA-G promoter (Gobin et al., 1999; Steimle et al., 1995). In contrast, HLA-G 
transcriptional rate is increased by the presence of a number of anti-inflammatory cytokines 

including IFN-(Lefebvre et al., 2001), Interleukin (IL)-4, IL-5, IL-6 (Deschaseaux et al., 
2011), and IL-10 (Moreau et al., 1999)  and can be modulated by Granulocyte Macrophage 
Colony-Stimulating Factor (GM-CSF) (Onno et al., 2000; Yang et al., 1996), Transforming 

Growth Factor (TGF)-, or Granulocyte Colony-Stimulating Factor (G-CSF).  

In addition to cytokines, hormones like glucocorticoids (dexamethasone) and progesterone 
were shown to increase the secretion of both HLA-G5 and HLA–G6 by trophoblasts (Akhter 
et al., 2011; Moreau et al., 2001; Yie et al., 2006a; Yie et al., 2006b). HLA-G expression can be 
also influenced by Adenosine Triphosphate (ATP) and by the tryptophan catalayzing 
enzyme indoleamine 2 3-dioxygenase (IDO). ATP acts as a potent inhibitor of HLA-G1 and 
HLA–G5 production from LPS-activated PBMCs via down-regulation of IL-10 (Rizzo et al., 
2009). IDO, known to be involved in the generation of tolerogenic microenvironments by 
tryptophan depletion and in the generation of T regulatory (Treg) cells (Chung et al., 2009; 
Munn et al., 2002), was shown to differentially modulate HLA-G expression in monocytes 
and myeloid DCs. IDO blocked HLA-G cell-surface expression on monocytes (Gonzalez-
Hernandez et al., 2005), but it induced HLA-G expression and shedding in myeloid DCs 
(Lopez et al., 2006). Overall, a number of immune mediators can influence HLA-G 
expression. It has to be taken in account that these molecules can be up-regulated in 
conditions, such as inflammation, in which HLA-G expression is needed to control or 
dampen the immune response.  

In addition to soluble factors, it has been recently reported that “transient” HLA-G 
expression can be acquired via trogocytosis, a cell-to-cell contact-dependent uptake of 
membranes and associated molecules from one cell by another (reviewed in (Davis, 2007; 
LeMaoult et al., 2007a). Trogocytosis of HLA-G was shown for activated CD4+ and CD8+ T 
cells (LeMaoult et al., 2007b), activated NK cells (Caumartin et al., 2007), and monocytes 
(HoWangYin et al., 2011). For CD4+ T cells, the most important consequence of HLA-G 
acquisition, is that the newly-expressing cells became transiently tolerogenic (LeMaoult et 
al., 2007a), as discussed below. Thus, trogocytosis generates HLA-G positive cells, which 
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display, but do not express HLA-G. The ability of different cells to transiently acquire HLA-
G expression broadens the immuno-modulatory activity of HLA-G. 

4. HLA-G immunological function 

The functions of HLA-G are exclusively oriented towards immune inhibition and tolerance. 
HLA-G exerts its inhibitory functions on several immune cells through direct binding to the 
inhibitory receptors ILT2, ILT4, and KIR2DL4 (Shiroishi et al., 2006b). 

4.1 Short-term immuno-modulation mediated by HLA-G 

HLA-G:ILT2 interaction modulates NK cell activity (Rouas-Freiss et al., 1997). HLA-G-
expressing target cells are indeed resistant to the lysis mediated by NK cells (Riteau et al., 
2001). Although the mechanisms underlying this effect are not completely elucidated, it has 
been recently defined that HLA-G:ILT2 interaction disrupts the immunological synapse (IS), 
a supramolecular structure responsible for both T and NK cell activation and function 
(Favier et al., 2010), leading to inhibition of NK cytolysis. HLA-G binds to KIR2DL4 on NK 
cells (Shiroishi et al., 2006b). However, it still remains unclear which are the effects mediated 
by this interaction. Ligation of KIR2DL4 activates cytokine production but not cytotoxicity 
(Rajagopalan et al., 2001), and it has been recently proposed that activation of KIR2DL4 by 
soluble HLA-G activates a pro-inflammatory/pro-angigenic responses, consistent with a 
role in promoting vascularization during early pregnancy (Rajagopalan et al., 2006). HLA-G 
can also bind CD8, which is expressed by a subpopulation of NK cells leading to Fas ligand 
expression, and induction of apoptosis (Contini et al., 2003). 

