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1. Introduction 

One of the most important challenges that face medicinal chemists today is the design of 

new drugs with improved properties and diminished side-effects for treating human 

disease such as AIDS and others. Medicinal chemists began the process by taking a lead 

structure and then finding analogs exhibiting the preferred biological activities.  Next, they 

used their experience and chemical insight to eventually choose a nominee analog for 

further development. This process is difficult, expensive and took a long time. The 

conventional methods of drug discovery are now being supplemented by shortest 

approaches made possible by the accepting of the molecular processes involved in the 

original disease. In this view, the preliminary point in drug design is the molecular target 

which is receptor or enzyme in the body as an option of the existence of known lead 

structure. 

The lock-and-key concepts at present are considered in drug design. Samples of protein 

targets were isolated and X-ray crystallography discovered their molecular structural 

design. Molecules are conceived either on the basis of similarities with recognized reference 

structures or on the basis of their complementarily with the three dimensional (3D) structure 

of well-known active sites. 

The techniques currently on hand provide widespread insight into exact molecular features 

that are in charge for the regulation of biological processes: molecular geometries, electronic 

features and others. All these structural characteristics are of crucial importance in the 

understanding of structure-activity relationships and in rational drug design. 

Rational drug design is based on the belief that the biological properties of drugs are related 

to their actual structural features. What has changed along the years is the way molecules 

are perceived and defined. In the past, medicinal chemists considered molecules as simple 

two-dimensional (2D) entities with related chemical and physicochemical properties. 

Quantitative structure-activity relationships (QSAR) concepts began to be considered and 

became very accepted.  

However, most of these properties have not been well represented by the basic numerical 

parameters considered to characterize these features: the interactions between a ligand and 

a protein require much more information than the ones included in substituent indexes 
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characterizing the molecular properties. Now, it has shown that consideration of the full 

detailed properties in 3D is necessary in allowing the understated stereochemical features to 

be respected. 

The effective design of chemical structures with the desirable therapeutic properties is 
directed towards computer aided-drug design (CADD) a well established area of computer 
aided molecular design (CAMD). These techniques cover new methodologies, such as 
molecular modeling and quantitative structure-activity relationships (QSAR). Molecular 
modeling can be simply considered as a range of automated techniques based on theoretical 
chemistry methods and experimental data that can be used to predict molecular and 
biological properties. 

The main applications of CAMD are the clarification of the basic requirements for a 
compound to obtain a determined activity, the simulation of the binding between a ligand 
and the receptor, the discovery of new active compounds and the prediction of activities for 
non-synthesised analogues. These applications convert CAMD to be used in drug design. 

Computer aided molecular design (CAMD) is predictable to contribute to the discovery of 
"bright" molecules conceived on the basis of exact three-dimensional details. Two major 
modeling strategies right now used in the designing of new drugs. In the first strategy, the 
three-dimensional features of a known receptor site are directly considered whereas in the 
second strategy, the design is based on the comparative analysis of the structural features of 
known active and inactive molecules that are interpreted in terms of their complementarily 
with a supposed receptor site model. 

The improvements in computer speed and capacity increased the number of lead 
compounds available for further research. But not only the number of feasible drug 
candidates increased, but also the costs and time devoted in various drug discovery 
processes was reduced, improving the effectiveness of the drug development. 

One of the initial approaches to decrease these costs were attempted by correlating the 
biological function of a compound with its chemical structure, expressed in terms of molecular 
structural descriptors, by means of QSAR techniques. This discipline was promoted by Hansch 
and his group (Fujita, 1990). It was based on the determination of mathematical equations 
expressing the biological activities as a function of molecular parameters. 

QSAR believe that the biological activity of a compound is a result of its chemical structure. 

Within the QSAR approach, the descriptor variable are not physically measured but 

computed, therefore, they are easy and cheap to generate even for large molecular sets.  

2. Quantitative structure activity relationships (QSAR) 

QSAR is a way of finding a simple equation that can be used to calculate some property 

from the molecular structure of a compound. QSAR attempt to correlate structural 

molecular features (descriptors) with physicochemical properties such as biological 

activities for a set of compounds, by means of statistical methods. As a result, a simple 

mathematical relationship is established. 

Applications of QSAR can be extended to any molecular design purpose, including 
prediction of different kinds of biological activities, lead compound optimization and 
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prediction of novel structural leads in drug discovery. The process of building a QSAR 
model is similar, apart from what type of property is being predicted. It consists of several 
steps which hopefully lead to the design of new compounds with the desired activity 
profile. 

