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1. Introduction 

1.1 Motivation of microarray development 

Microarrays play important roles in Medicinal Chemistry and Drug Discovery. In the Pre-
microarray era, scientists used to study one gene at a time. This approach is costly and time 
consuming. Quite often, many genes that interact with each other would be ignored. 
Therefore, the discovery of candidate drug targets is challenging, requiring the rapid 
development of techniques to identify the difference genomic profiling in disease and 
normal conditions, which will facilitate the understanding of the disease mechanism and the 
development of potential drugs for disease treatment.  

1.2 Examples of microarray in biomarker identification 

Microarray has been successfully applied to the comparison of genomic profiling for human 
tissues. One advantages of microarray is that it can find some potential drug targets which 
have been ignored previously. The example for this is the study by Heller et al in rheumatoid 
tissues. (Heller et al, 1997) They found around 100 genes known to be involved in 
inflammation. (Heller et al, 1997) However, additional genes such as interleukin-6 and matrix 
metallo-elastase are also found to be overexpressed remarkably, which is not anticipated a 
priori, since matrix metallo-elastase is thought to be distributed only within alveolar 
macrophages and placental cells.(Debouck and Goodfellow, 1999). Beside human, microarray 
has also been successfully applied to model organisms such as mouse. (Debouck and 
Goodfellow, 1999) Animal models play important roles in discovering therapeutic targets and 
potential drug development. Although the genome for the animals does not agree completely 
with the human genome, they are more easily to be manipulated. By careful design of the 
experiments, the treatment effect can be seen more clearly with less noisy background. 
Moreover, genes can be either knocked down or overexpressed to study the influence on 
phenotype. People used to use techniques such as differential display PCR to discover genes 
that are differentially expressed in the animal models and achieved some success. (Wang et al, 
1995) However, this technique is much slower compared with microarray. 

Quite often, drugs can bind to specific targets within cells and potentially influence different 
pathways.(Windle & Guiseppi-Elie, 2003) The genes that are differentially expressed 
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between drug-treated and untreated conditions are typically known as biomarkers. Such 
biomarkers not only help to identify patients at risk, but they also may lead to 
breakthroughs in understanding the mechanism for different diseases.(Ko et al., 2005)An 
example is the review by Chen that summarized the recent microarray research in 
biomarker identification in atherosclerosis and in-stent stenosis.(Chen et al., 2011)   

1.3 Diagnosis using microarray  

Microarray has greatly advanced the biology field and the biomarkers identified can be 
further used to form classifiers for prediction in clinical studies. For example, Gulob et al 
used the gene expression pattern from microarrays to classify acute myeloid leukaemia 
(AML) and acute lymphoblastic leukaemia (ALL) without other information. (Gulob et al, 
1999) Therefore, this field draws the attention not only from biologists but also statisticians 
and bioinformaticians. Through their collaborative efforts, there are many successful 
instances. We will introduce some of them in section two later. 

The rapid development of this technique also resulted in several FDA approved test. 

AmpliChip CYP450 test is a clinical test to find specific genetic variation of two cytochrome 

P450 genes CYP2D6 and CYP2C19 genes including deletion and duplications. (de Leon, 

2006) These two enzymes account for the variability of drug metabolism for each patient 

and offers enriched information for the doctors during prescription of psychiatric drugs. (de 

Leon, 2006) CYP2D6 can be divided into four categories: Poor Metabolizer, Intermediate 

Metabolizer, Extensive Metabolizer, and Ultrarapid Metabolizer. (de Leon, 2006) Similarly, 

for CYP2C19, only two categories are found: Poor Metabolizer and Extensive Metabolizer. 

(de Leon, 2006)  The assay works as follows: First, the gene is amplified by PCR and then the 

amplified product will be fragmented and labelled. Subsequently, these fragments will be 

hybridized to the microarray chip and the chip is scanned for further analysis. (de Leon, 

2006) For further information of this FDA approved test, please see the website at 

http://molecular .roche.com/assays/Pages/AmpliChipCYP450Test.aspx. 

Another FDA approved diagnosis test is MammaPrint to assess the risk of breast tumor and 

this will help to decide the effectiveness of chemotherapy on the patients. (van’t Veer et al, 

2002) The assay uses the fresh tissue to study the Amsterdam 70-gene breast cancer gene 

signature by microarray analysis. (van’t Veer et al, 2002) Readers interested in this test can 

also obtain more information about the MINDACT trial (Microarray In Node negative and 

1-3 positive lymph node Disease may Avoid Chemo Therapy) in the paper by Cardoso et 

al.(Cardoso et al, 2008) 

In general, identification of biomarkers by microarray greatly speeds the progress of 

research by enabling the simultaneous monitoring of the expression of thousands of genes.  

However, there are many potential pitfalls in analyzing the output from these arrays. 

(Verducci, et al., 2006)  Due to importance of proper analysis, we will give a brief 

introduction to the statistical methodology underlying proper analysis.   

2. Mechanisms and processing of microarrays 

Medicinal chemistry has increasingly employed microarrays to identify both key target 
genes and gene networks that can regulate the effectiveness of drugs. The basic scheme is 
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illustrated in Figure 1.1. Two cell strains (one is drug treated and one is non-treated) are 
harvested and the whole RNA from each strain is then extracted. This is followed by reverse 
transcription of RNA and the resulted cDNA is labelled with either of the two fluorescence 
dyes (Cys-3 or Cys-5). Then the mixed cDNA from both samples is hybridized to the 
probesets on the microarray chip. The probesets are the small oligonucleotides that have the 
complementary sequence of the cDNA attached to the array at each spot. After intensive 
washing, the intensity from the fluorescence of the dye labelled on cDNA at each spot is 
measured and recorded. These data will be used for further analysis. 

 

Fig. 1. Illustration of the microarray process. RNA is extracted from treated (treatment) and 
untreated (control) cell lines, followed by reverse transcription. The reversely transcribed 
cDNA is then labelled with the fluorescence dye and hybridized to the probes containing 
complementary fragments.  After unbounded cDNA is washed away, the binding at each 
probe is then quantified based on the fluorescence intensity of the bounded cDNA. 

