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1. Introduction 
Infectious, cancer and allergic diseases have always been scourge for humans and. disease 
prevention through immunization has been the most cost-effective health-care intervention 
available. Immunization has been a great public health success story. As immunization 
helps to inhibit the spread of disease, many people can be protected from illness and death. 
It has been proved beyond doubt that with the exception of pure drinking water, no other 
human endeavor rivals immunization in combating infectious diseases. Millions of lives 
have been saved, with considerably reduced mortality rates, millions have the chance of a 
longer healthier life. The purpose of prophylactic vaccination is to generate a strong 
immune response providing long term protection against infection. Vaccines have been 
described as weapons of mass protection as they mainly capitalize on the immune system’s 
ability to respond rapidly to pathogens and eliminate them. The considerable success 
achieved in the eradication of smallpox and the reduction of polio, measles, pertussis, 
tetanus and meningitis, were among the most notable achievements of the 20th century 
(Wack and Rappuoli 2005). Unfortunately, for today’s societal dreadful diseases which are 
major causes of morbidity and mortality, there are no effective vaccines. Some of the 
existing vaccines do not induce complete protection and therefore, the development of 
effective vaccines towards these diseases is needed. In this chapter, an attempt has been 
made to explain the role of pattern recognition receptors (PRR)based immune adjuvants for 
the development of safe and effective vaccines. We have also discussed the recent advances 
in the therapeutic and prophylactic application of PRR agonist and antagonists for the 
treatment of infectious diseases and cancer,. This topic was extensively studied in last one 
decade and thousands of high quality publication and high quality reviews are reported in 
the literature.  

2. Need for immune adjuvants 
Traditional vaccines mainly consisted of live attenuated pathogens, whole inactivated 

organisms, or inactivated bacterial toxins. Many traditional vaccines based on pathogen 

whole cells often contain components that can cause toxicity related side effects. As a result 
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of these safety limitations of conventional vaccines, several new approaches to vaccine 

development have emerged that may have significant advantages over more traditional 

approaches. These approaches include 1) recombinant protein subunits 2) synthetic peptides 

and 3) protein polysaccharide conjugates. By contrast, these vaccines although offering 

considerable advantages over traditional vaccines in terms of safety and cost of production, 

in most cases they have limited immunogenicity and therefore are use less as prophylactic 

or therapeuticvaccines on their own. These pitfalls have intensified the search of external 

agents that can synergistically boost the immune response of otherwise weakly 

immunogenic subunit vaccines. Such molecularly defined immune boosters, popularly 

known as adjuvants, ideally should constitute a non-immunogenic entities, however, able to 

stimulate humoral and cellular immunity in presence of a vaccine antigen and most 

importantly, being non toxic, suitable for animals and humans use. 

3. Immune system: Innate and adaptive 
The immune system in higher animals can be broadly classified into the innate and the 

adaptive immune systems(Janeway 2001; Janeway and Medzhitov 2002). The innate 

immune system was long thought to be a non-specific inflammatory response generated 

during exposure to foreign antigen. However, studies conducted in recent years indicate the 

innate immune response is able to discriminate between pathogen classes and direct innate 

and adaptive immune responses toward elimination of the invading pathogen(Akira, 

Uematsu et al. 2006; Hoebe, Jiang et al. 2006; Sansonetti 2006). The discovery of pathogen-

associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) and the 

role they play in elimination of pathogen and activity as adjuvant has renewed interest in 

the importance of the innate immune system(Hopkins and Sriskandan 2005). Improved 

understanding of innate immunity in recent years, has led to the identification of immune 

pathways and adjuvant formulations more suitable for clinical advancement. The 2011 

Noble Prize for Medicine was awarded to three scientists who have done more than anyone 

to lay bare the two-tier structure of the immune system. One area of particular interest is the 

discovery of agonists that target the PRRs. Adaptive immune responses are essential for the 

control of pathogens that escape elimination by the innate immune response(Schwartz 

2000). Because of its role in immune memory, the adaptive immune systems contributions to 

pathogen elimination and vaccine development have been widely studied. Adaptive 

immunity mediates a delayed, specific response to foreign antigen while innate immunity is 

not antigen specific and develops immediately following exposure to immune stimuli i.e., 

pathogens.  

4. Pattern recognition receptors 
The Pattern Recognition Receptors (PRRs) of the innate immune system serve an essential 
role in recognition of pathogen and directing the course as well as type of innate immune 
response generated following exposure to foreign antigen. PRRs are differentially expressed 
on a wide variety of immune cells(Iwasaki and Medzhitov 2004). Engagement of PRRs 
invokes the cascades of intracellular signaling events that further induce many processes 
such as activation, maturation and migration of other immune cells and the secretion of 
cytokines and chemokines(Hoebe, Janssen et al. 2004; Medzhitov 2007; Kumar, Kawai et al. 
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2009; Blasius and Beutler 2010; Kawai and Akira 2010; Takeuchi and Akira 2010).   This 
creates an inflammatory environment in tandem, that leads to the establishment of the 
adaptive immune response(Iwasaki and Medzhitov 2004). PRRs consist of non-phagocytic 
receptors such as toll-like receptors (TLRs) and nucleotide-binding oligomerization 
domain (NOD) proteins and receptors that induce phagocytosis such as scavanger 

receptors, mannose receptors and β-glucan receptors. In last decade, several natural, 
natural derived (PAMPs) and synthetic ligands of PRR belonging to the diverse structural 
class have been identified(Kumar, Kawai et al. 2011) and reported in the literature 
possessing potential immunomodulatory properties. In spite of thousand of molecules 
identified as potential PRR agonist properties, a hand full number of these are now in 
clinical or late preclinical stages of development as immune adjuvant for vaccines(Kanzler, 
Barrat et al. 2007; Makkouk and Abdelnoor 2009; Mbow, Gregorio et al. 2010; Basith, 
Manavalan et al. 2011). Various vaccine R&Ds and research group around the world are 
currently exploring  the use of natural ligands or synthetic ligands as well-defined PRRs as 
adjuvants, either alone or with as formulations with other ingradients for various subunit 
vaccines being developed against cancers, infectious and allergic diseases. Furthermore, 
TLR antagonists derived from the modifications of natural ligands also appear quite 
promising for a number of inflammatory and autoimmune diseases.  

4.1 Toll like receptors  

Vaccine adjuvants are perhaps the most extensively explored applications for TLR agonists. 