The first step in building a QSAR model is to select a training set of compounds with their 
experimental activities. Ideally, each of these activities should cover the range of possible 
values for that activity. The next step is to compute descriptors that contain sufficient 
relevant information about the biological phenomenon. However, it is difficult to predict in 
advance which descriptor variables will be valuable. Once descriptors have been calculated, 
it is necessary to pick which should be included in the QSAR model. A correlation 
coefficient gives a quantitative measure of how well each descriptor describes the activity. 
Thus, the descriptor with the highest correlation coefficient can be picked. Next step, a data 
analysis is needed to calculate the best mathematical expression linking together the 
descriptors and biological activities, in which information relating the essential features of 
the chemical and biological data structure is obtained. In the final step, validation and 
predictions for non-tested compounds will take place. However, the predictive capability of 
the model first is verified experimentally. This is talented by biological testing of some 
additional compounds (test set) in the same way as the training set and then comparing the 
experimental finding with the values predicted by the QSAR model. If the QSAR predicts 
within acceptable restrictions, it may be used for a more extensive prediction of more 
compounds. An interpretation of results should be done for the proposal and design of new 
compounds with the desired activity outline. 

2.1 History of QSAR 

Crum-Brown and Fraser expressed the suggestion that the physiological action of a 
substance was a function of its chemical composition. Later, in 1893, Richet showed that the 
cytotoxicities of a dissimilar set of uncomplicated organic compounds were inversely related 
to their corresponding water solubility.  After that, Meyer and Overton independently 
recommended that the narcotic action of a group of organic molecules correlated with their 
olive oil/water partition coefficients.  The extensive work of Albert, and Bell and Roblin 
established the importance of ionization of bases and weak acids in bacteriostatic activity.  
In the physical organic border, great progress was being made in the clarification of 
substituent effects on organic reactions, led by the influential job of Hammett. Taft invented 
a way for separating polar, steric, and resonance effects and introducing the first steric 
parameter, ES. 

The contributions of Hammett and Taft together laid the mechanistic source for the progress 
of the QSAR model by Hansch and Fujita. In 1962 Hansch et al. (Hansch et al., 1962) 
published their bright study on the structure-activity relationships of plant growth 
regulators and their dependency on Hammett constants and hydrophobicity. A Linear Free 
Energy Relationships (LFER) related model published by Fujita et al. and Hansch et al., 
(Fujita et. al., 1964, Hansch et. al., 1964) considered to be the official beginning for QSAR. 
Their fragment and additive group contribution idea added two things: the use of calculated 
properties to correlate with biological activities and the detection that multiple properties 
may influence the biological activity. For this purpose, they implemented the use of the 
computer to fit QSAR equations. 

www.intechopen.com



 
Medicinal Chemistry and Drug Design 

 

58

The so-called Hansch equation (Hansch, 1969) was developed to correlate physicochemical 
properties (descriptors) with biological activities is given in a general form by: 

 log 1/C =  a (log P) 2 + blog P + c +  ... k (1) 

where C is the molar concentration that produces the biological effect; P is the 

octanol/water partition coefficient and  is the electronic Hammett constant. 

Besides the Hansch approach, other methodologies were also developed to deal with 
structure- activity questions. The Free-Wilson approach (Free and Wilson, 1964) addresses 
structure-activity studies in a congeneric series in which the contribution of each structural 
feature was a parameter of interest. These parameters, also called indicator variables, codify 
the presence or absence of particular structural feature. They are assigned the binary values 
of 1 and 0, accordingly.  

2.2 Descriptors 

A common question in QSAR is how to describe molecules and their physicochemical 

properties (descriptors). The nature of the descriptors used and the extent to which they 

instruct the structural properties related to the biological activity is a critical part of a QSAR 

study (Downs, 2004). It has been estimated that thousands of molecular descriptors are now 

existing (Devillers and Balaban 1999; Karelson, 2000; Todeschini et. al., 2002). Most of them 

can be calculated by using commercial software packages such as CODESSA (Katritzky et. 

al., 2002), DRAGON (Todeschini et. al., 2002) and others. The various descriptors in use can 

be largely categorized as being constitutional, topological, electrostatic, geometrical, or 

quantum chemical. 

Constitutional descriptors give a simple description of what is in the molecule. For example, 

the number of heteroatoms, the number of rings, the number of double bonds, etc. 

Constitutional descriptors often appear in a QSAR equation when the property being 

predicted varies with the size of the molecule. 