The above method is referred to as a two channel array because a mixture of cDNA from 
two treatments is measured directly.  In contrast, a one channel array will only have cDNA 
from one sample to be hybridized to the probesets. In this case the fluorescence intensity 
from each sample is measured separately. For either type of array, processing and analyzing 
the data present both statistical and biological challenges. Fortunately, many such 
approaches have been integrated in the freely distrubuted statistical software R 
(http://www.r-project.org/) and the software Bioconductor (http://www. bioconductor. 
org/). Typically the data processing step includes four steps: image analysis, quality 
assessment, pre-processing and statistical inference.(Tibshirani et al., 2005) 

2.1 Image analysis and quality assessment 

In the image analysis step, each spot is quantified and then converted to intensity 
afterwards. The method of quantification depends on the brand of the arrays. Quality 
assessment is usually performed at two levels: array level and probe level. On the array 
level, fingerprint smudges or washed out corners, are generally recognized. Other problems 
such as defects of the array, errors in RNA extraction also belong in this category. One 
common criterion is that if the percentage of spots without any signal is higher than 30%, 
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the expression array will fail in the quality control step.(Tibshirani et al., 2005) Poor quality 
at probe level will include errors like faulty printing, uneven distribution, contamination, or 
poor level of signal to noise ratio. In addition, several parameters can be used to determine 
the quality of the array: uniformity, which is minimal variation in pixel intensity within a 
spot; and the brightness, which is the foreground to background ratio.(Tibshirani et al., 
2005) Normally, researchers will ignore the spots of poor quality in subsequent analysis. 

2.2 Pre-processing 

Two types of errors usually happen at this stage: (1) systematic error, which influences all 
measurements within one microarray chip with similar effect -- this error may be corrected 
by estimation; and (2) random error that cannot be explained or corrected, which is typically 
known as noise. Such errors are totally stochastic and have different influence on different 
probes.(Tibshirani et al., 2005) Typically, the pre-processing stage contains three steps: 
background correction, normalization and summarization. For the widely used Affymetrix 
chips, many Bioconductor routines are available in R for pre-processing. These require 
creation of an AffyBatch object based on raw Affymetrix data (in a .cel file). The first step is 
the background adjustment. In this step, one tends to subtract the control intensity from the 
treatment, to ‘denoise’ the intensity. However, direct subtraction of uncertain quantities can 
increase the level of noise and possibly result in negative intensity values for certain spots. 
Various methods to circumvent these problems are available as method parameters in the 
bg.correct function in R: 

a. RMA method: which is based on the assumption that the observed signal is a mixture of 

Gaussian background noise (N) with meanμvariance 2 and exponential signal (S) with 

mean ǂ. Thus the fluorescence intensity O we observe is the addition of the signal and 
noise. Assuming the above, E(S|O), which is the conditional expectation of the signal 
based on the observed intensity will be used as the background corrected values. 
However, the disadvantages for this are: only the PM(perfect match) values are used 
and MM(mismatch) values, which contains useful information for background noise are 
discarded.(Tibshirani et al., 2005) and the results may not be robust if there are gross 
deviations from the model assumptions.  These assumptions may be checked visually 
via different plotting methods. 

b.  MAS 5.0 method: due to the above disadvantages, RMA may not produce optimal 
result. Therefore, MAS 5.0 is sometimes used instead. Here, the whole array can be 
partitioned as k rectangular grids.(Tibshirani et al, 2005) The probeset, with lowest 
intensity for the grid, is used as the noise value to calculate the background corrected 
intensity within a particular rectangle. The intensities of these probes are further 
adjusted according to the weighted average of the background intensity of all grids 
according to the following formula: 

 Wk(x,y)=1/(d2k(x,y)+S0) (1) 

In the above formula, the weight is determined by the Euclidean distance from (x,y) to the 
centroid of the space k and the smoothing coefficient represented by d2k and S0, 
respectively.(Tibshirani et al, 2005) Irizarry et al. (2003) compare RMA and MAS 5.0 in detail. 

c. Ideal mismatch: Neither of the above methods uses mismatch information. Although 
direct subtraction of the mismatch intensity from the perfect match intensity creates the 
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problems of added noise and negative intensity, ideal mismatch adjusts the observed 
mismatch so that it will never be higher than the PM intensities. The detailed formula of 
this is available in (Tibshirani et al., 2005) for further reading.  

The next step is normalization of scores across different microarrays so that they can be 

compared fairly with each other. A variety of methods available in the normalize function of 

Bioconductor will be introduced: 

a. Scaling normalization: All the arrays are normalized using the same selected baseline. 
This is almost identical to fitting linear regression without the intercept.(Tibshirani et 
al., 2005) 

b. Non-linear transformations: Although linear regression is simple and easy to implement, 

in microarray study, the relationship may be more complicated and thus non-linear 

methods are developed including include cross-validated splines and loess 

smoothers.(Yang et al., 2001) The “invariantset” method developed by Li and Wong is 

very robust and is thus recommended.(Li & Wong, 2001) First an “invariantset” is 

identified. This gene set is composed of non-differentially expressed genes (sometimes 

called “household function genes) across the arrays and the expression values (or the 

rankings) of these genes can be used to construct the baseline for normalization (Li & 

Wong, 2001) However one challenge for this method is the identification of the 

“invariantset”, which may not be available a priori. 

c. Quantile normalization: The purpose of this method is to adjust the empirical distribution 
on all arrays so that they could be the same. The algorithm in R works as follows: First 
the columns of expression data matrix X are properly ranked (dimension p × n, p: 
number of the genes on the array; n: the number of the arrays). Suppose v is the p-
dimensional vector of row means of the sorted data matrix and V is the p × n matrix 
whose columns are all equal to v, sort each column of V by the inverse permutation. The 
obtained matrix is then quantile normalized.(Tibshirani et al., 2005)  The basis for this 
method is that the total energy that cells exert for gene expression remains fairly 
constant, although the choice of which genes get expressed may differ widely. 

d. Cyclic loess normalization: An MA plot is used for this normalization procedure: M 

(which stands for “multiple”) is the difference of two log intensities, while A is the 

average of the two log intensities. Subsequently, a loess curve is fitted for the MA plot 

and M is predicted by this curve.(Tibshirani et al., 2005) Each intensity value is adjusted 

based on the difference between the real and predicted M value. The process is iterated 

until all the arrays or probesets converge. However, the  drawback of this method is 

that it is computationally expensive and time consuming.(Tibshirani et al., 2005)  In R, 

the above two steps can be integrated. It has advantages like using all the information 

across arrays for normalization, and is thus, theoretically, more reliable. The “vsn” 

package in R is a representative and can perform the above two steps 

seamlessly.(Tibshirani et al., 2005) 

The final step of preprocessing step is the summation, which is trying to integrate intensity 

values from multiple probes of a particular gene and obtain its expression value. The R 

routines expresso and threestep offer great flexibility in deciding how much to weight each 

probe. (Tibshirani et al., 2005) Summation completes the pre-processing step, and we are 

now ready to begin proper analysis. 
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2.3 Statistical methods for biomarker identification in microarray analysis 

2.3.1 Introduction to basic microarray analysis 

Since microarray can be viewed as high-dimensional dataset with fewer replicates. 