In last decade, efforts an increasing focus has been to use natural ligands or synthetic 

agonists for well-defined TLRs as adjuvants, either alone or with various formulations. A 

number of these are now in clinical or late preclinical stages of development for multiple 

applications and have been the subject of research to clarify the basis of their adjuvant 

activity. TLR are type I membrane glycoproteins, characterized by a cytoplasmic 

Toll/interleukin-1 receptor homology (TIR) signaling domain and an external antigen 

recognition domain comprising 19–25 tandem leucine-rich repeat (LRR) motifs(Rock, 

Hardiman et al. 1998). TLRs were initially discovered in fruitfly, Drosophila melanogaster, and 

have been defined as factors involved in the embryonic development (Lemaitre, Nicolas et 

al. 1996; Hoffmann 2003)and resistance of the fly Drosophila to bacterial and fungal 

infection. Bieng a major component in innate immunity TLRs are known to  play a 

significant role in innate-adaptive cross talks(Pandey and Agrawal 2006; Rezaei 2006; 

Kanzler, Barrat et al. 2007; Romagne 2007). First human TLR was discovered in 1997 by 

Medzhitov et al. and after that research in this filed has exploded so rapidly that all TLRs 

have been cloned and many of their ligands (PAMPs) and associated signaling pathways 

have been identified. TLRs recognize broad classes of PAMPS and are emerging as a central 

player in initiating and directing immune responses to pathogens. Till date, ten TLR (TLR1–

10) are reported in humans and subdivided according to their localization in cell 

compartments. TLR1, 2, 4, 5, 6 and 10 are expressed on the cell surface and recognize 

PAMPs derived from bacteria, fungi and protozoa. TLR3, 7, 8 and 9 are expressed in 

intracellular compartments with the ligand-binding domains sampling the lumen of the 

vesicle and recognize nucleic acid PAMPS derived from various viruses and 

bacteria(Janeway and Medzhitov 2002; Akira and Hemmi 2003; Akira, Uematsu et al. 2006). 

Generally, natural lignads of TLR fall into three broad categories: lipids and lipopeptides 
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(TLR2/TLR1; TLR2/TLR6; TLR4), proteins (TLR5) and nucleic acids (TLR3, 7, 8, 9). TLRs 

forms both homo- and heterodimers to enable functioning and downstream signaling 

activation resulting in ligand recognition (PAMPS) of diverse structure from various 

sources. TLR2 preferentially forms heterodimers with either TLR1 or TLR6, whereas the 

other TLRs appear to associate as homodimers. Various natural (microbial) and synthetic 

ligands of functional TLRs as well as cellular localization of TLRs are discussed in Table 1. 

 

PRR 
(Cellular localization) 

Microbial Ligands Synthetic Ligands 

TLR1/TLR2 (Cell 
surface) 

Triacyl lipopeptide 
(Pam3CSK4) 

Pam2CSK/Pam3CSK4 
analogues 

TLR2/TLR6 
(Cell surface) 

Diacyl lipopeptides 
(Pam2CSK4), Lipoteichoic 

acid, 
Zymosan,  porins, 

MALP2, 
Bacterial peptidoglycan, 

Lipoarabinomannan 

Pam2CSK/Pam3CSK4 
analogues 

TLR3 
(Endosome) 

ssRNS and dsRNA virus, 
Respiratory syncytical virus, 
Mmurine cytomegalovirus 

Poly I:C; 
poly A:U 

TLR4 
(Cell surface) 

LPS; 
Mannan; 

Phospholipids; 
Envelope proteins (MMTV, 

RSV) 

Monophosphoryl lipid A and its 
analogues 

 

TLR5 
(Cell surface) 

Flagellin --- 

TLR7 
(Endolysosome) 

ssRNA (viral), RNA from 
bacteria from group B 

streptococcus 

GU-rich oligoribonucleotides; 
Loxoribin; 

Imiquimod; 
Resiquimod; 

Adenosine and Guanosine 
derivative 

TLR8 
(Endolysosome) 

ssRNA (viral) GU-Rich oligoribonucleotides; 
Adenosine and 

Guanosine derivative; 
Resiquimod 

TLR9 
(Endolysosome) 

DNA (bacterial/viral) Deoxynucleotides with 
unmethylated CpG motifs 

TLR10 
(Cell surface) 

Unknown ---- 

Table 1. Pattern Recognition Receptors and their ligands 

Ligand binding to TLR appears to result in conformational changes and possibly 
dimerization, leading to recruitment of crucial adaptor proteins. These Toll/interlukin-1 
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receptor homology(TIR) domain–containing molecules include myeloid differentiation 
primary-response protein 88 (MyD88), used by nearly all TLR, TIR domain–containing 
adaptor protein (TIRAP), TIR domain–containing adaptor protein inducing interferon (IFN)-
ǃ (TRIF), and TRIF-related adaptor molecule (TRAM). Engagement of these adaptors 
activates a series of signal transduction molecules including interleukin (IL)-1R–associated 
kinases (IRAKs), tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6), 
transforming growth factor (TGF)-ǃ–activated kinase (TAK1), and the inhibitor of nuclear 
factor-κB (IκB)-kinase complex. These events lead ultimately to activation of mitogen-
activated protein (MAP) kinases and nuclear translocation of the transcription factor NF-κB, 
key regulators of many inflammatory response pathways. A second discrete pathway, used 
by intracellular TLR, leads to activation of IFN regulatory factors (IRF), particularly IRF-7, 
leading to high levels of type I IFN production. Differential adaptor use by different TLR 
and cell type–specific signaling pathways leads to many variations on this theme. Thus, the 
response to TLR signaling can include cell differentiation, proliferation or apoptosis, as well 
as induction of many secreted mediators, prominently IFNs, TNF-ǂ, IL-1, IL-6, IL-10, IL-12, 
and many different chemokines. The responses produced by activation through a TLR are 
determined by many factors specific to individual cell types, as well as to quantitative and 
qualitative parameters of the TLR-ligand interaction itself. 

 
 

 

Fig. 1. Schematic diagram of human Toll-like receptors showing adaptors, cellular 
orientation and complimentary  ligands. Source: Holger Kanzler  et al. Nature Medicine 2007, 
13, 552. 
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Fig. 2. Stimulation of innate immunity and induction of adaptive immunity by PAMPs or 
PAMP-related adjuvants.  

Redundant and non-redundant functions of TLRs are responsible for the adjuvant activity 

required to t immune responses both in natural infection and in vaccine responses(Lien and 

Golenbock 2003). They have a distinct function in pathogen recognition and constitute good 

targets for rational adjuvant development. Table 1 shows, TLR recognize groups of widely 

distributed and structurally similar molecules, in contrast to the highly selective molecular-

level recognition of  T- and B-cell receptors. Synthetic ligands with varying degrees of 

similarity to natural ligands have been described for most of the TLR. Therapeutic 

applications to date have used either native or synthetic versions of natural TLR ligands 

with optimized pharmacologic properties(Kanzler, Barrat et al. 2007; Makkouk and 

Abdelnoor 2009; Basith, Manavalan et al. 2011).  

4.2 Small molecules TLR agonists and antagonists derived from PAMPs 

A number of TLR agonist and antagonists are currently under investigation are either 

PAMPS or PAMPS derived molecules such as DNA motifs analogs, monophosphoryl lipid 

A analogs,  muramyl dipeptide analogs, nucleic acid analogs etc. Here, we have presented 

brief description of representative clinically potential agonists and antagonists and their 

pharmacophores responsible for stimulating immunological response. 