Topological descriptors are numbers that give information about the bonding collection in a 

molecule. They are derived from graph representation of chemical structures; they attempt 

to encode the size, shape, or branching in the compound by handling of graph-theoretical 

aspects of the structures (Silipo and Vittoria, 1990). Some examples are Randic indices, Kier 

and Hall indices, Weiner index (sum of the chemical bonds existing between all pairs of 

heavy atoms in the molecule), the connectivity index and others.  

Electrostatic descriptors are single values that give information about the molecular charge 

division. Some examples are polarity indices and polarizability. One of the most commonly 

used electrostatic descriptors is the topological polar surface area (TPSA), which gives an 

indication of the portion of the molecular surface composed of polar groups against 

nonpolar groups. Another deeply used descriptor is the octanol–water partition coefficient, 

which is designated by a specific prediction scheme such as ClogP or MlogP. 

Geometrical descriptors are single values that describe the molecule’s size and shape as well 

as the degree of complementarity of a ligand and the receptor. They are developed from 

three-dimensional models of molecules, and derived from molecular surface area 
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calculations. Some examples are moments of inertia, molecular volume molecular surface 

area, and other parameters that describe length, height, and width.  

Quantum chemical descriptors give information about the electronic structure of the 

molecule. They are obtained by molecular orbital calculations and they mainly describe 

electronic interaction. These includes, the energy of the highest occupied molecular orbital, 

EHOMO, which is a quantitative measure for the chemical reactivity of the compound-

ionization potential of a molecule, the energy of the lowest unoccupied molecular orbital, 

ELUMO,  which accounts for the electron affinity, refractivity, and total energy. The EHOMO–

ELUMO gap or ionization potential can be important descriptors for predicting how molecules 

will react.  

New nodal angle quantum descriptors - the Frontier Orbital Phase Angles - suggested by 

Clare  (Clare, 1998) which considered as novel QSAR descriptors for benzene derivatives 

will be discussed in the application part. 

2.3 Statistical methods 

Statistical methods are the mathematical basis for the development of QSAR models. 

Chemometric methods (Eriksson et al., 2001) are used to extract information from QSAR 

data using tools of statistics and mathematics. The applications of these methods are 

combined with the important goal of explanation and prediction of non-synthesised test 

compounds. Many different statistical methods are available in the literature and the 

selection of the appropriate method is critical (Xu and Zhang, 2001).  

Multiple Linear Regression (MLR) (Montgomery and Peck, 1992) can be considered as an 

easy interpretable regression-based method. Regression analysis correlates independent X 

variables or descriptors (physicochemical parameters) with dependent Y variables 

(biological data). The regression model assumes a linear relationship between m molecular 

descriptors and the response (biological activity) variable. This relationship can be 

expressed with the single multiple-term linear equation: 

 Y = b0 + b1X1 + b2X2 + …. + bmXm + e (2) 

The MLR analysis calculates the regression coefficients, bi, by minimizing the residuals, e, 

which quantify the deviations between the data (Y) and the model (Y'), as in the case of 

simple linear regression. 

Partial Least Squares (PLS) (World et al., 1993) which in turn decrease the information 

content of data matrices. It projects multivariate data into a space of lower size, and 

certainly providing insight to see and model huge sets of data. The Partial Least Squares 

(PLS) regression method carries out regression using latent variables from the independent 

and dependent data that are along their axes of most variation and are highly correlated. It 

is applied when the numbers of independent variables are more than the number of 

observations. Under these circumstances, it gives a more strong QSAR equation than 

multiple linear regressions. Thus, PLS is able to examine complex structure-activity 

problems and to examine data in a more realistic way. PLS gives a condensed statistically 

strong solution and, in fact, it contains MLR as a special case when a MLR be present. 
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Another way to reduce the dimensionality of the data set descriptors X is the so called 

Principal Component Analysis (PCA) technique (Jolliffe, 1986). It seeks to find out a new 

set of variables named Principal Components (PC) showing the data in order of decreasing 

variance with the aim to state the main information in the variables by the principal 

components of X. The primary Principal Component (PC1) describes the maximum 

deviation in the whole data set. The subsequent principal component (PC2) describes the 

maximum remaining variance, and so forth, with each axis linearly independent, to the 

preceding axis. Some of the last components may be discarded to decrease the size of the 

model and stay away from over-fitting. 

The Principal Components Regression (PCR) method uses linear regression to generate a 

model by means of the principal components as independent descriptors. PCR applies the 

scores from PCA as regressors in the QSAR model. Therefore, a multiple-term linear 

equation is generated and derived from a principal components analysis transformation of 

the independent variables. 