Traditional variable selection procedures like stepwise selection cannot identify the 

biomarkers effectively; modifications or new procedures are developed to accommodate 

this. 

a. Shrinkage Methods: One particular drawback from stepwise selection of genes that 
distinguish treatment from control is its poor performance when the variables (gene 
expression levels) are highly correlated. However, this is exactly what happens on for 
microarray data since many genes on the array typically are involved in the same 
pathway. This inspired the development of the shrinkage methods, which can be 
viewed as constrained optimization. One advantage of shrinkage methods is they are 
more continuous than the subset selection and do not exhibit high variance. (Hastie et 
al., 2001) Theoretically, shrinkage methods do not minimize the residual sum of 
squares; instead, they impose a penalty on the residual sum of squares. Nowadays, 
different forms of penalty are proposed and some of the most commonly used ones are 
introduced here. 

Ridge Regression: Ridge regression introduces a penalty on the size of the coefficients, thus 

leading to the shrinkage of the regression coefficients.(Hastie et al., 2001) Mathematically,
 ridge solves the following: 
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1 1 1
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i j j

y x
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Here, ǌ (the regularization parameter) is greater than or equal to zero and controls the 

amount of shrinkage towards zero. When the regularization parameter is zero, this 

approach is converted back to ordinary least square (OLS) estimation. The penalized 

formulation (2) has an equivalent formulation in terms of constrained optimization, which 

may be achieved using convex programming methods: 
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 (3) 

Ridge estimation is suitable for situations when many correlated variables are present in the 

model.(Hastie et al., 2001) In these cases, the least squares estimator may be poorly 

determined, since the large positive coefficients may cancel out the negative coefficients on 

the correlated variables.(Hastie et al., 2001) Ridge regression can effectively prevent this 

from happening.  As the unique solution to (2), the ridge estimator has explicit form: 

 
1( )ridge t tX X I X Y   

 (4) 
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where I is the identity matrix. Hence, adding a positive constant to the diagonal of XtX 
allows a singular matrix to be inverted, effectively reducing the dependencies among the 
estimated coefficients. This was the original motivation. (Hoerl & Kennard, 1970)  

Lasso Regression: Lasso regression is similar to ridge regression, simply replacing the L2 norm 
ridge penalty in (2) by an L1 norm penalty.  The lasso form of (3) becomes 

 

2
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1 1
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i i j j
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 (5) 

Changing from an L2 to an L1 penalty results in a estimator that is nonlinear in y.(Hastie et 

al., 2001) In this case, nonlinear programming is needed to get the lasso solution 

iteratively.(Hastie et al., 2001) The algorithms of the least angle regression (LARS) can be 

simply modified to implement the lasso.(Bradley et al., 2004) A special feature of the lasso is 

the “sparseness” of the solution: some of the coefficients become exactly zero the constraint t 

becomes sufficiently small. If t is large enough, then no shrinkage is performed. For the case 

of orthonormal columns of X, the lasso has a simple form in terms of the OLS coefficients 

and the penalty : 

 ˆ ˆ( )( )j jsign      (6) 

Bridge Regression: Both ridge and lasso regressions are very popular. They can be generalized 

to bridge regression to achieve the some of the benefits of both.(Ildiko & Friedman, 1993) In 

bridge regression, people try to find β that satisfies the following, where 1 ≤ q ≤ 2: 
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 (7) 

SCAD Regression: Despite the good theoretical properties lasso/ridge regression, these 

penalties do not achieve the following desired properties simultaneously: unbiasedness (the 

estimator is close to the true parameter when the true parameter is large), sparseness 

(irrelevant predictors are automatically removed), and continuity (estimator is continuous, 

preventing the instability of hard thresh holding estimators).(Fan & Li, 2001) The new 

penalty is defined for a parameter  as 

    
   ' ( )

1

a
p I I

a


 
     


       

  
 (8) 

This penalty, known as the Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan & 
Li, 2001) helps to improve the properties of L1 and hard thresh holding penalties such 
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   22( )p I           . The SCAD penalty can also be viewed as a quadratic spline 

function, with knots at ǌ and aǌ.(Fan & Li, 2001) Also, it does not extremely penalize large 
values of θ and the solution is continuous.(Fan & Li, 2001) Fan gave the solution to SCAD in 
the context of wavelets.(Fan, 1997) The SCAD estimator has the following form: 

 

  
 

ˆ 2

ˆ ( 1) ( ) /( 2) 2

ˆ

sign z z when z

a z sign z a a when z a

z when z a
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   

 


  

     

 

 (9) 

One feature of this penalty is the oracle property: when some variables are not present in the 
true model, these corresponding coefficients tend to be estimated as zero when the sample 
size gets large.(Fan & Li, 2001) Asymptotically, it provides as good estimation of the 
coefficients as if the underlying model were known beforehand.(Fan & Li, 2001) Selection 
and estimation of the variable coefficients is automatic and simultaneous.(Fan & Li, 2001) 
Among the many instances where SCAD has been applied to microarrays for biomarker 
selection, the study by Wang et al. (2007) successfully discovered 71 potential transcriptional 
factors (TF) in the cell cycle of yeast. These included 19 out of 21 known and experimentally 
verified TFs related to the cell cycle.  Additional TFs showed periodic transcriptional effects 
and thus were biologically important and worth further study.(Wang et al., 2007) 

b. Methods Involving Derived Inputs: Principal Components Regression: When a large number 
of correlated inputs (e.g. potential biomarkers) are available, instead of keeping all these 
inputs in a regression model, it may be beneficial to consider just a few linear 
combinations of them. A logically justifiable choice for the coefficients used in the linear 
combination is the normalized vector a that gives the largest sample variance of all 
possible normalized linear combinations of the input variables. (Hastie et al., 2001) This 
is called the first principal component. The first p principal components are found 
sequentially, with each successive component maximizing input variation subject to 
being orthogonal to previous ones. When all the principal components are used, the 
method becomes the usual least square estimation. However, when fewer principal 
components are used, this method is similar to ridge regression.(Hastie et al., 2001) As 
an example, Tan et al. (2005) used total principal component regression to classify the 
tumors into different categories.  