4.2.1 Lipopolysaccharide, lipid A and monophosphoryl lipid A 

The adjuvant effect of lipopolysaccharide (LPS) or endotoxin was described in 1956(Johnson, 

Gaines et al. 1956). LPS or endotoxin component of gram negative bacteria has a hydrophilic 

polysaccharide and lipophilic phospholipids which is responsible for adjuvant 

www.intechopen.com



Pattern Recognition Receptors Based  
Immune Adjuvants: Their Role and Importance in Vaccine Design 

 

183 

activity(Gupta, Relyveld et al. 1993). The active agent of LPS has been shown to be lipid A - 

a disaccharide composed of two glucosamine units, two phosphate groups and five or six fatty acid 

chains (generally C12 to C16 in length). Lipid A 1 is a potent adjuvant for both protein and 

carbohydrate antigens, and can lead to marked increases in both humoral and cell-mediated 

immunity(Azuma 1992). Although LPS as a component of whole cell vaccines against 

pertussis, cholera and typhoid has been used in humans for many years, its extreme toxicity 

precludes its use as an adjuvant in humans(Johnson, Keegan et al. 1999). Attempts have 

been made to detoxify LPS and lipid A without affecting its adjuvanticity. The most 

promising derivative of lipid A is monophosphoryl lipid.  

Monophosphoryl lipid A (MPLA, Fig 3) 1a has been shown to exhibit potent adjuvanticity, 

without exhibiting significant toxicity. Structural activity relationship of the MPL shown 

that a hexaacylated ǃ(1→6)-diglucosamine having three 3-n-alkanoyloxytetradecanoyl 

residues or six fatty acid groups is required for adjuvanticity. Careful structure examination 

of lipid A analogs suggests that the type and length lipid play a very crucial role in 

determining the activity towards stimulation (agonist) or inhibition (antagonist). Lipid A 

analogs having β-alkanoyl lipid having longer chain length shown agonist activity and lipid 

A analogs with shorter chain length shown antagonist activity. Both LPS and MPL exhibited 

adjuvant activity by triggering a signaling through TLR4(Kaisho and Akira 2002; Re and 

Strominger 2002), but MPLA leads to downstream signaling only through the TRIF adaptor, 

whereas the LPS leads to TLR4 activation through both the TRIF and MyD88 pathways, the 

latter pathway resulting in the high level of inflammatory cytokines, prominently TNF-ǂ. 

On the other hand, MPLA activation leads to the induction of IFN-ǃ and regulation of 

CD80/CD86, which is a key aspect of adjuvanticity. Three MPLA and its analog containing 

vaccine formulations have already been approved (Kanzler, Barrat et al. 2007; Makkouk and 

Abdelnoor 2009; Basith, Manavalan et al. 2011)for various diseases such as Fendrix (by GSK) 

for Hepatatis B, Cervarix (by GSK) for cervical cancer and Pollinex quattro (by Allergy 

Therapeutics) for allergic rhinitis and have proven to be both safe and effective. Similarly 

another synthetic lipid A mimetics structure known as aminoalkyl glucosaminide 

phosphates (AGPs) also entered  clinical studies and one of the AGPs known as RC-529 (1c, 

structure shown in Fig 3) developed by Dynavax Technologies has been approved for 

hepatitis B vaccine Supervax. Similarly, CRX-675 (Aminoalkyl-glucosamine-4- posphatide of 

unknown structure; may be identical or similar to RC529, Table 4) developed by Corixa also 

find clinical application and currently in phase-I for allergen rhinitis. Other lipid A analogs 

as TLR4 antagonists such as CRX-526 and others are in preclinical studies for inflammatory 

diseases. Many lipid A analogs containing vaccine formulations are in preclinical and 

different stage of clinical trial for cancer, infectious and allergic diseases as given in Table 2, 

3, 4. Merck has developed an innovative cancer vaccine known as Stimuvax containing MLP 

as adjuvant along with MUC1 a protein antigen to treat cancer because it is widely 

expressed in common cancer, and is currently undergoing phase-III clinical trial. Researcher 

also developed lipid A analog as TLR4 antagonists which find important application for the 

treatment of various autoimmune and inflammatory diseases. E-5564 (Eritoran) is a lipid A 

mimics developed by Eisai Pharmaceuticals and currently in phase-III trial for severe sepsis. 

From this discussion, it is evident that different lipid A analogs act differently and find 

useful in the treatment of hepatitis B, cancer, allergic and inflammation diseases(Kanzler, 

Barrat et al. 2007; Makkouk and Abdelnoor 2009; Basith, Manavalan et al. 2011).  

www.intechopen.com



 
Medicinal Chemistry and Drug Design 

 

184 

O
O

O
NHO

O

O
O

O
O

NH
O

O
O

OH

O
HO

HO
OH

OP
O

HO OH

HO

O
O

HO

O
NHO

O

O
O

NH
O

O
O

OH

O
HO

OP
O

HO OH

P
O

OH

OH
O

O

MPLA (1a)Lipid A(1)

R1

O

O

R1

O

O
O

R1

O

NH
O

O
O

OH

OP
O

HO OH NH

R2

O

R2

O R2

O

R1 = n-C11H23: R2 = n-C13H27

RC-529 (1b) O

O
NHO

O
NH

O

O
O

O

O
HO

HO

OP
O

HO OH

O P
OH

OH
O

E5564 (1c)

R1

O

O

R1

O

O
O

R1

O

NH
O

O
O

OH

OP
O

HO OH NH

R2

O

R2

O R2

O

R1 = n-C11H23: R2 = n-C5H11

CRX-526 (1d)  

Fig. 3. Structure of Lipid A and their synthetic analogs as TLR4 agonist and antagonists 

4.2.2 Imidazoquinolines and guanosine containing compounds 

Guanosine- and uridine-rich ssRNA were first identified as natural agonists for TLR7 and 
and 8 and because of their degradation by RNases limited their uses as immune adjuvants. 
In search of stable and robust small molecule TLR7 and 8 agonists lead to the discovery of 
imidaquinolines and guanosine and adenine analogs(Fig 4). Imidazoquinolines such as 
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imiquimod 2a, resiquimod 2b are synthetic low-molecular weight TLR7/8 agonists are 
structural mimics of DNA or RNA oligonucleotides(Gibson, Lindh et al. 2002; Stanley 2002; 
Lee, Chuang et al. 2003). Imiquimod activate TLR7 while resiquimod activate  either TLR7, 
TLR8 or both. Imiquimod represent the most promising TLR7 agoinst and 3M Pharma 
developed formulation containing imiquimod  as 5% cream(AldaraTM) approved for the 
treatment of genital warts, superficial basal cell carcinoma, actinic keratoses and lentigo 
malinga and also been used  for the treatment of  human papilloma virus(HPV)associated 
lesions and cutaneous melanoma. Another structurally related compound, R-848 
(Resiquimod, 3M Pharma), is currently in  Phase II (Bishop, Hsing et al. 2000)clinical study 
for the treatment of hepatitis C virus(HCV) and other viral infections(Pockros, Guyader et 
al. 2007). Similarly guanosine containing compound 2c and other nucleoside analogs also 
find promising application for the number of diseases e.g., ANA975 (oral prodrug of 
isatoribine) was developed as an antiviral HCV treatment, shown promising activity in 
preliminary level but clinical studies for this were discontinued by Anadys Pharma due to 
indicated toxicity in the long-term animal studies(Pockros, Guyader et al. 2007). 