Artificial Neural Networks (ANN) method (Tetko, 1996; Novi et al., 1997; Duprat et al., 

1998) is non-linear technique inspired in the human brain, composed of many simple 

processing units called neurons. This method is also recognized as learning algorithms. The 

aim is to simulate the various shells of the neurones, where each neuron is connected to a 

number of neighbouring neurones with variable coefficients of connectivity that signify the 

strength of these associations. The learning process consists of adjusting the coefficient so 

that the network provided as an output the suitable results. In neural networks, a training 

set is used to train the network, and then the network is used to predict the property 

(biological activity) that it was trained to predict. This technique can be associated with 

principal components analysis in which it is referred as PC-ANN. 

Support Vector Machine (SVM) can be applied to regression by the introduction of an 

alternative loss function. In support vector regression (SVR) (Gunn, 1997), the basic idea is 

to map the data X into a higher-dimensional feature space via a nonlinear mapping and then 

to do linear regression in this space. Therefore, regression approximation addresses the 

problem of estimating a function based on a given data set. 

2.4 Validation of QSAR models 

After the model equation is obtained, moreover the stability and the goodness of fit of the 

model, it is also significant to estimate the power and the validity of the model before using 

it to predict the biological activity. Validity is to establish the reliability and significance of 

the method for a particular use. Therefore, validation of a QSAR model must be done. There 

are two validation methods used for a QSAR model: internal and external validation 

techniques to establish the confidence and strength of the model. 

2.4.1 Internal validation 

Internal validation uses the dataset from which the model is built and checks for internal 
stability. Cross-Validation (CV) technique is widely employed as an internal validation 
method of statistical models (Allen, 1974; World, 1978, 1991). Usually, one compound of the set 
is extracted each time, and then the model is recalculated using as training set the n-1  (where 
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n is number of compounds) remaining compounds, so that the biological activity value for the 
extracted compound is predicted once for all compounds. This process is repeated n times for 
all the compounds of the initial set, thus obtaining a prediction for each object. This process 
referred as leave-one-out (LOO) method. Also an alternative method can be defined when 
leaving out more than a compound of the data set at each time. This method is called leave n-

out or Leave-many-Out (LMO) CV method or sometimes it is referred as leave-group-out 
(LGO). Calculation of the correlation coefficient of the cross-validation procedure, that is, the 
coefficient of prediction q2 must be done and it is by definition smaller or equal than the 
overall r2 (correlation coefficient) for a QSAR equation. It is used as an investigative tool to 
estimate the predictive power of an equation obtained by using a regression method. Another 
procedure to test the validity of the model is the randomization test. Even with a huge 
number of compounds and a small number of descriptors, an equation can still have very poor 
predictive power. One way to test for this is by randomization of the compounds. The set of 
biological activity values is re-assigned arbitrarily to different compounds, and a new 
regression is done. This process is repeated many times. If the random models' biological 
activity prediction is analogous to the original equation within a given estimated self-
confidence level, this means that the original model was obtained by chance. The random test 
analyses the ability of the model to derive actual structure-activity relationships. 

2.4.2 External validation 

A QSAR model with excellent goodness of fit and acceptable predictions may be deficient in 

real relationship between structural descriptors and biological activity. The perfect validity 

of the model is examined by external validation, which evaluates how well the model 

generalizes. If a sufficiently huge series of compounds with known activity is obtainable, the 

original data set can be divided into two subgroups, the training set and the test set. The 

training or calibration set is used to derive a calibration model that will be used later to 

predict the activities of the test or validation set compounds. On the other hand, an external 

test set that has not been included in any stage of the building of the model can be used as 

test set. 

The obtained predictions of the new generated model for the test set determine the validity 

of the model.  The parameters quantifying the superiority of prediction of the external test 

set may be the same used for the internal validation.  The Sum of Squares Prediction Errors 

(SSPE) is extensively used to account for the inconsistency. 

3. Recent applications of QSAR in drug design 

3.1 Nodal angle quantum descriptors and flip regression 

When implementing QSAR on flat, symmetrical, usually aromatic molecules, symmetry 
considerations often affirm that alternative orientations should be inspected. For 
phenethylamines, for example, there are five substitution sites on the benzene nucleus. If 
substituents with property Pi were introduced to site i (i = 2-6), an equation may be 
formulated: 

  i i 0

i

log A= C P + C  (3) 
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where A is activity and Ci  are constants to be determined by regression techniques (Clare 
and Supuran, 2005a). Hence, both 2-methoxyphenethylamine and 6-
methoxyphenethylamine may be predicted to have the same activity for both molecules. 
Apparently, it may appear that C2 must equal C6 and C3 must equal C5, but it can be shown 
that this is not the case when considering 2,3,4-trimethoxyamphetamine and 2,4,5-
trimethoxyamphetamine. Equating the C values would predict the same activity for both 
substances, but experimentally one of these is a potent hallucinogen and the other is inactive 
(Shulgin et al., 1991). 