Partial Least Squares: In contrast to principal component regression, which uses linear 

combination only of the input variables, partial least square(PLS) also allows for some 

information from the response variable y in the linear combinations.(Hastie et al., 2001) The 

algorithm is as follows: Assume y is centered and each xj is properly standardized. PLS first 

regresses y on each xj to obtain the corresponding coefficient 1
ˆ

j . Subsequently, we can 

define the first partial least square direction as 1 1 j jz x . (Hastie et al., 2001) Then Y is 

regressed on z1 to obtain the corresponding coefficients which is followed by 

orthogonalizing x1…xp in reference to z1.(Hastie et al., 2001) This process is repeated until 

the desired number of directions is reached. As with principal component regression, using 

all p directions results in the usual least square estimation.(Hastie et al., 2001) Differently 

from principal component regression, PLS seeks input that is in the direction of high 

variation and high correlation with y.(Hastie et al., 2001) In addition, when the inputs are 
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orthogonal to each other, the PLS will coincide with the least square estimates after the 1st 

step, setting the coefficients to be zero for the subsequent steps.  

Because of its good properties with small sample sizes and many predictors, PLS has been 
applied to high-dimensional genomic data.(Boulesteix & Strimmer, 2006; Aaroe, et al., 2010) 
Moreover, PLS regression can also be used to impute missing data. For example, Bras and 
Menezes (2006) impute missing values using PLS regression with all the genes as predictors.  
Huang et al. (2004) use a penalized version of PLS, which removes genes with poor power of 
prediction, in order to predict LVAD (left mechanical ventricular assist device) support 
time.  In this case, the shrinkage parameter and the number of latent components are 
obtained using cross-validation. After proper shrinkage, some genes have coefficient zero, 
thus removing them from the model.(Huang et al., 2004) This reduces the complexity of the 
model, and serves as an example for combining both shrinkage and PLS.  

c. Bayes Variable Selection Methods: Bayesian approaches use knowledge across genes for 
further inference.(Nott et al., 2007) For example, George and Foster (2000) adopted a 
binomial prior for the number of the differentially expressed genes (i.e. biomarkers) and a 
normal prior for their corresponding coefficients, assuming known and constant variance 
parameter. With informed choice of the hyperparameters, the authors ranked the genes 
according to the posterior probability that the gene belonged to the differentially expressed 
gene set or not.  Interestingly, the gene ranking agreed with the ranking obtained by other 
criteria such as AIC (Akaike, 1973) or BIC (Schwartz, 1979; Nott et al., 2007) When the 
variance parameters were unknown, different priors were assumed for effects of the genes 
and variance of the genes. Lonnstedt and Speed used a normal prior for effects of the 
differentially expressed genes and an inverted gamma prior for the corresponding 
variance.(Lonnstedt & Speed., 2002) Thus, after choosing the hyperparameters properly, 
people derived an explicit expression for the log odds of differentially expressed genes, 
which was known as B-statistic. (Lonnstedt & Speed, 2002) In contrast, Nott et al considered 
a double tailed exponential prior for effects of the differentially expressed genes and an 
inverted gamma for the corresponding variance.(Nott et al., 2007) The motivation was that 
double tailed exponential was heavier on the tails and was related to lasso.(Nott et al., 
2007) The proposed linear model was as follows: 

 Mgj=μg+εgj (10) 

Mgj is the expression value of gene g for array j.  μg is the gene specific mean expression 
value. εgj is N(0, σg2) where σg2 is the gene specific variance. All the σg2 are independent. 
Except the situation where we have infinite sample size, we can only conclude gene g is 
differentially expressed when |μg|>k and gene g is not differentially expressed when |μg|≤ 
k.(Nott et al., 2007) As a predefined cutoff value, k depends on the purpose of the 
experiment and other conditions. Correspondingly, B-statistic is then defined as follows to 
explore whether gene g belongs to the set of differentially expressed gene or not: 

 
 
 

Pr
( ) log

Pr

g

g

k M
B k

k M









 (11) 

The above represents the log odds ratio of the posterior probability given the data M. To 
implement this hierarchical Bayes procedure, calculation of the posterior probability is 
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necessary. A modified version of MCMC (Markov Chain Monte Carlo) algorithm was 
proposed, and details of the computation of the above B-statistic when the prior 
distributions are given is discussed by Nott et al. (2007). When k is chosen to be 0 and a 
proper prior allows Ǎg to be exactly 0, an explicit form of B(0) can be developed 
accordingly.(Lonnstedt & Speed., 2002) People usually use this statistic to rank genes 
instead of making inferences.(Nott et al., 2007; Lonnstedt & Speed., 2002)  

d. Hypotheses Testing as a Variable Selection Methods: The t-statistic has already been widely 
used for hypothesis testing for a long time. Therefore, people try to apply this to 
microarray study to select appropriately biomarkers on microarray. However, the 
traditional t-statistic will not work in this situation due to the following reasons: First, 
hundreds or thousands hypotheses are being tested simultaneously; therefore, the 
multiple comparison issue exists. However, Bonferroni correction is too conservative 
and sometimes no gene can pass this vigorous criterion. Thus, suitable adjustment 
methods need to be developed to further control the overall error. Second, during the 
microarray analysis, large outliers are frequently observed, and they tend to drive the t-
statistic to be large. Similarly, due to large number of tested genes and small number of 
replicates, the estimated variance for each gene is usually small, which tends to drive 
the t-statistic to be large. 

To meet the first challenge, a new method known as false discovery rates (FDRs) has been 
proposed. (Benjamini & Hochberg, 1995; Tusher et al., 2001) False discovery rate is defined 
as the expected proportion of type I error using the available decision rule.(Benjamini & 
Hochberg, 1995) This method, readily available in R, is especially useful for microarray 
study, since it is easy to compute and not as overly conservative as is Bonferroni adjustment.  

The second challenge requires a robust modification to the current version of t-statistic. One 

of them is known as ad hoc modification, which defines the modification by the data. Efron’s 

90% rule is in this category.(Efron et al., 2000) The modification is to add a constant term to 

the denominator to prevent the variance in the t-statistic from being too small.(Efron et al., 

2001) The constant a0 is defined as the 90th percentile of all the standard errors of the 

genes.(Efron et al., 2000) Thus the ordinary t-statistic has the following format: 

 . 0/( )g g gS M s a   (12) 