 

Fig. 4. Structure of imidazoquinolines and other small synthetic compounds 

4.2.3 Lipoproteins and lipopeptides 

Lipoproteins are part of the outer membrane of gram negative bacteria, gram positive 

bacteria, Rhodopseudomonas viridis and mycoplasma. Bacterial lipoproteins have no shared 

sequence homology but are characterized by the N-terminal unusual amino acid S-(2,3-

dihydroxypropyl)-cysteine acylated by three fatty acids. Synthetic analogues of the N-

terminal lipopentapeptide (sLP) 3 of the lipoprotein of  E. coli proved to be as active as the 

native lipoprotein(Fig 5). They activate B-cells, monocytes, neutrophils and platelets and act 

as potent immunoadjuvants in-vivo and in-vitro(Seifert, Schultz et al. 1990; Wiesmüller, Bessler 

et al. 1992; Berg, Offermanns et al. 1994; Bessler, Cox et al. 1998; Hoffmann, Heinle et al. 1998). 

Synthetic lipopeptides with the RR stereoisomer (N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R)-

propyl]-[R]-cysteine), showed higher B-cell mitogenicity and protective activity when 

introduced into vaccines than the mixture of other stereoisomers(Wiesmüller, Jung et al. 

1989; Wiesmüller, Bessler et al. 1992).  

Lipoproteins and lipopeptides induce signaling in immune cells through toll-like receptor-
TLR2/TLR1 and TLR2/TLR6 heterodimers. Diacyl lipopeptides like macrophage activating 
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lipopeptide from Mycoplasma fermentans (MALP-2, Pam2Cys-GNNDESNISFKEK) contain 
the diacylated lipoamino acid S-[2,3-bis(palmitoyloxy)-(2R)-propyl]-[R]-cysteine require 
TLR2 and TLR6 for signalling, whereas the triacylated synthetic compound like Pam3Cys-
SK4 require TLR2/TLR1 heterodimers for signalling. Structure–activity relationship study 
supports the fact  that the immune modulating activity of lipopeptides is strongly 
dependent on the fatty acid length and the presence of the natural amino acid S-2(R)-
dihydroxypropyl-(R)-cysteine. 

Lipopeptide vaccinations have been carried out in all relevant animal models and so far no 
toxic side effects have been observed. The safety, reproducible production and ease of 
storage and handling of lipopeptide vaccines suggest that they have significant potential for 
the development of vaccines for humans and domestic animals. Moreover, several 
researcher conjugated MHC class-I restricted peptides with Pam3Cys-Ser-Ser resulting in 
efficient priming of virus-specific cytotoxic T-cells and Tn antigen epitopes. 

 

Fig. 5. Structure of lipopetides 

4.3 Nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) proteins  

Nucleotide-binding and oligomerization domain (NOD)-like receptor (NLRs) (Fritz, Ferrero 

et al. 2006; Werts, Girardin et al. 2006; Franchi, Park et al. 2008) represent another family of 

PRR that received great attention in recent decade and their role in linking host innate 

immunity to microbes and regulation of inflammatory pathways (Carneiro, Magalhaes et al. 

2008)has been extensively studied. In humans the NLR family is composed of 22 

intracellular pattern recognition molecules and composed of three different types of 

domains, a C-terminal LRR domain for ligand binding, a nucleotide binding oligomerization 
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domain (NOD domain) and an N-terminal effector binding domain for the initiation of  

signaling. Among all the NLRs, NLRP, NOD1 and NOD2 were extensively studied towards 

their role in the treatment of inflammatory diseases and in the development of improved 

vaccine. PAMPs, PAMPs-derived and synthetic ligands that recognize these receptors are 

presented in Table 1. NOD1 recognizes a molecule called meso-DAP, that is a peptidoglycan 

constituent of the only gram negative bacteria(Chamaillard 2003; Girardin 2003). NOD2 

proteins recognize intracellular MDP (muramyl dipeptide),]-a peptidoglycan constituent of 

both gram ositive and gram negative bacteria.. Whereas  NALPRs have been known to 

detect a range of PAMPs(Hsu; Martinon, Agostini et al. 2004; Boyden and Dietrich 2006; 

Kanneganti 2006; Kanneganti 2006; Mariathasan 2006; Martinon, Petrilli et al. 2006; Petrilli 

2007; Franchi and Nunez 2008; Li, Willingham et al. 2008) 

.  

Fig. 6. Nucleotide-binding oligomerization domain (NOD) proteins receptors 

4.3.1 Natural and unnatural NOD agonists/antagonists: Muramyl dipeptides 

Two major class of compounds viz., bacterial cell wall preparations containing 

peptidoglycan and inorganic crystals such as aluminium hydroxide (now identified as 

ligands of  NLrs pathway) were extensively used for vaccination strategies throughout the 

twentieth century represented the strength of this pathway for vaccine and adjuvant 

development. Furthermore, in recent studies, it has been found that the interaction of NLRs 

and TLRs are crucial for the adaptive immunity and therefore researchers are looking for the 

combination strategy by using the ligands of two pathways for the designing of more potent 

and efficacious immune adjuvants for poor imunogenic vaccines. Although this area is 

relatively new, but many PAMPS, PAMPs derived and synthetic ligands as well as the role 

of their receptors in various diseases condition  have been identified that will provide very 