At the molecular level, the flat aromatic molecule may lay in two ways on the receptor, 

corresponding to the 5- or 6-membered rings swapping positions, or flipping. All 

combinations of each drug flipped and unflipped must be considered. In the absence of 

structural data the only way in which we can proceed is to carry out regressions with every 

combination of each drug in both orientations and find which regression fits best. For the 

case of N drugs, 2N regressions must be considered. A full treatment is possible only to the 

smallest groups of compounds, so the approach used is to employ simulated annealing as a 

method of combinatorial optimization. This problem was first addressed by Kishida and 

Manabe (Kishida and Manabe, 1980), in perspective of QSAR of substituted 

benzenedisulfonamides. In a study by Clare (Clare, 1998), a descriptor for QSAR 

calculations on benzene derivatives was proposed, and shown to be highly effective in 

correlating activities in humans of a large class of phenylalkylamine hallucinogens. 

Moreover, in a number of studies (Clare, 1998; Clare, 2000; Clare, 2001; Clare, 2002; Clare 

and Supuran, 2004), it has been shown that a small number of descriptors can account for 

the activity of diverse aromatic drugs, and a method for dealing with the symmetry nature 

in some groups of planar aromatic molecules has also been outlined. Particularly, it has been 

verified that in most cases the orientations of nodes in π -like orbitals of aromatic molecules 

are a significantly important feature in understanding their activity. This was first 

established in phenylalkylamine hallucinogens (Clare, 1998), and then also in benzenoid and 

heteroaromatic carbonic anhydrase, trypsin, thrombin and bacterial collagenase inhibitors 

(Clare and Supuran, 2004), as well as in tryptamine hallucinogens (Clare, 2004).   

The descriptors are based on the similarity of the frontier orbitals of the molecule in 

question to those of benzene and involves an analytical least squares fitting of the molecules 

frontier orbitals, calculated by any semiempirical or ab initio method to those carefully 

calculated for unsubstituted benzene. Both the highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) of benzene are degenerate, and each 

consists of two components that may be mixed in any proportion with normalization to 

form an infinity of equally acceptable frontier orbitals. In benzene itself, each of these 

mixtures is equivalent. When the benzene is substituted, the degeneracy is lifted, and each 

of the resulting separate orbitals may be considered as being approximately derived from 

one particular linear combination of the original two components. 

The significance of orbital symmetry in the interactions of atoms to form molecules has been 
known for a long time. It appears that this is directly transferable to the association of 
molecules in pharmacology, at least insofar as π orbitals are involved. Many QSAR studies 
on aromatic molecules have involved the HOMO and LUMO energies or their sum or 
difference as descriptors. Consideration of the nodal angles, especially if the aromatic 
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moiety is benzene could profit any of these studies. The π-like orbitals involved are standing 
waves of probability of finding an electron in a given location in the field of the atomic 
nuclei, and have no classical counterpart. Therefore, the dependence of activity on these 
variables (Clare, 2000; Clare, 2001) is perhaps the best indication yet of the essential 
quantum mechanical nature of drug-receptor interactions. Conventional 3D-QSAR 
programs, which employ classical interactions, such as coulombic charge-charge forces and 
empirical van der Waals interactions, may benefit from the incorporation of π orbital wave 
mechanical interactions such as those discussed in (Clare, 2000; Clare, 2001). 

The calculation of nodal orientation is performed with the program NODANGLE (Clare and 
Supuran, 2005b). NODANGLE calculates the angle between the nodes in π -like orbitals and 
a reference point on the aromatic ring. NODANGLE works by comparing the coefficients of 
the pz atomic orbitals on a 5- or 6-membered ring with those of the cyclopentadienide anion 
(for a 5-membered ring) or the benzene molecule (for a 6-membered ring), of known nodal 
orientation.  