Mg. denotes the average expression value for gene g, and sg denotes the corresponding 
standard deviation. Another example belonging to ad hoc modification is the SAM 
(Significance Analysis of Microarrays).(Tusher et al., 2001) For each gene, the SAM method 
assigns a score relative based on the changes in expression relative to the standard deviation 
for the repeated experiments. For genes with scores higher than certain thresholds, a 
permutation distribution is used to estimate the FDR.(Tusher et al., 2001) This method may 
be viewed as an empirical Bayes procedure, simply adding a constant each set of genes 
levels when estimating individual variances.  This avoids difficulties when variances are 
computed from a small number of observations for each gene.(Tusher et al., 2001) This 
method showed great improvement in gene identification both FDR-wise and fold-wise in 
terms of the human cell response to the ionizing radiation.(Tusher et al., 2001) Despite of its 
robustness to individual outliers, the use of this ad hoc modification is still limited, and it is 
challenging to derive and study its theoretical properties. 
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Accordingly, a penalized likelihood version of t-statistic has been proposed and 
implemented. For example, Wu (2005) proposed another modified t-statistics, taking 
advantage of both SAM and lasso methods.  The method works as follows: assume the 
linear regression situation, 

 xij=ǃ0+ yj+εj (13) 

where xij represents the expression of gene i on array j; yj is the indicator, whether the jth 
sample belongs to the control or treatment group. A t-statistic or F-statistic can be 
developed.(Wu, 2005) The test statistic involves ordinary between/within group sum of 
squares, both of which can be penalized like in lasso regression.(Wu, 2005)  The test statistic 
in this scenario can be derived as: 
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Tusher’s SAM statistic is as follows: 
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Comparing the formulas (14—16), we can see that the penalized F or t statistic can be 
viewed as a special version of SAM, since the term ǌ2/ (n-2) coincides with the constant s0 in 
SAM statistic, which helps to stabilize the variance.(Wu, 2005) Furthermore, Wu showed 
that FDR can be calculated by permutation and then a cutoff can be put on the test 
statistic.(Wu, 2005) What makes the penalized SAM statistic superior to the ordinary SAM 
statistic is that penalized SAM statistic is derived rigorously from the situation of linear 
model and thus easier to develop its theoretical properties.(Wu, 2005) Through applications, 
this statistic also shown good performance.(Wu, 2005) 

Another modified t-statistic is refined for a statistical model assuming both multiplicative 
and additive errors.(Ideker et al., 2000) The parameters within the model are subsequently 
estimated using maximum likelihood method with all the observations.(Ideker et al., 2000) 
Subsequently, a traditional maximum likelihood ratio test for each individual gene is carried 
out to identify the significance of the intensities.(Ideker et al., 2000) In some examples, this 
method can be shown superior to the simple fold approach.(Ideker et al., 2000) However, 
this method is naïve and has potential limitation as follows: first, the author does not use 
any multiple comparison adjustment techniques when performing multiple tests on 
thousands of genes simultaneously; this may be corrected by introducing the traditional 
FDR. Second, the author used chi-square as the distribution of -2*ln(likelihood ratio), which 
may not hold for small sample size.(Ideker et al., 2000) A more suitable distribution needs to 
be derived accordingly. 

One more example of a “modified” t-statistic is derived from a Bayesian approach, which 
has become popular in statistics. For example, the B-statistic, the log odd ratio of the 
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posterior probability can be viewed as a Bayesian version of t-statistic.(Lonnstedt & Speed, 
2002) Another example of “moderated” t-statistic is proposed by Smyth.(Smyh, 2004) It 
assumes a scale inverse chi square prior for the variances of the genes.(Smyh, 2004) 
Additionally, the parameters can be estimated using Bayesian method and the ‘moderated’ t 
statistic is obtained by substituting the corresponding variance with their estimate.(Smyh, 
2004)  Cui et al propose another modified t-statistic using similar approach.(Cui et al., 2005) 
First, they performed a simulation from a chi-square distribution, whose degrees of freedom 
depends on the sample size to estimate the variance. Then they derive a bias-corrected Stein 
estimator on the log scale.(Cui et al., 2005) Thus, this estimator is more robust since the 
shrinkage in the variance makes the estimator of variance more robust.  

As we can see, the main drawback of “moderated t” is that it depends on a particular type of 

distribution. When the distribution assumption is not satisfied, these estimators will be 

inefficient and often lead to false inferences. This inspires the birth of the distribution free 

‘shrinkage t’ statistic.(Opgen-Rhein & Strimer, 2007) The main idea behind this is shrinking 

the empirical variance of each gene towards the common median of all the variance.(Opgen-

Rhein & Strimer, 2007) For each group, the ordinary variance is replaced by the 

corresponding shrinkage variance in the test statistic: 

 * 1 2

* *
1 2

1 2

k k
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k k

x x
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v v

n n





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For the above formula, n1 and n2 are sample size for group 1 and 2, respectively. v* stands 

for the corresponding shrinkage variance estimator. Here, each empirical variance is 

shrinking towards the median, which is shown to be more efficient or robust than shrinking 

towards the mean or zero.(Opgen-Rhein & Strimer, 2007) We can also view the “shrinkage 

t” as a combination of a standard t statistic and the fold change statistic.(Opgen-Rhein & 

Strimer, 2007) Another feature is that the “shrinkage t” belongs to the James-Stein estimator, 

not relying on any explicit prior distribution assumption and its theoretical property will be 

easily derived. Furthermore, this method is computationally efficient and the corresponding 

gene ranking is consistent with other tests.(Opgen-Rhein & Strimer, 2007)  

Shrunken centroid method and SCOOP: From a different point of view, Tibshirani developed 

the shrunken centroid method for biomarker identification.(Davies & Bromage, 2002; 

Tibshirani et al., 2005) For each gene within each group (i.e. treatment group or control 

group), the overall mean and the group means are calculated. The group means are shrunk 

toward the overall mean iteratively for each gene.(Davies & Bromage, 2002; Tibshirani et al., 

2005) The shrunken values are used to rank the genes and the cutoff is chosen by cross-

validation. (Davies & Bromage, 2002; Tibshirani et al., 2005) The shrunken values can be also 

used to form a classifier and the authors used this method to classify the cancer conditions. 

(Davies & Bromage, 2002; Tibshirani et al., 2005) Despite the successes this method has 

achieved, it has one potential drawback: information about correlation among genes is 

distorted or lost during successive shrinkage, and, therefore, the identified genes may 

appear falsely to be independent of each other. Based on this method, Liu et al. (2009) 

developed an improved version of shrinkage centroid method: SCOOP (Shrunken Centroid 

Orthogonal Ordering Projection) to extend to the cases with correlation variables. Instead of 
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shrinking along the natural axes (Tibshirani et al., 2005), which ignores the potential linkage 

between variables,  SCOOP rotates the axis and shrinks the group means in the direction 

preserving the least correlation information of variables. The algorithm of SCOOP is as 

follows: With the input of group information and the gene expression values from 

microarrays, two matrices are further identified: Between Epoch Covariance Matrix, 

containing all the variation between different groups, and Within Epoch Covariance Matrix, 

containing the variation originating from replication. Then, the eigenvalues and 

eigenvectors for both Between Epoch Covariance Matrix and Within Epoch Covariance 

Matrix are calculated by spectral decomposition. Since we have small number of samples 

and large number of variables (i.e. the genes) for microarray studies, both Between Epoch 

Covariance Matrix and Within Epoch Covariance Matrix are going to be highly singular. 