The interaction between HLA-G and CD8+ T cells impairs the antigen-specific cytotoxic T 
lymphocyte (CTLs) activity (Le Gal et al., 1999). HLA-G has a dose-dependent effect on the 
generation of allo-CTL responses, while it seems to not affect pre-existing allo-CTLs (Kapasi 
et al., 2000). Furthermore, during later stages of T cell activation, HLA-G:CD8 interaction 
promotes TCR-independent apoptosis of CD8+ T cells through the same mechanisms 
described for NK cells (Fournel et al., 2000). 

During the early phase of CD4+ T cell activation, HLA-G:ILT2 interaction induces a cell cycle 
blockade at the G1 phase (Bahri et al., 2006), and inhibits allo-reactive T-cell proliferation 
(Naji et al., 2007a). Interestingly, it has been proposed that HLA-G isoforms have different 
impact on the cytokine secretion profile of CD4+ T cells. HLA-G1 was indeed shown to 
promote T helper (h)2 polarization of naïve T cells (Kanai et al., 2001b; Kapasi et al., 2000) 

whereas HLA-G5 induces tumor necrosis factor (TNF)-, IFN-, and IL-10 (Kanai et al., 
2001a). Morandi et al. recently described that HLA-G5 has an additional effect on CD4+ T 
cells since it down-regulates expression and function of CCR2, CXCR3, and CXCR4 on 
different subsets of activated CD4+ T cells, impairing their migratory capability (Morandi et 
al., 2010).  

The immunological functions of HLA-G on B cells are poorly described. It has been shown 
that in patients who underwent renal transplantation, serum levels of soluble HLA-G are 
negatively associated with anti-HLA antibodies and with graft rejection, suggesting that 
soluble HLA-G may possibly act to inhibit the immune humoral responses against HLA 
(Qiu et al., 2006). Further investigation is needed to better highlight the role of HLA-G in 
modulating B cell responses. 
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Myeloid antigen presenting cells (APCs) express both ILT2 and ILT4, which render them 
targets of HLA-G-mediated modulation. In the presence of HLA-G, myeloid APCs fail to 
stimulate allo-proliferative T cell responses in vitro (LeMaoult et al., 2004) and reduce NK-
mediated cytotoxicity (Gros et al., 2008). Moreover, HLA-G inhibits the up-regulation of 
HLA Class II, CD80 and CD86 on myeloid DCs in response to LPS or allo-activation signals 
in vitro (Ristich et al., 2007) (Gros et al., 2008). Thus, HLA-G inhibits the functions and 
differentiation of myeloid APCs, leading to improper T lymphocyte activation and to impair 
NK cytotoxic activity. However, HLA-G does not block myeloid APCs functions, but 
induces them to differentiate into tolerogenic cells. Several reports indeed show that HLA-G 
treatment up-regulates the expression of cytokines, chemokines, and chemokine receptors 
by myeloid APCs (Apps et al., 2007; Gros et al., 2008; Li et al., 2009; Liang et al., 2008). The 
first evidence that HLA-G promotes the induction of tolerogenic APCs comes from studies 
conducted by the group of Horuzsko demonstrating that HLA-G treatment of monocyte-
derived DCs that highly express ILT2 and ILT4 results in cells with tolerogenic-like 
phenotype and the potential to induce T-cell anergy (Ristich et al., 2005). Results obtained in 
a murine model support this notion by showing that HLA-G inhibited maturation of DCs 
(Horuzsko et al., 2001) and that in ILT4 transgenic mice, the HLA-G:ILT4 interaction 
impaired DC maturation in vivo, leading to delayed skin allograft rejection (Liang et al., 
2002). Thereby, HLA-G by interacting with ILT receptors present on myeloid APCs induces 
their differentiation into regulatory cells.  