useful inputs for vaccine and adjuvant development.  
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Eversince the identification of monomeric peptidoglycan subunits in  1970s as minimal 
structural responsible for the adjuvanticity of complete Freund’s adjuvant (CFA) a mixture 
of NOD1, NOD2 and TLR ligands, which play a central role in the adjuvant action of CFA 
and therefore their ligands will be explored for the development of effective vaccines. 
Similarly, N-Acetyl muramyl-L-alanine-D-isoglutamine (muramyl dipeptide, MDP) 4 is 
another component of a peptidoglycan extracted from Mycobacteria possessing promising 
imunostimulatory properties and recently has been found to activate NOD2(Adam, 
Ciorbaru et al. 1974). Muramyl dipeptide (MDP) is the minimal unit of the mycobacterial 
cell wall complex that generates the adjuvant activity of complete Freund’s adjuvant (CFA). 
MDP has a variety of physiological effects, including adjuvanticity, pyrogenicity and 
leucocytopoietic activity and extensive research has been done on these molecules to 
understand their role and activation pathway. Despite extensive research on MDP, the 
molecules was found to be pyrogenic and autoimmunogenic to be used as adjuvants in 
human. Furthermore, MDP have potent in-vivo adjuvant activity when administered as 
water-in oil emulsions, but MDP itself is a poor adjuvant, due to its rapid excretion in the 
urine when administered as an aqueous solution. Therefore, efforts towards the synthesis of 
less pyrogenic derivatives without compromise on their immune stimulatory activity has 
been attempted. . And as a result, a number of lipophilic derivatives of MDP have been 
prepared, and their bioactivities have been reviewed(Azuma and Seya 2001). Several MDP 
derivatives and related compounds such as murametide 4a, murabutide 4b, threonyl- MDP 
4c, murapalmintine 4d and glycoyl-MDP 4e have host-stimulating activities against bacterial 
infections in experimental models. Moreover, MDP as well as other muropeptides 
(tripeptides and disaccharide tripeptides and tetrapeptides) have been found to work in 
synergy with TLRs and enhance the effect of immunomodulatory factors such as IFNǄ, IL- 

 

Fig. 7. Structure of MDP and its analogs 
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1ǃ, IL-32 and GM-CsF. All these factors are crucial for the recruitment and activation of 
effector cells as well as for evoking the inflammatory processes which eventually lead to the 
establishment of an appropriate adaptive immune response, that leads to the increase in the 
therapeutic potential of NOD2 molecules(Geddes, Magalhaes et al. 2009). 

On the other hand, NLRPs recognize wide range of ligands of natural sources but some 
recent studies shown that some NLRP particularly NLRP3 is an essential component of the 
inflammasome, it is possible that the activation of NLRP3 as part of the inflammosome is a 
common event in response to several adjuvants or more generally to particulate compounds 
such as chitosan (a polysaccharide derived from chitin) and Quil A (a saponin extracted 
from the bark of Quillaja saponaria) as well as silica and asbestos. However, how NLRP3 
activation contributes to adjuvanticity is not fully understood. The steadily growing 
knowledge on NLRs will have a crucial impact on our understanding of the mechanisms of 
action of immune adjuvants, as well as the pathogenesiss and will help direct the 
development of potent and efficacious immune adjuvants in the near future(Geddes, 
Magalhaes et al. 2009). 

4.4 Endocytic pattern-recognition receptors: Mannose receptors 

 

Fig. 8. Mannose receptor-A type 1 transmembrane protein 

The mannose receptor (MR) is a PRR primarily present on the surface of macrophages and 
dendritic cells (Stahl and Ezekowitz 1998)which  belongs to the multilectin receptor protein 
group and, provides a link between innate and adaptive immunity like the TLRs,  It is a type 
I C-type lectin receptor with a long extracellular portion including a N-terminal cysteine-
rich domain, a fibronectin type II (FNII) domain, a series of eight C-type lectin-like domains 
and the carbohydrate–recognition domains (CRDs), which is endowed with the capability to 
recognize mannosyl-, fucosyl- or N- acetylglucosamidyl-terminal glycoconjugates and 
sulfated sugars(Taylor and Drickamer 1993). Mannose receptor endocytoses mannosylated 
motifs for processing and presentation to T cells by MHC class II. Mannosylation of antigen 
enhances the efficiency of its presentation to T cells. In a variety f antigen delivery 
approches, the MR has demonstrated effective induction of potent cellular and humoral 
immune responses. Therefore, MR-targeted vaccines are likely to be most efficacious in-vivo 
when combined with agents that elicit complementary activation signals.  

5. Importance of Th1 immune modulators 
The basic knowledge of adjuvant action is very important for developing suitable vaccines 
for newly emerging cancer and infectious diseases. In the last one decade, much progress 
has been made on understanding the molecular basis for action of adjuvants, the role of 

www.intechopen.com



 
Medicinal Chemistry and Drug Design 

 

190 

cytokines and different types of cells involved in immune response and a better 
understanding of the correlates of immunity to various diseases(Moingeon, Haensler et al. 
2001). The induction of Th1 responses is highly desirable for vaccines (Moingeon, Haensler 
et al. 2001)against chronic viral diseases, infections linked to intracellular pathogens such as 
M.TB, Malaria or cancer (therapeutic vaccines). This leads to the development of adjuvants, 
which can selectively modulate the immune response and even evoke selective T-cell 
response alone. Due to limitations of potential adjuvants to elicit cell mediated immune 
responses such as cytotoxic T-cell responses, there is a need for alternative adjuvants, 
particularly for diseases in which cell mediated immune responses are important for 
eliminating intracellular pathogens.  

6. Plant based immune adjuvants 
The toxicity, adverse reactions, pyrogenicity and reactogenicity associated with synthetic as 
well as bacterial products limited their development as immunoadjuvants and therefore, in 
this direction, plants can provide potent, safer and efficacious alternatives. Crude extracts 
derived from plants have been used as immune-potentiators from the time immemorial in 
various traditional medicines(Alamgir and Uddin 2010). A traditional Indian system of 
medicines like Siddha and Ayurveda suggested that various plants derived Rasayanas possess 
potential immunostimulatory activity(Thatte and Dahanukar 1997). The extracts and 
formulations prepared from Ayurvedic medicinal plants such as Withania somnifera, 
Tinospora cordifolia, Actinidia macrosperma, Picrorhiza kurroa, Aloe vera, Andrographis paniculata, 
Asparagus racemosus, Azadirachta indica, Boswellia carterii, Chlorella vulgaris, Emblica officinalis, 
Morinda citrifolia, Piper longum, Ocimum sanctum etc demonstrated significant 
immunostimulatory activity particularly at humoral level in experimental 
systems(Patwardhan 2000; Kumar, Gupta et al. (2011). QS-21 a plant based saponin present 
the finest example of alternate immunoadjuvants isolated from the crude extracts of Quillaja 
saponaria which was known for immunostimulatory properties(Jacobsen, Fairbrother et al. 
1996). Similarly, several others single molecules based immune potentiators have been 
isolated and characterized from the plant sources. Even though these molecules may not 
operate through the similar mechanism as various PAMPS, the adjuvant effect owing to 
such amphilic natural products is undisputed possibly with low toxicity `unlike those 
derived from PAMPS. There is a major unmet need for a safe and efficacious adjuvant 
capable of boosting both cellular and humoral immunity. The evaluation and development 
of plant based immunomodulators, as the alternate adjuvants for providing maximum and 
lasting protective immune responses with existing vaccines, is justified due to proven  safety 
aspects in comparison with their synthetic counterparts along with excellent tolerability, 
ease of manufacture and formulation.  