3.1.1 QSAR of protein tyrosine kinase inhibitory activity of flavonoid analogues 

Flavonoids are a group of low molecular weight plant (Wang and Wang, 2002; Cronin et al, 
1998) products, based on the parent compound, flavone (2-phenylchromone) and have 
shown potential for application in a variety of pharmacological targets. A large number of 
natural and synthetic flavonoids are being tested as specific inhibitors of protein tyrosine 
kinase (PTK).  The flavonoid-inhibitory activity is expressed as log 1 ⁄ IC50, which is the 
molar concentration of the flavonoid necessary to give half-maximal inhibition compared to 
the control assay carried out in the absence of inhibitor, but in the presence of dimethyl 
sulphoxide carrier. Clare and Deeb in (Deeb and Clare, 2007) have investigated the 
flavonoid-inhibitory activity of 54 analogues using the nodal angle descriptors (Clare, 2000; 
Clare and Supuran, 2005b) and flipstep regression analysis (Clare, 2000; Clare, 2001) 
mentioned above.  

For the flavonoid, calculating the angles in the three rings can be accomplished by entering 
the atom as numbered in Figure 1. The three rings are 6-membered rings numbered 1–6, 5–
10 and 11-16 for rings 1, 2 and 3 respectively. The angles calculated by NODANGLE (Clare 

and Supuran, 2005b) are then 1, 2 and 3 in the figure, measured at atoms 1, 5 and 11 
respectively. A problem arises from the symmetry of the parent molecule; therefore, the  
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Fig. 1. Numbering of flavonoids skeleton used in MOPAC and NODANGLE calculations 
and angles used in the interpretations. The angle subscript indicates the ring number. 
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program FLIPSTEP, a component of the MARTHA statistical package (Clare and Supuran, 
2005a) was used. This set of flavonoids separates into two parts (symmetry wise): the 
chromone moiety and the phenyl ring. The chromone ring system has no vertical mirror 
planes or axes. Hence, ring 1 cannot be flipped into ring 2. Thus for this part of the molecule 
flip regression is not applied. The phenyl ring has C2v symmetry, so flip regression is 
applicable to this. Thus only ring 3 should be flipped. 

In the study carried out by Deeb and Clare (Deeb and Clare, 2007), it was demonstrated that 
the charge on O10 proved to be the most important factor. Low charge on O10 was found to 
be favourable to high activity. Furthermore, it was found that the charge on C7 and the mean 
of absolute charge are significant variables. Moreover, it was shown that the orientation of 
the nodes on ring 3 are significant factors which indicate the importance of the electrostatic 
and quantum chemical descriptors for the interaction of flavonoids with the specific 
enzymatic active site plays an important role. Exactly which rings are involved becomes 
clear from the identity of the descriptors included in the regression equation: 

log 1/IC50 =  7.4417 (±2.0652)  0.65265 (±0.1569) × HOP1 + 0.81601 (±0.1348) × SHOP1 

+ 0.35316 (±0.1422) × HOP3  0.32482 (±0.0974) × S21H  0.21638 (±0.0778) × C21H 

 0.00235 (±0.0008) × Vol  14.69500 (±6.1426) × QC7   27.77900 (±5.1297) ×  QO10 

+ 14.14800 (±3.0611) × Qmean + 0.46973 (±0.1042) × C23H + 1.57150 (±0.1779) ×S23H 

  0.26624 (±0.0889) × C43L  12.75700 (±1.6295) × S43L (4) 

N = 54, R2 = 0.8240, F = 14.403, S = 0.30537, Q2 = 0.6612 

where HOP1 is the highest occupied π orbital on ring 1, SHOP1 is the second highest occupied 

π orbital on ring 1, HOP3 is the highest occupied π orbital on ring 3, S21H is sin(2× the nodal 

angle in the highest occupied π orbital in ring 1), C21H is cos(2× the nodal angle in the 
highest occupied π orbital in ring 1), Vol is molecule volume, QC7 is charge on C7, QO10 is 

charge on O10, Qmean is  the mean absolute Mulliken charge, C23H is cos(2× the nodal angle 

in the highest occupied π orbital in ring 3), S23H is sin(2× the nodal angle in the highest 

occupied π orbital in ring 3), C43L is cos(4× the nodal angle in the lowest unoccupied π 

orbital in ring 3), S43L is sin (4× the nodal angle in the lowest unoccupied π orbital in ring 3), 
N is number of compounds, R2 is the coefficient of determination, F is Fisher variance ratio, S is 
standard deviation and Q2 is the square of the multiple correlation coefficients based on the 
leave-one-out residuals.The numbers in parentheses are the standard errors. 