4.2 Long-term tolerogenic properties of HLA-G 

Myeloid APCs are not only the cells more sensitive to HLA-G-mediated modulation, but 

they also commonly express HLA-G. Myeloid APCs may express all HLA-G isoforms (Le 

Friec et al., 2004), but cell-surface HLA-G1 and secreted HLA-G5 have been described the 

most. In pathological contexts including transplantation, cancer, viral infections, and 

inflammatory diseases, the expression of HLA-G on myeloid cells can be up-regulated 

(Carosella et al., 2008). Recently, in liver-transplanted patients, the presence of HLA-G-

expressing myeloid DCs has been correlated with tolerance and graft acceptance 

(Castellaneta et al., 2011). Similarly, in cancer (reviewed in (Amiot et al., 2011) as well as in 

viral infections (reviewed in (Fainardi et al., 2011), myeloid APCs expressing HLA-G were 

reported, and often correlated with  poor clinical outcomes. Myeloid APCs not only express 

membrane-bound HLA-G1 but they may also secrete or shed HLA-G molecules, 

contributing to the generation of a tolerogenic microenvironment. Such a microenvironment 

may alter the functions not only of lymphocytes, but also of the HLA-G-expressing myeloid 

APCs themselves, in a tolerogenic feedback loop. HLA-G can indeed directly promote its 

expression and the expression of its receptors on myeloid APCs (LeMaoult et al., 2005). 

Thus, myeloid APCs may be viewed as suppressor cells capable of inhibiting other immune 

effectors, and also of generating regulatory cells including Treg cells. 

Treg cells are critical players for preservation of immune homeostasis and for 

establishment and maintenance of peripheral tolerance. Treg cells belonging to different T 

cell subsets, including CD4+ and CD8+, NKT, and  T cells. The best characterized Treg 

populations are the forkhead box P3 (FOXP3)-expressing, CD4+CD25+ Tregs (FOXP3+ 

Tregs) (Sakaguchi et al., 2010), and the CD4+ IL-10-producing Tr1 cells (Akdis et al., 2004; 

Barrat et al., 2002; Groux et al., 1997; Roncarolo et al., 2006). FOXP3+ Tregs and Tr1 cells 
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are distinct populations of Treg cells that play a non-redundant role in maintaining 

tolerance, and are distinguished from one another by their distinct phenotype and 

cytokine profiling. FOXP3+ Treg cells are characterized by the constitutively-high 

expression of CD25 and the transcription factor FOXP3 (Sakaguchi, 2005), and their 

development and function is strictly dependent on FOXP3 (Bacchetta et al., 2007; Gavin et 

al., 2007). Tr1 cells can be induced in the periphery upon chronic antigen (Ag) stimulation 

in the presence of IL-10 (Roncarolo et al., 2006), and are currently identified by their 

unique cytokine profile consisting of high levels of IL-10, TGF-┚, and low levels of IL-2 

and IFN-┛ and the absence of IL-4 after stimulation (Bacchetta et al., 1994; Groux et al., 

1997). Once activated through their specific TCR, Tr1 cells secrete IL-10 and TGF- that 

directly inhibit effector T cell proliferation and expression of HLA class II and co-

stimulatory molecules on APCs, which indirectly suppress effector T-cell activation. More 

recently, we demonstrated that Tr1 cells specifically kill myeloid cells via a Granzyme B-

dependent mechanism (Magnani et al., 2011). 