The union of the eigenvectors of the Between Epoch Covariance Matrix and Within Epoch 

Covariance Matrix with nonzero eigenvalues will form the basis functions of the new space 

(known as the Augmented Discriminant Space). For each gene, the group mean expression 

is shrunk towards the overall mean along the direction orthogonal to the Augmented 

Discriminant Space until the group means coincide, at which point that gene is eliminated 

from consideration. The amount of shrinkage needed for each gene is considered as its 

measure of importance. The above algorithm is carried out individually for each gene, 

producing a ranking of genes according to the importance measure. SCOOP has been 

successfully applied to identify biomarkers responsible for female rainbow trout 

reproductive cycle.(Liu, 2009, 2011) 

2.3.2 Introduction to basic microarray time course analysis 

Due to the decreasing cost of microarrays, their use in time course analysis has become ever 
more popular. The corresponding analysis is more challenging statistically than the two 
sample microarray situation. The time course may be longitudinal (where the mRNA 
samples for different time points are taken from the same individual), or cross-sectional 
(where the mRNA samples are extracted from different individual).(Tai & Speed, 2005) As a 
result, gene expression tends to be correlated for the longitudinal study or a design used for 
the cross-sectional study using a common reference. In addition, usually only 5-10 time 
points are available. Therefore, the traditional time series model cannot deal with such small 
series. This will require the development of new methods for analysis.  

Typically, researchers are interested in identifying the genes whose expressions change over 
time. In the one-sample problem, some genes’ patterns vary according to a common pattern.   
In the two-sample problem, we need to identify genes whose temporal changes differ under 
two or more biological conditions.(Tai & Speed, 2006) 

One popular method typically used is a regression model. As an example, maSigPro belongs 

to this category and is available in R. (www.bioconductor.org) To find significantly different 

genes for two or more biological conditions, maSigPro first builds a global regression model 

with different experiment conditions acting as dummy variables.(Conesa et al., 2006) Then 

the significance of the estimated parameters in the model was tested to assess the significant 

differences between gene time course profiles.(Conesa et al., 2006)  

Another method for microarray time course analysis is via ANOVA and the F-statistic. The 
classical ANOVA and mix-effect ANOVA models are used for cross-sectional and 
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longitudinal study, respectively.(Diggle et al., 2002; Neter et al., 1996; Tai & Speed, 2005) For 
the one-sample problem, time is treated as one factor. Thereafter, the corresponding  
F-statistic is calculated.(Tai & Speed, 2005) Moreover, this method can be extended to the 
situation with multiple experiment conditions. Time, experiment condition and potentially 
their interaction are included for this model. An example of the classical ANOVA in time 
course study is available in (Wang & Kim, 2003). Also the multiple comparison adjustment 
for testing error is discussed for this method.(Ge & Speed, 2003) 

Later, a robust version of ANOVA approach was proposed by Park et al, since it does not 
require the normality assumption.(Park et al., 2003) Similar to a two-way ANOVA model 
which includes time, biological conditions and their interaction as factors, genes that are 
concluded insignificant in this model will be reanalyzed in the same ANOVA model 
without the interaction term. (Park et al., 2003) Genes that are concluded significant in both 
models are chosen.(Park et al., 2003) Another modified ANOVA method is the ANOVA-
SCA (analysis of variance-simultaneous component analysis), which takes into 
consideration about the correlation structure of the measured variables.(Nueda et al., 2007) 
Basically, principle component analysis is used to the estimated parameters of each source 
of variation in the ANOVA model.(Nueda et al, 2007) One advantage of this method is that 
it utilizes information from the experiment design and takes into consideration about 
correlation among the each source of variability associated with experimental factors. To 
identify the differentially expressed genes, the authors proposed another criterion for 
ANOVA-SCA: the mixture of leverage and SPE (square prediction error).(Nueda et al., 2007) 
Leverage quantifies how much a particular gene contributes to the multivariate ANOVA-
SCA model, while SPE evaluates the goodness of fit of the model to a particular 
gene.(Nueda et al., 2007) The potential test statistic is and  its p-value are obtained with 
reference to a weighted χ2 distribution.(Box, 1954) Nonetheless, the drawback of this method 
is that it does not use the actual time scale and direct smoothing cannot be applied. Besides, 
this method cannot be used when the time course points are irregular.  

In summary, the ANOVA and the corresponding modified versions offer substantial 
advantages: they can separate variation due to each different factor, therefore, removing the 
non-random effects and reducing the potential noise within the data.(Box, 1954) However, 
there are two innate limitations: First, it assumes independent among different time points 
ignoring the potential correlation; second, the small number of replicates leads to unstable 
estimation of gene-specific variance, leading to big value of within time F-statistics even for 
genes with just small amount of changes. This leads to high false positive rates.(Tai & Speed, 
2005) In addition, some differentially expressed genes may have outliers which tend to 
cause low F-statistic, resulting in false negative rates.(Tai & Speed, 2005) Thus, the idea of 
moderation is introduced. 

To reduce the false positive rate or false negative rate, the gene-specific variance is shrinking 
towards a common value estimated from the whole gene set, known as moderation.(Tai & 
Speed, 2005) One example about the application of moderation to microarray time course is 

performed by Tai and Speed.(Tai & Speed, 2006) They derived the MB- and 2T -statistic for 
one-sample or two-sample problem in the scenario of longitudinal microarray time course 
study, taking into consideration about the correlation across times. In detail, MB-statistic is 
the log 10 of the posterior odds whether the null or alternative hypothesis is true. When the 
number of replicates is equal for all genes, the MB-statistic under the null hypothesis is 

www.intechopen.com



 
Microarray Analysis in Drug Discovery and Biomarker Identification 

 

217 

supposed to have the expected profile equal to 0 in one-sample case or equal expected 
profiles in two-sample scenario.(Tai & Speed, 2006) Then the form of MB-statistic becomes a 

monotonic increasing function in 2T .
 