The work of Deeb and Clare (Deeb and Clare, 2007) demonstrated that the nodal orientation 
terms have a powerful explanatory importance in that they account for more of the variance 
in activity than is possible using the classical descriptors alone.  However, a combination of 
the classical descriptors and the nodal orientation term gives even better explanatory of 
activity of the flavone analogues. The chromone moiety of the flavonoid structure is 
envisaged to be a mixed region for hydrophobic and electronic interactions, while the 
phenyl ring moiety, especially the substituents at the 3' and 4' position, are involved in 

electronic interactions with the enzyme. S43L, that is cos (4 × the nodal angle in the lowest 

unoccupied  orbital in ring 3), was identified to be an important descriptor. 
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3.1.2 QSAR of EGFR inhibitory activity of quinazoline analogues 

Epidermal growth factor receptor (EGFR) that has been identified as a kind of PTK and has 
been demonstrated to be related to many human cancers such as breast and liver cancers, 
leading many to believe that EGFR is an attractive target for anti-tumor drug discovery 
(Yang et al., 2001). 

Deeb and Clare in (Deeb and Clare, 2008a) have applied the flip regression procedure 

applied on classical and quantum nodal oreinetation angles descriptors to investigate the 

quinazoline-inhibitory activity of 63 analogues expressed as log IC50. IC50 is the effective 

concentration of the compound required to inhibit by 50% the phosphorylation of a 14-

residue fragment of phosphorylase C-1 (prepared from A431 human epidermoid carcinoma 

cells through immunoaffinity chromatography) by EGFR. For the quinazoline, calculating 

the angles in the three rings can be accomplished by entering the atom as numbered in 

Figure 2(a). The three rings are 6-membered rings numbered 1–6, 5–10 for ring 1 and 2, 

respectively. Ring 3 is also a 6-membered ring numbered 12–17. The angles calculated by 

NODANGLE are then 1, 2 and 3 in that figure, measured at atoms 1, 5 and 12 

respectively.  

 

Fig. 2. (a) Numbering of quinazolines skeleton and angles used in the interpretations. The 
angle subscription indicates the ring number 

 

Fig. 2. (b) HOMO orbitals for quinazolines.  
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In this study (Deeb and Clare, 2008a) it is shown that the benzene rings of the quinazolines 
are interacting with aromatic systems on the receptor and that alignment occurs between the 
π orbital nodes on the pair. Exactly which rings are involved becomes clear from the identity 
of the descriptors included in the regression equation: 

log 1/IC50 =  8.7912 (2.80)  0.30044 (3.36) SHOP2  

+ 1.1489 (7.10) LUP3  

 1.2589 (8.19) SLUP3 

  0.47012 (6.30) C21H  0.84000 (7.73) C41L  

 0.27740 (3.07) S22H + 0.77819 (7.80) Pxx   

 0.55845 (6.55) Pzz  

  0.17269 (3.34) C23H + 0.03004 (0.57) S23H  

  0.03340 (0.51) C43L + 0.5871 (11.27) S43L (5) 

N = 63, S = 0.49766, F = 38.21, R2 = 0.9017, Q2 = 0.8550 

where SHOP2 is the second highest occupied π orbital on ring 2 (see Figure 2(b)), LUP3 is 
the lowest unoccupied π orbial in ring 3, SLUP3 is the second lowest unoccupied occupied π 

orbital on ring 3, C41L is cos(4× the nodal angle in the lowest unoccupied π orbital in ring 
1), Pxx is diagonal components of polarizability in x-direction, Pzz is diagonal components of 

polarizability in z-direction and S22H is sin(2× the nodal angle in the highest occupied π 
orbital in ring 2). The numbers in parentheses are student's t values. 

Equation (5) shows that the second lowest unoccupied π orbital on ring 3 was identified to 

be an important descriptor. The only classical variables found to be significant were the 

polarizability components. High polarizability in the highest inertia direction was found to 

be favorable to high activity, while high polarizability in the lowest inertia direction was 

detrimental. 

3.1.3 QSAR of phenylisopropylamines MAO-inhibition: Comparison of AM1 and 
B3LYP-DFT 

Monoamine oxidase plays a critical role in the regulation of monoamine neurotransmitters 

such as serotonin, noradrenaline, and dopamine. MAO isoenzymes are classified on the 

basis of their substrate preference, sensitivity toward specific inhibitors, and tissue 

distribution into MAO-A and MAO-B. Selective MAO-A inhibitors have been used clinically 

in the treatment of depression and anxiety, while MAO-B inhibitors have been used in the 

treatment of Parkinson's and Alzheimer's diseases. Many plant-derived and synthetic 

compounds such as isoquinolines and xanthones have been identified as MAO inhibitors. In 

(Deeb and clare, 2008b)  the monoamine oxidase  (MAO)-inhibitory activity of 46 

phenylisopropylamines expressed as pIC50 is modeled with the orientations of nodes in π-
like orbitals of the phenyl ring and some other descriptors using flip regression analysis. The 
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authors aim to provide an initial clue regarding the scope and limitations of some state-of-

the-art methods in computational chemistry, including semiempirical (AM1) and density 

functional theory (B3LYP), in the flip regression procedure applied to the inhibition of 

phenylisopropylamines. 