HLA-G-expressing APCs were shown to be capable of priming naïve T cells to become Treg 

cells. Indeed, APC lines over-expressing membrane-bound HLA-G1 induced the 

differentiation of CD4+ and CD8+ T cells able to inhibit allogeneic responses (LeMaoult et al., 

2004). Resulting HLA-G-induced Treg cells included CD4low and CD8low T cells that 

suppress via soluble factors (Naji et al., 2007a; Naji et al., 2007b). These results are in 

agreement with those obtained in patients who received a combined liver-kidney transplant, 

in which high plasma levels of HLA-G5 correlated with an increased percentage of 

suppressor T cells (Le Rond et al., 2004; Naji et al., 2007b). They are also in line with results 

showing that high HLA-G5 plasma levels in the peripheral blood of stem cell-transplanted 

patients are associated with the expansion in peripheral blood of CD4+CD25+CD152+ T cells 

with suppressive activity (Le Maux et al., 2008). 

We recently identified and characterized a new subset of human DCs that arises in the 

presence of IL-10 and endogenously expresses cell-surface HLA-G (Gregori et al., 2010). DC-

10 are characterized by the outstanding ability to produce IL-10 and by the expression of 

high levels of membrane-bound HLA-G1 and other tolerogenic signaling molecules such as 

ILT2, ILT3, and ILT4 (Fig. 3).  

DC-10 are potent inducers of adaptive allo-specific Tr1 cells (Gregori et al., 2010). 

Furthermore, allergen-specific Tr1 cells can be generated in vitro by stimulating human T 

cells with autologous tolerogenic DC-10 pulsed with allergen (Pacciani et al., 2010). 

Interestingly, the expression of membrane-bound HLA-G1 and that of its receptors are up-

regulated by IL-10 on both DC-10 and T cells, and the expression of high levels of 

membrane-bound HLA-G1, ILT4, and IL-10 by DC-10 is critical to the generation of Tr1 cells 

by DC-10 (Rossetti et al., 2011). 

5. HLA-G expressing regulatory cells  

In addition to myeloid cells that can constitutively or transiently express HLA-G, T cells or 
other immune cells can express or secrete HLA-G. 

A subpopulation of CD4+ HLA-G1+ and CD8+ HLA-G1+ T cells has been described (Feger et 
al., 2007). They represent a small subset of peripheral blood cells in healthy individuals, but   
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Fig. 3. A unique subset of human tolerogenic DC: DC-10 

A. DC-10 are present in vivo and characterized by the expression of the surface markers 
CD14, CD16, CD83. They also express high levels of HLA-G1 and its receptor ILT4. B. DC-10 
can be differentiated in vitro starting from the CD14+ fraction of PBMCs cultured for 7 days 
in the presence of GM-CSF, IL-4 and IL-10.  

are increased at sites of inflammation, such as in the central nervous system of patients with 
neuro-inflammatory disorders and in muscle tissue in patients with idiopathic myositis 
(Feger et al., 2007; Huang et al., 2009a; Wiendl et al., 2005). CD4+ HLA-G1+ T cells represent 
a population of naturally occurring Treg cells distinct from nTreg cells, since they lack CD25 
and FOXP3 expression. HLA-G+ Treg cells showed reduced proliferation in response to 

allogeneic (mDCs) and polyclonal stimulation (CD3/CD28), and have a cytokine profiling 
different from Tr1 cells. CD4+ HLA-G+ and CD8+ HLA-G+ Treg cells inhibit the proliferation 
of autologous HLA-G- T cells through HLA-G1/sHLA-G1 (Feger et al., 2007) and soluble 
factors, including IL-10 (Huang et al., 2009b). A population of induced HLA-G+ T cells has 
been also described, these allo-specific CD4+ and CD8+ T cells were shown to express HLA-
G1 and to secrete HLA-G5 (Le Rond et al., 2004; Lila et al., 2001). Moreover, we 
demonstrated that up-regulation of HLA-G on CD4+ T cells is critically required for DC-10 
mediated induction of adoptive Tr1 cells (Gregori et al., 2010). 