2T -statistic is 't t  where t is the moderated 

multivariate t-statistic in the form of 1/2 1/2t n S X  .(Tai& Speed, 2006).
( 1)

1

n S
S

n



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

 
  

where S represents the gene-specific variance-covariance matrices, X  is the gene-specific 
average time course vector. n represents the number of replicates. The other two parameters 
ǎ and Λ can be estimated from all the genes. Both of the two statistic are derived when we 
assume independent and identical inverse Wishart priors to the gene-specific covariance 
matrices.(Tai & Speed, 2006) The advantage of this method comes from the incorporation of 
the information about the correlation structure, moderation and replication.(Tai & Speed, 
2006) In addition, this statistic outperforms the ordinary F-statistic, due to moderation in 
empirical Bayes framework.(Tai & Speed, 2006) This procedure is  shown to be very 
effective in false positive or negative rate reduction.(Tai & Speed, 2005) Thus, this procedure 
is incorporated in the Bioconductor “timecourse” package in R. (http:/ /www. 
bioconductor.org/packages/2.3/bioc/vignettes/timecourse/inst/doc/timecourse.pdf). The 
drawback of this method is modeling each gene independently, ignoring the latent genes 
pathway network and making no use of the actual time scale. 

Another method that is used similar idea to estimate the unstable variance robustly and 

incorporate correlation in the study is based on the likelihood-based approach. Guo et al. 

develop a test based on the Wald statistic for one-sample longitudinal data.(Guo et al., 2003) 

This method adds a positive number to each diagonal element in the denominator matrix to 

incorporate the idea of moderation and stabilize the estimation of the variance.  

 
1ˆ ˆ ˆ( ) [ ( )] [ ( ) ] [ ( )]T T

s r rw i L i LV i L I L i  
   (18) 

In the above formula, L represents a matrix with dimension r X p, ̂  represents the p X 1 

regression parameters estimation and V̂s
 

is the corresponding estimated variance-

covariance matrix.   
is an estimated positive scalar to prevent inverting a highly singular 

matrix.(Guo et al., 2003) However, the limitation of this method is that it is only suitable for 

one-sample problem and using the asymptotic theory will not be suitable for small number 

of replicates. 

Despite of the popularity of the above method, they all ignore one important fact in time 

course study: They do not make use of the time points dynamically. This is the reason to 

introduce B-splines or wavelets to model the gene temporal expression profiles. Natural B-

splines are piecewise cubic polynomials, which are smoothly connected at knots. It can 

describe the complicated gene expression patterns over time, since the linear combination of 

a series of basis functions can mimic any temporal profiles for genes. Each basis function can 

be thought as the potential expression pattern locally (i.e. the basis function will be zero 

outside certain time range). Comparing with methods that do not utilize time scale directly, 

B-splines have many advantages: reduce the noise, assuming only smoothing changes occur 

with time; use the actual time taken for the samples, easy to adapt for schedules with 

irregular time points; As an example, Bar-Joseph et al. present an algorithm to characterize 

the expression pattern of each gene by a continuous curve fitted by B-splines.(Bar-Joseph et 
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al., 2003) They constrain the spline coefficients of genes within the same class so that their 

expression profiles can vary similarly. Thus, the gene expression pattern can be viewed 

dynamically. Comparing with previous methods, the reconstruction of the gene timecourse 

has 10-15% less error for those points that are not observed.(Bar-Joseph et al., 2003) Another 

approach proposed by Hong and Li is to solve the two-sample problem with B-splines 

adaption.(Hong & Li, 2006) In details, to identify biomarkers whose expression profiles are 

different under multiple biological conditions, linear combinations of basis functions are 

used to create smooth gene expression timecourse. The Markov chain Monte Carlo EM 

algorithm (MCEM) can be used to estimate the gene-specific parameters and 

hyperparameters from the hierarchical model. The genes are chosen using the empirical 

Bayes log posterior odds and the posterior probability based FDR.(Hong & Li, 2006) As a 

result, this method outperforms the traditional ANOVA model and is suitable for long time 

course data. Another example developed by Storey et al. and denoted as EDGE (Extraction 

of Differential Gene Expression) is also widely used for microarray timecourse 

study.(Storey et al., 2005) It estimates the coefficients of a B-spline function to fit the 

timecourse for each gene, and test whether all the coefficients are zero or not by an F-

statistic. If all the coefficients are zero, the genes are not differentially expressed. Q-value 

based on false discovery rate(FDR) is calculated for each individual gene to offer a suitable 

cutoff value.(Storey et al., 2005) This method is an example to combine B-splines with the 

hypothesis testing, using FDR to control the error rate. Therefore, this method is superior to 

other methods. However, this method does not use the correlation information between 

variables (i.e. genes) and needs improvement. Thus SCOOP in combination with B-spline 

offers an alternative for biomarker identification for microarray timecourse study. (Liu, 

2009, 2011) 

When the situation of multiple biological condition in microarray timecourse study is 

encountered, Yuan et al. develop a hidden Markov model approach.(Yuan & Kendziorski, 

2006) For this method, the authors consider all possibilities of equality and inequality for all 

the means among the different biological conditions and the expression pattern process is 

modelled as a Markov chain.(Yuan & Kendziorski, 2006) These biological conditions are 

referred as states. Thus, the observations are conditionally independent given the state of 

the chain. In summary, this method can monitor the expression pattern for each gene and 

the observations at different time points may be dependent on each other. The differentially 

expressed genes are then selected based on the posterior probabilities of states of 

interest.(Yuan & Kendziorski, 2006) Moreover, it is suggested that the associated posterior 

probability is useful to cluster genes.(Yuan & Kendziorski, 2006) 

2.3.3 What is next? 

Although the microarray technology has lead to big breakthroughs in biology, there is one 

innate drawback in this technique: since all the sequence information about genes 

incorporated into the probes needs to be known a priori, the microarray can only obtain 

fixed and partially information about gene variants within the cell. This limitation requires 

the development of new techniques to gain the information for all the gene alleles 

simultaneously. Therefore, the next generation sequencing technique gains popularity and 

may be consequently lead to more informative microarrays. The first generation sequencing 
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is accredited to Frederick Sanger in 70s. (Sanger et al, 1977) Before the development of 

Sanger’s chain-terminator method, Maxam and Gilbert used toxic chemicals to modify the 

bases, inferring the sequence of DNA fragment.(Maxam & Glibert, 1977) Sanger’s chain-

terminator method gained popularity since the method involved less toxicity. The key of the 

chain-terminator method is the dideoxynucleotide triphosphates(ddNTPs) to terminate the 

DNA chain elongation. To sequence a particular DNA fragement, the DNA template, 

primer, DNA polymerase and deoxynucleotidephosphates(dNTPs) is split into four separate 

reactions with the addition of only one of the four radioactively or fluorescently labelled 

dideoxynucleotides (ddATP, ddGTP, ddCTP or ddTTP) in the four reactions.(Sanger et al., 

1977) Therefore, during the elongation, ddNTPs are incorporated into some of the strands, 

leading to DNA fragments that have varying length. These fragments can be separated 

using gel electrophoresis and the relative position of the band on the gel be used to 

determine the base identity.(Sanger et al., 1977) 

 

Fig. 2. The Sanger’s chain-terminator method. For a fragment of DNA, the sample is split 
into four reactions containing dNTP, polymerase. Each reaction is supplemented with one 
type of ddNTP, serving as the chain terminator. In the above figure, we show only one 
reaction: the dNTP is depicted as tubes and ddCTP is depicted as triangles. The ddCTP 
terminates the reaction upon the addition of the ddCTP. The other three reactions form 
similar ladders and the sequences can be detected based on their relative position on the gel 
after gel electrophoresis. 