6.1 Plant based products currently under investigation 

In the last few decades, improved understanding of the mechanism of action of traditional 

plant based crude extracts and formulations, lead to the discovery of various class of 

compounds as potential immunostimulators viz., alkaloids, saponins, polysaccharide, 

triterpenoids,  iridoids, organic acids, etc(Alamgir and Uddin 2010). Several plant based 

products are currently under investigation for use as vaccine adjuvants. Enriched fractions 

of iridoid glycosides has been isolated from Picrorhiza kurroa (a high altitude Himalayan 
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perennial herb) employed for medicinal purpose from time immemorial to relieve immune 

related diseases(Puri, Saxena et al. 1992). Several polysaccharides such as mannan and ǃ 1-3 

glucan 5 isolated from many plant sources such as Chlorella sp,  Tinospora cordifolia etc. have 

been known for stimulating and targeting  APCs to up-regulate Thl responses and  used as 

vaccine adjuvants either mixed with or conjugated to immunogen. Picrosides 6 isolated 

from Picrorhiza kurroa, Cardioside 7isolated from Tinospora cordifolia possesses potential 

immunostimulatory activity(Panchabhai, Kulkarni et al. 2008). Cannabidiol 8 and 

tetrahydrocannabinol 9 isolated from Cannbis sativa  significantly attenuated the elevation of 

IL-2, IL-4, IL-5, and IL-13 and represent the potential therapeutic utility. 

 

Fig. 9. Structure of plant based immunopotentiators 

Despite the long term human use of secondary metabolite enriched fractions of Picrorhiza 
kurroa as potential immunomodulator in traditional medicines, there had been no report 
regarding the adjuvant activity of the molecular constituents of this valuable plant. While 
exploring the novel immunoadjuvants derived from Picrorhiza kurroa , it was found that 
many glycoconjugates such as picroside-I, picroside-II and catalpol, possess promising dose 
dependant immune potentiation ability as indicated by B and T cell proliferation. The single 
molecules derived from these fractions revealed varying degrees of adjuvant activity. The 
enriched fractions [RLJ-NE-299A, a mixture of picroside-I (PK-I) and picroside-II (PK-II)] 
derived from this plant exhibited promising adjuvant activity(Khajuria, Gupta et al. 2007) 
without significant sustained immune memory or depot formation properties, which 
restricted their use as plant based immune-adjuvants. In order to develop more potent, 
efficacious and alternate plant based immune adjuvant, recently acylated analogs of 
picroside-II viz. PK-II-2, PK-II-3 and PK-II-4 were synthesized and tested for immune-
adjuvant activity in the presence of weak antigen ovalbumin. Among the acylated analogs 
PK-II-3 and PK-II-4 were found to stimulate anti-OVA IgG titer, neutralizing antibody (IgG1 
and IgG2a) titer as well as the production of soluble mediators of a Th1 response (IL-2 and 
IFN-Ǆ) and Th2 response (IL-4) and proliferation of T lymphocytes sub-sets (CD4/CD8). 
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These results support the use of acylated analogs particularly PK-II-3 and PK-II-4 as potent 
enhancer of antigen-specific Th1 and Th2 immune responses and thus are promising 
immune-adjuvant candidate for vaccines(Kumar and Singh 2010) 

 

Fig. 10. Picroside II and its lipidated derivatives as immune adjuvants 

Based on the traditional system of medicine, plant based products can be attractive 
candidates for use as safe vaccine adjuvants. 

6.2 Saponins, Quil-A and QS-21 

Saponins are triterpene glycosides isolated various plant sources. Crude extracts of Quillaja 
saponoria –a bark tree native of Chile, have long been known as an immunostimulator 
(Dalsgaard 1974). Crude extracts of plants containing saponin enhanced potency of foot and 
mouth disease vaccines. However, these crude extracts were associated with adverse side 
effects when used as vaccine adjuvants. Dalsgaard et al. partially purified the adjuvant 
active component from crude extracts by dialysis, ion exchange and gel filtration 
chromatography. The active component known as Quil A exhibited enhanced potency and 
reduced local reactions when compared to crude extracts.  

Quil A is widely used in veterinary vaccines but its hemolytic activity and local reactions 

made it unsuitable for human vaccines. Further analysis and refining of Quil A by high 

pressure liquid chromatography (HPLC) revealed a heterogenous mixture of closely related 

saponins and led to discovery of QS-21( 10) a potent adjuvant with reduced or minimal 

toxicity. QS-21 is a quillaic acid-based triterpene with a complex acylated 3, 28-O-

bisglycoside structure (Jacobsen, Fairbrother et al. 1996). Unlike most other 

immunostimulators, QS-21 (Fig 8) is water-soluble and can be used in vaccines with or 

without emulsion type formulations. In a variety of animal models, QS-21 has augmented 

the immunogenicity of protein, glycoprotein and polysaccharide antigens (Singh and 

O'Hagan 1999). QS-21 has been shown to stimulate both humoral and cell-mediated Th1 and 

CTL responses to subunit antigens. Clinical trials are in progress with QS-21, alone or in 

combination with carriers and other immunostimulants for vaccines against infections 

including influenza, HSV, HIV, HBV and malaria and cancers including melanoma, colon 

and B-cell lymphoma. Several structural analogs of QS21 derived from wholly synthetic or 

semi synthetic route have resulted in improved understanding of the mechanism of action 

of this saponin molecule. Now it is imperative that the mode of action of this molecule is 

through the action of formyl group on the triterinoid moiety of the saponon with the T-cell 
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receptor that leads to to strong TH1 response. Thus it hardly needs to emphasize that 

development of more plant based adjuvants are highly desirable for developing vaccines 

against today’s societal dreadful diseases like cancer and other infectious diseases. 

 

Fig. 11. QS-21, a saponin  isolated from Quillaja saponaria 

7. Current clinical status of potent immune adjuvants 
As reviewed in the above sections, the use of PRR ligands particularly TLR and NLR agonists 
as vaccine adjuvants has been extensively explored with the new generation vaccines which 
contains defined antigens, These PRR ligands function as immune adjuavants and provide safe 
and even more effective alternate to live attenuated/dead whole organism based vaccines 
which induces strong Th1 and T-cytotoxic responses need to treat various cancer as well as 
infectious and allergic agents. In-fact, these PRR based immune adjuavnts not only enhances 
the immunological response of vaccine candidates/formulations but perform many functions. 
A number of ongoing clinical trials with PRR ligands in prophylactic as well as therapeutic 
vaccines against infectious agents, cancer and allergic agents are presented in Table 2, 3 and 4. 