Adult bone marrow MSCs can also express HLA-G and have been included in the list of 
regulatory cells. MSCs are multipotent cells that play an important role in tissue 
regeneration and also have strong immuno-modulatory properties (reviewed in (Uccelli et 
al., 2008)). MSCs express low levels of HLA Class I molecules, do not express HLA class II or 
co-stimulatory molecules, and therefore do not induce T-cell activation. It has been 
demonstrated that MSCs constitutively express HLA-G5 (Selmani et al., 2009). Even though 
HLA-G expression decrease during MSCs expansion in vitro, recent studies clearly identified 
it as a key contributor to MSCs immune-tolerogenic functions (Nasef et al., 2007; Rizzo et al., 
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2008; Selmani et al., 2008). In addition to a direct suppressive function through HLA-G5, 
MSCs can induce via a cell-to-cell contact mechanism CD4+ CD25high Foxp3+ Treg cells 
(Selmani et al., 2008). 

6. HLA-G and its polymorphisms 

Very few polymorphisms have been identified in the coding region of the HLA-G locus. The 
heavy chain encoding region exhibits 33 Single Nucleotide Polymorphisms (SNPs) but only 
13 amino acid variations are observed. This peculiarity is important in determining the 
biological function of HLA-G, since a reduced variability leads to a limited peptide 
repertoire and presentation capability (Clements et al., 2005), and can influence the 
polymerization rate. Moreover, the 5’ Up-stream Regulatory Region (5’ URR), containing the 
promoter, and the 3’ untranslated region (UTR) exhibit numerous nucleotide variations that 
may influence HLA-G expression (Donadi et al., 2011; Larsen and Hviid, 2009) and 
consequently its tissue distribution in healthy and pathological conditions (Fig. 4). 

 

Fig. 4. HLA-G locus and its polymorphisms  

Schematic representation of HLA-G locus. The major polymorphisms observed at the 5’URR 
and at 3’UTR regions are indicated. URR: Up-stream regulatory region; UTR: Untraslated 
region. 

6.1 5’ up-stream regulatory region (URR) 

Because of the presence of regulatory elements, polymorphisms at the 5’ URR might have a 
relevant impact in the regulation of HLA-G expression (Fig. 4). The region up-stream from 
the transcriptional start site of HLA-G contains 27 different polymorphisms but only 13 of 
them are within or very close to known transcription factor binding sites or regulatory 
elements (Hviid et al., 1999; Ober et al., 2003; Tan et al., 2005). Interestingly, all the 27 
polymorphisms are in strong linkage disequilibrium (LD) and define 13 unique promoter 
haplotypes (Ober et al., 2003; Tan et al., 2005). Among the 5’ URR polymorphisms, only the -
725C/G/T single nucleotide polymorphism (SNP) has been associated with HLA-G 
expression. Ober et al. demonstrated that the presence of G in position -725 significantly 
increases HLA-G transcription rate in JEG-3 cell line (Ober et al., 2006) and, when it is 
present in both parents, it is significantly associated with fetal loss rate (Ober et al., 2003). 
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An additional interesting SNP located in 5’ URR is the -201 A/G SNP since it resides into the 
enhancer A region (Hviid et al., 1999). However, it still remains to be clarified if this 
polymorphism has any impact on the expression of certain HLA-G alleles.  

6.2 3’untraslated region (UTR) 

The exon 7 of the HLA-G locus is always absent in the mature messenger(m)RNA. 
Moreover, due to the presence of a stop codon in the exon 6 of HLA-G, the exon 8 is not 
translated. Thus, exon 8 is considered the 3’ UTR of the mature RNA. This region contains 
several regulatory elements (Kuersten and Goodwin, 2003), including polyadenylation 
signals, AU-rich elements (Alvarez et al., 2009), and several polymorphic sites that may 
potentially influence mRNA stability, turnover, mobility and splicing pattern. 3’UTR 
polymorphisms that can influence HLA-G expression are: i) the insertion (INS) or deletion 
(DEL) of a 14bp fragment (14bp INS/DEL) that has been associated with mRNA stability; ii) 
the SNP at position +3142, which may be a target for certain microRNAs (miRNAs), small 
RNA sequences which once bound to a complementary mRNA lead to its translational 
repression or degradation and gene silencing (Bartel, 2009); iii) additional six SNPs landed 
in putative binding sites for miRNAs (Castelli et al., 2009) (Fig.4). 