In recent years, instead of using one fluorescence dye and four reactions, four different 
fluorescence dyes with unique emission wavelength will be used in a single reaction. Then 
the dye reader can automatically read the base identity after capillary electrophoresis. 
Readers interested in this technique can read the user’s manual for ABI PRISM® 373 DNA 
Sequencer manual available at http:/ /www3.appliedbiosystems.com /cms/groups/ mcb_ 
support/documents/generaldocuments/cms_041831.pdf. 

Therefore, the previous sequencing technique is laborious and time consuming. The current 
biological studies require more efficient ways to sequence. This is the motivation for next 
generation sequencing development. 

The first step for the high-throughput sequencing is to prepare a template. In this step, 
genomic DNA is randomly split into small pieces to construct fragment template.(Metzker, 
2010) When the genomic DNA is first circularized by ligation and then split into small 
fragments, this is known as mate-pair template, which has advantages over fragment 
template in alignment.(Metzker, 2010) However, due to the reason that single fluorescence 
event is hard to detect, the templates need to be amplified. Emulsion PCR by Roche and 
bridge PCR by illumina are introduced here. The sheared genomic DNA will be ligated with 
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adaptors containing the same fragment.(Metzker, 2010) This allows the amplication of the 
DNA fragment using common PCR primer. For emulsion PCR, the water droplet containing 
the bead-DNA complex, primer, polymerase, and dNTP will be used to perform PCR 
amplification. Numerous droplets are created by emulsifying the oil-aqueous mixture, 
allowing all the genomic DNA fragments to be amplified simultaneously.(Metzker, 2010) 
Another popular amplification method is bridge PCR. Bridge PCR has two steps: initial 
priming and extension of the template. The genomic DNA fragments with adaptors at both 
ends will be immobilized and bent over to form a bridge. Subsequently, the DNA molecules 
will be amplified to form clusters.(Metzker, 2010) Despite the great success, the 
amplification procedure is time consuming and complicated. Moreover, AT or GC-rich 
sequences may be biased during the amplification. (Metzker, 2010)  Therefore, single-
molecule templates technique which involves the immobilization of primer, template, or 
polymerase has become popular.(Metzker, 2010) The readers interested in this can obtain 
more details about this technique in Metzker 2010. 

 

Fig. 3. The illustration of the emulsion PCR and bridge PCR. For emulsion PCR, the aqueous 
droplets can be created by emulsion in the oil water mixture. Then the template can be amplified 
with the primers within the bead. In the end, thousands of DNA fragments containing identical 
sequences to the template will be available within one bead for each aqueous droplet. For bridge 
PCR, the template is immobilized and bridge amplified to form a cluster. 

Sequencing and imaging step follows the above amplification step. The four colour reversible 
termination method by illumina is introduced here. Right after the template clusters are 
obtained, the four nucleotides labelled with distinct fluorescence dye will be incorporated 
according to the template sequence and the elongation step halts upon the addition of 
fluorescence labelled nucleotide. Upon total internal reflection fluorescence imaging, TCEP 
(tris(2-carboxyethyl)phosphine) will be used to cleave the fluorescence dye and 3’-inhibitor to 
allow the next cycle of elongation. This process is iterated until the identities of all the 
nucleotides are known.(Metzker, 2010) The sequencing process for Roche/454 is called 
pyrosequencing, which uses a different mechanism for sequencing: following the emulsified 
PCR, the DNA-amplified beads are loaded into PTP (PicoTiterPlates) wells. Subsequently, this 
method allows the polymerase to add only one particular type nucleotide with the release of 
pyrophosphate. The pyrophosphate will then be converted with the emission of light by a 
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series of reactions.(Ronaghi et al., 1998) This is further recorded by a charge-coupled device 
camera. The order of the light emission will be used to induce the sequence. This mechanism is 
totally different from the reversible termination method and it does not require the use of 
modified dNTP to halt the elongation process.(Metzker, 2010) 

dATP PPi

enzymatic reaction

polymerase

light detected by camera

light

(b)  Pyrosequencing

 

Fig. 4. The illustration of the reverse terminator sequencing and pyrosequencing. For reverse 
terminator sequencing, different dNTP is labelled with different fluorescence dye. Upon 
addition of each dNTP, the reaction halts and the fluorescence is the recorded. Then the 
terminator and fluorescence dye of dNTP is cleaved. Subsequently, the next dNTP is 
incorporated and the whole process is iterated. For pyrosequencing, one single dNTP flows 
through with the addition of the nucleotide in the corresponding position. The release of the 
pyrophosphate will undergo enzymatic reaction to produce light. Therefore, the camera will 
record which of the fragments has this dNTP at its current position.  
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The next generation sequencing reads will subsequently need to be aligned to the reference 
genome or assembled de novo.(Chaisson et al., 2009; Pop & Salzberg, 2008; Trapnell & 
Salzberg, 2009) There are several challenges for the genome assembly and alignment besides 
cost and effort: First, some reads may not be aligned to reference genome due to the 
structural variant (e.g. deletion or insertion).(Metzker, 2010) Second, some reads are difficult 
to align to the highly repetitive regions.(Metzker, 2010) de novo assembly will be complicated 
for large genome although some successes are reported.(Butler et al, 2008; Hernandez et al., 
2008; Zerbino & Birney, 2008) 

Although there are so many challenges, this field is still undergoing rapid development and 
will play a main role in the personal genome era and personalized medicine field. The 
gigantic information from the next generation sequencing studies will require the 
collaboration between biologists, bioinformaticians, and biostatisticians. What we envision 
are more and more big breakthroughs in the field of life science. 

3. Conclusion  

In summary, we presented a detailed overview of microarray studies. We introduced the 
mechanism, the associated statistical analysis, and the potential substitution for microarray-
next generation sequencing. Several examples of microarray studies to identify biomarkers 
are also presented. We hope this chapter can serve as a guide for beginners in the field of 
biomarker identification and drug discovery. 
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