Various small molecules derived from lipid A and RNA/DNA oligonucleotides activate TLR4 
and TLR7/8 respectively represents potential class of immune adjuvants and vaccine 
encompassing these agonists finds application in the area of infectious and allergic diseases 
including cancer as shown in Table 2, 3 and 4. As discussed in section 4.3 and 4.3.1, the 
discovery of  and understanding of functioning of NLRs as well as identification of their 
ligands such as DAP-containing peptidoglycan (FK156 and FK565), MDP and its lipidated and 
less pyrogenic analogs, chitosan, Quil A etc. are in preclinical studies also represent important 
classes of future’s immune adjuvants and might find clinical applications along either alone or 
in combination with TLRs agonist against infectious and other disease conditions. Apart from 
the small molecules, several proteins such as flagellin (TLR5 agonists), oligonucleotide such as 
polyI:poly C RNA (TLR3 agonist) and several CpG (or CpG ODN) based ligands (TLR9 
agonists) also find very promising results in various phase of clinical trials. Among these three, 
only unmethylated cytosine-phosphate-guanine-oligodeoxynucleotides (CpG ODN) and its 
analogs find applications against infectious, cancer and allergic diseases as shown in Table 2, 3 
and 4. The analogs of CPG stabilized by a phosphorothioate backbone and based on 
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nucleotide sequence and length, CpGs are classified into class A, class B, and class C, and 
activate a predominantly strong Th1 response, a property which has been harnessed for 
oncological clinical trials (shown in Table 3). CpG ODNs can also be used as an adjuvant in 
vaccines and could be considered for the treatment of Th2-mediated Type I allergic 
disorders(Kanzler, Barrat et al. 2007; Basith, Manavalan et al. 2011) (Table 4). 

 

Target TLR agonist as adjuvants Vaccines/antigens Indication Status (Company)* 

TLR3 Synthetic, mismatched 
double-stranded poly 
I:poly C RNA 

Ampligen HIV P-II (H) 

TLR4 MPL adjuvant Fendrix  Hepatitis B Approved in 
EU(GSK) 

MPL adjuvant Cervarix Human 
papillomavi
rus 

Approved (GSK) 

Synthetic MPL RC-529 Supervax Hepatitis B Approved in 
Argentina (DT) 

TLR5 Fusion proteins of flagellin 
to hemaglutinin 

Matrix Protein-2 Influenza P-I  (V) 

TLR7/8 Imiquimod cream 5% Aldara Papilloma-
induced 
genital 
warts 

Approved (3MP) 

ANA975; oral prodrug of 
isatoribine (nucleotide 
analog) 

 Hepatitis C P-I on hold (A/N) 

Resiquimod (R-848)  
(TLR7/8) 

 HCV 
Herpes 
simplex 
virus  

P-II (3MP) 
P-III suspended 
(3MP) 

R851 (topical treatment)  Human 
papillomavi
rus 

 P-II (3MP/T) 

TLR9 CpG-ODN 1018 ISS Heplisav Hepatitis B P-III (DT) on hold 

CpG C class ODN: 
CpG10101,  

 Hepatitis C P-II discontinued 
(CP) 

CpG B class ODN: 
CpG7909,  

VaxImmune Anthrax P-I (CP) 

CpG-ODN Influenza antigens  Influenza Preclinical (DT) 

CpG-ODN Remune 
(inactivated HIV-1 
virus) with YB2055 

Human 
immunodefi
ciency virus 

P-I/II (IP/IRC) 

*Full name of developing company/institutes: H – Hemispherx; GSK – GlaxoSmithKline; DT-Dynavax 
Technologies; V – Vaxinate; 3MP – 3M Phrama; A – Anadys; N – Novartis; CP – Coley Pharmaceuticals; 
IP – Idera Pharmaceuticals; IRC  - Immune Response Corporation. 

Table 2. TLR agonists in clinical development for infectious diseases 
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Target TLR agonists as 
adjuvants 

Vaccine/antigens Indication Status 
(Company) 

TLR3 IPH 31XX (structure not 
disclosed) 

 Breast cancer Preclinical (InP) 

TLR4 MPL (enclosed in 
liposomal vehicle) 

Stimuvax/BLP25 
(Synthetic cancer-
associated MUC1 
protein) 

Non-small-cell 
lung cancer 
 

P-II (B/M) 

TLR5     

TLR7/8 Imiquimod (used as 
5% cream) 

Aldara Basal cell 
carcinoma 

Approved (3MP) 
 

Imidazoquinoline 852A   Melanoma P-II (3MP) 

TLR9 CpG B class ODN 
CpG7909 or PF3512676  

Along with 
chemotherapy 

Non-small-cell 
lung cancer 

P-III (CP/P) 

CpG B class ODN 
:1018ISS 
 

Along with Rituxan Non-Hodgkin’s 
lymphoma 

P-II (DT) 

CpG-ODN : HYB2055 
or IMO-2055 or 
IMOxine 

 Renal cell 
carcinoma 

P-II (IP) 

CpG motif containing 
circular ODN 

dSLIM Metastatic 
colorectal cancer 

P-I/II (M) 

CpG B class ODN  Along with 
chemotherapy 

Colorectal cancer 
 

P-I (DT) 

CpG-ODN 7909 in 
incomplete Freund 
adjuvant  

Melan-A peptide Melanoma 
 

P-I (CP/GSK) 

Immunodrug carrier 
QbG10 

CYT004-MelQbG10 
vaccine containing 
Melan-A/MART-1 
protein  

Melanoma 
 

P-II (CB) 

*Full name of developing company/institutes: InP – Innate Pharma; B – Biomera; M – Merck; P – Pfizer; 
M  - Mologen; GSK – GlaxoSmithKline; DT-Dynavax Technologies; CB – Cytos Biotechnology; 3MP – 
3M Phrama; CP – Coley Pharmaceuticals; IP – Idera Pharmaceuticals. 

Table 3. TLR agonists in Clinical development for cancer 

Like agonists, TLR antagonist showing promiscuous results in the clinical trial for the 

treatment of number of inflammatory and auto-immune diseases. These TLR antagonists 

have been mostly developed as structural analogs of agonists which bind to the receptor but 

fail to induce signal transduction, thus preventing the agonistic action of TLR ligands 

responsible for the induction of the inflammatory/autoimmune cascade. Two lipid A 

analogs such as E5564 and Tak 242 developed by Eisai and Takeda Pharma (derived from 

SAR studies during design of agonists) acts as potent antagonists of TLR4 and currently are 

in clinical trials for the treatment of sepsis or septic shock (inflammatory disorder)(Kanzler, 
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Barrat et al. 2007; Basith, Manavalan et al. 2011). Similarly, CpG ODN analog such as 

DV1079 (developed by collaborative efforts of Dynavax and GSK) act as potent TLR7/9 

antagonists and is currently in preclinical study for the treatment of autoimmune disorder. 

Despite the development of many small immune adjuavnts, still there is a need for more 

efficacious and potent immune adjuavants for poorly immunogenic antigenic based vaccine, 

while going through the structural features of many PAMPs based and synthetic adjuvants 

as well as understanding their role in vacccine formulation, the molecules become ideal 

immune adjuavnts when they qualifies the parameters as discussed in section 9. 