The first identified 3’UTR HLA-G polymorphism is the 14bp INS/DEL and has been studied 

the most. The insertion of the 14bp fragment, results in the formation of a cryptic breakpoint in 

the mRNA that loose the first 92bp of exon 8 (Hviid et al., 2003). Rousseau et al. demonstrated 

that HLA-G transcript with the 92bp deleted seems to be more stable than the complete 

mRNA fragment generated by the 14bp DEL (Rousseau et al., 2003), suggesting that 14bp INS 

might be associated with high levels of HLA-G expression.  Nonetheless, several groups have 

demonstrated that 14 bp INS/INS genotype is associated with lower serum and plasma level 

of sHLA-G1/HLA-G5 compared to those observed in 14bp INS/DEL and 14bp DEL/DEL 

genotypes (Chen et al., 2008; Hviid et al., 2004; Hviid et al., 2006), an observation that 

constitutes the “14bp paradox”. Consistently, conflicting results have been obtained in 

different studies concerning the association of the 14bp HLA-G genotypes with autoimmune 

diseases, pathological pregnancy, recurrent spontaneous abortions, and pre-eclampsia. 

Notably, the presence of 14bp DEL has been found to be predictive for the incidence of GvHD 

after unrelated (La Nasa et al., 2007) and HLA-identical sibling (Sizzano et al., in press) Human 

Stem Cell Transplantation (HSCT) for beta-thalassemia. 

Several SNPs at 3’UTR of HLA-G locus have been identified (Castelli et al., 2009). Among 

them, the +3142 C/G SNP has been proposed to be critically involved in HLA-G regulation 

since it is associated with asthma (Tan et al., 2005). The G variant of a G/C SNP at position 

+3142 of the 3’UTR has been hypothesized to increase the affinity of the resulting mRNA for 

miR-148a, miR-148b and miR-152 (Veit and Chies, 2009). Among these miRNAs, only miR-

152 has been demonstrated responsible for HLA-G post-transcriptional regulation. Indeed, 

over-expression of miR-152 in JEG-3 cell lines resulted in decreasing HLA-G expression and 

increased susceptibility to NK cell–mediated cytolysis (Zhu et al., 2010). 

In silico analysis of the 3’UTR of the HLA-G locus revealed the presence of additional six 
SNPs that are landed in putative binding sites for miRNAs (Castelli et al., 2009). 
Interestingly the 14bp INS/DEL and the 7 SNPs arrange in different combinations to 
generate eight distinct haplotypes of 3’UTR HLA-G region (Castelli et al., 2010) (Table 1). 
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Therefore, it has been hypothesized that the expression of HLA-G might be influenced by a 
combination of specific polymorphisms. Our group is currently investigating the impact of 
the HLA-G 3’UTR haplotypes on HLA-G expression. Preliminary results indicate that 
different 3’UTR HLA-G haplotypes are associated with variable levels of HLA-G1 
expression on myeloid APCs.  

 
Table 1. 3’UTR HLA-G haplotypes 

7. Conclusions and perspectives 

Since the discovery of HLA-G, research has established its role in modulating immune 
responses and inducing tolerance. While a great deal of progress has been made in 
understanding the mechanisms underlying immune modulation by HLA-G, several 
questions remain to be clarified. First, HLA-G can promote the differentiation of regulatory 
cells and HLA-G-expressing cells act as regulatory cells, however additional studies are 
required to better define their role in promoting tolerance. Second, although it is generally 
accepted that 5’ URR and 3’ UTR are involved in HLA-G expression, further investigation 
are needed to elucidate the molecular mechanisms involved in HLA-G regulation. Third, 
3’UTR HLA-G haplotypes have been identified, future studies are warranted to define 
whether they can influence the transcriptional rate of HLA-G isoforms and their functions. 
Answering these questions will not only bring us closer to understanding how HLA-G 
function, but also how to exploit or modulate its suppressive activity for targeted therapy 
against a wide variety of diseases. 
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