Furthermore, while designing immune adjuvant, we should keep certain structural features 

in mind as discussed in section 10 which might give direction for the generation of potent, 

efficacious and ideal immune adjuvants. Moreover, in recent years, the co-crystal structure 

of PRRs(Kanzler, Barrat et al. 2007; Basith, Manavalan et al. 2011) particularly TLRs with 

their ligands have been identified, therefore their bio-informatics model system would be 

developed which further provide very useful inputs towards the designing of potent and 

ideal immune adjuvants. 

 

Target TLR agonists as 
adjuvants 

Vaccines/antigens Indication Status 
(Company) 

TLR4 MPL Pollinex Quattro 
(modified allergens) 

Allergic rhinitis 
(multiple 
allergens) 
 

Marketed 
(EU) 

MPL Ragweed SC/Pollinex 
Quatro; 
Ragweed/Pollinex R 
(ragweed pollen extract 

Allergic rhinitis 
(ragweed) 
 

P-II (AP) 

CRX-675  Ragweed allergen Allergic rhinitis 
(ragweed) 

P-I (GSK(C)) 

TLR9 Covalently linked CpG 
B class ODN: 1018 ISS 

Tolamba (Amb a 1 
ragweed allergen 

Allergic rhinitis 
(ragweed) 
 

P-II/III (DT) 

Immunodrug carrier 
QbG10 

Allergen extract ( 
CYT005-AllQbG10) 

Allergic rhinitis 
(dust mite) 
 

P-II (CB) 

 CpG B ODN Amba 1 Asthma P-II (DT) 

Second generation 
CpG-ODN 

 Asthma P-I (DT/AZ) 

CpG-ODN 
 

AVE0675 
 

Asthma 
 

P-I (CP/SA) 

*Full name of developing company/institutes: AP – Allergy Therapeutics; GSK – GlaxoSmithKline; DT - 
Dynavax Technologies; N – Novartis; CP – Coley Pharmaceuticals; IP – Idera Pharmaceuticals; CB – 
Cytos Biotechnology; AZ – Astra Zeneca; SA – Sonafi-Aventis. 

Table 4. TLR agonists in clinical development for allergic diseases 
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Target TLR antagonists Indication Status (Company) 

TLR4 TAK-242 
 

Severe sepsis 
 

P-III (TPC) 

E5564 or Eritoran: a lipid A 
derivative 
 

Severe sepsis 
 

P-III (E) 

TLR7 and  
TLR 9 

Immunoregulatory 
sequence IRS 954 
 

Lupus Preclinical (DT) 

Full name of developing company/institutes: TPC – Takeda Pharmaceutical Company; E- Eisai. 

Table 5. TLR antagonists in clinical development for anti-inflammatory and auto-immune 
diseases 

8. Role of adjuvants in the immune responses 
Precisely, how adjuvants enhance the immune response is yet unknown, but they appear to 

exert different effects to improve the immune response to vaccine antigens, as such they: 

i. Immunomodulation- This refers to the ability of adjuvants to activate the immune 

response either to Th1 or Th2. 

ii. Targeting- Improve antigen delivery to antigen presenting cells (APCs), increase cellular 

infiltration, inflammation, and trafficking to the injection site. 

iii. Activation of APCs by up-regulating co-stimulatory signals, major histo-compatibility 

complexes (MHC) expression and inducing cytokine release. 

iv. Antigen Presentation- Enhance antigen processing and presentation by APCs and 

increase the speed, magnitude and duration of the immune response. 

v. Antigen Depot formation 

vi. Induction of antibody-modulation of antibody avidity, affinity as well as the magnitude, 

isotype or subclass induction. 

vii. Stimulate cell mediated immunity and lymphocyte proliferation nonspecifically. 

9. Characteristics of an ideal adjuvant 
It is likely that the “ideal” adjuvant does not and will not exist, because each adjuvant and its 

targeted antigen will have their unique requirements. Nevertheless, the generic characteristics 

summarized below would be desirable. To date, no adjuvant meets all of these goals. 

i. It must be safe, including freedom from immediate and long-term side effects. 
ii. It should be biodegradable or easily removed from the body after its adjuvant effect is 

exhausted to decrease the risk of late adverse effects. 
iii. It should elicit a more robust protective or therapeutic immune response combined 

with the antigen than when the antigen is administered alone. 
iv. It must be defined chemically and biologically, so that there is no lot-to-lot variation in 

the manufactured product, thereby assuring consistent responses in vaccines between 
studies and over time. 

v. Efficacy should be achieved using fewer doses and/or lower concentrations of the 
antigen. 
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10. Requirement for adjuvants 
While going through the structure of various immune adjuvants of diverse classes, we 
conclude that following are few chemical traits molecules should ppossess to become more 
efficious and potent immue adjuvants. Furthermore, following chemical traits should also 
be considered for the chemical modifications of PAMPS or other natural derived molecules.  

Following are the structural requirements for a molecule to act as an efficient adjuvant: 

i. Hydrophilic-lipophilic balance. 
ii. Presence of micellar structures to facilitate depot formation. 
iii. Lipophilic structure enveloping the antigen to preserve the structure required for its 

immunogenicity. 
iv. Lipophilic structures capable of effective cytosol trafficking. 
v. Presence of functional groups to activate/substitute co-stimulatory signals for effective 

Th1 immunity. 
vi. Overall structural design to stimulate Th1 and Th2 balance. 
vii. Structure to be ligand for T cell or DC surface receptors. 

11. Conclusion and future prospects regarding the use of immune adjuvants 
towards design of new breed potent vaccines 
The literature discussed here present a wide variety of pathogen derived natural and synthetic 
PRR agonist and antagonists, among these some of these molecules already which find 
potential application as immune adjuants in various vaccine formulations to treat dreadful 
cancer, infectious and allergic diseases. Furthermore, various plant derived immune are also 
discussed here which are now in very preliminary stages and also present the potential 
starting points and need serious efforts first towards the understanding of their mechanism of 
action and further development. For TLR agonists to achieve further recognition in the clinic it 
will be critical to undertake side-by-side comparisons against the same antigen using selected 
immune monitoring assays that measure the quantity and quality of responses (e.g. avidity, 
memory cell generation, durability) as well as further refinement in their chemical structure 
(wherever need) keeping in mind the above motioned points required for molecules to become 
ideal immune adjuavants. Furthermore, the potential immune adjuvant candidates either in 
the preclinical or in various clinical phases discussed here represent only a fraction of the 
current efforts to clinically translate our current understanding of some of the exploited PRR 
and innate immunity. Many other strategies and tactics to stimulate or inhibit others PRR are 
being developed and these studies are just beginning. Understanding the role of different PRR 
for different pathological conditions are growing rapidly and this will surely continue to be 
more productive and fruitful field for the development of more efficacious and potent vaccine 
candidates for various unmet cancer and infectious diseases. 
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