Calculating the angles for the aromatic ring in the each phenylisopropylamines can be 
accomplished by entering the atoms as numbered in Figure 3. The ring is six-membered and 

is numbered 1 to 6. The angle calculated by NODANGLE is then  measured at atom 1. The 
flip regression is applicable to the phenyl ring of C2v symmetry. 

 

Fig. 3. Ring substitution pattern of the phenylisopropylamines. 

Again, it was found that a combination of the classical descriptors and the nodal orientation 
terms gives better explanatory of activity of the phenylisopropylamines as it can be seen in 
the following regression equation: 

pIC50 = 14.961 (±2.2558) + 1.2957 (±0.28952) SHOP  

 3.957 (±0.34587) LUP  7.4769 (±2.52) LDI 

 1.8473 (±0.22595) C2H  

 1.8104 (±0.18915) S2H  

+ 0.75002 (±0.10146) C4L  

 + 1.1693 (±0.13404) S4L (6) 

N = 32, R2 = 0.9309, F = 46.222, S = 0.28690, Q2 = 0.8587 

where SHOP is the second highest occupied π orbital, LUP is the lowest unoccupied π orbital, 

LDI is the local dipole index, C2H is cos(2* the nodal angle in the highest occupied π orbital), 

S2H is sin(2* the nodal angle in the highest occupied π orbital) and S4L is sin(4* the nodal 

angle in the lowest unoccupied π orbital).The numbers in parentheses are the standard errors. 

From equation (6), it can be predicted that the phenyl moiety of phenylisopropylamines is 
involved in electronic interactions with the enzyme. Lowest unoccupied π energy was 
identified to be an important descriptor. Adding classical variables, improves the 
correlation. The classical variables found to be significant are LUP and LDI which were 
found to be favorable to high activity. This is based on the concept that the stability of 
stacked aromatic systems is highly orientation-dependent, and is also dependent on the 
energies of those orbitals in the two aromatic systems that resemble the degenerate HOMO 
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and LUMO of benzene. Furthermore, the results show that the models established based on 
DFT-B3LYP method are better than those based on AM1 method. The B3LYP model gives 
more reasonable interpretation of phenylisopropylamines MAO inhibition activity. 

3.2 Applications of QSAR using PC-ANN 

3.2.1 Correlation ranking and stepwise regression procedures in principal 
components artificial neural networks modeling with application to predict toxic 
activity and human serum albumin binding affinity 

A successful drug should be able to reach its target without generating toxic effects in 

addition to possessing intrinsic activity. Considering the substantial failure rate of drug 

candidates in late stage development and the expensive and time-consuming process of 

measuring toxic effects, predictive tools that eliminate inappropriate compounds become 

necessary. Prediction of toxicity from the structure of compounds can help in designing the 

new beneficial compounds and hence, screening of large number of chemicals for toxic 

effects as well as interpreting the mechanisms of toxicity. Development of QSARs relating 

toxicity potency and structural properties can be an alternative that has the advantage of 

high speed and low costs in comparison with experiments. Because most toxicology 

predictions engage a diverse set of compounds belonging to different classes and multiple 

toxic mechanisms, some nonlinear relations between the properties of compounds and their 

toxicity parameters are expected and linear regression approaches may not be accurate and 

can lead to imprecision. 

Human serum albumin (HSA) is the most abundant protein in plasma. It is characterized by 

its surprising capacity to bind a large variety of drugs. Extensive biochemical studies 

resulted in the proposition of two main drug-binding sites in HSA, denoted as I and II. Site I 

was shown to prefer large heterocyclic and negatively charged compounds, while site II was 

the one for small aromatic carboxylic acids. When the crystal structures of HSA with ligands 

were available, these sites were localized at subdomains IIA and IIIA. Analytical techniques 

have been employed to measure drug-binding affinities to HSA. These techniques have low 

throughput and they require relatively large quantities of both drug and protein. The recent 

development of high-performance affinity chromatography (HPAC) columns with 

immobilized HSA has allowed the medium-throughput determination of drug binding to 

this protein in a way that requires small amounts of both drug and HSA. Developing a 

model for predicting the drug-binding affinity based on molecular structure is very 

important goal for medicinal chemist. Several studies aim to generate models that predict 

drug-binding affinities to HSA such as QSAR and molecular modeling. 

Two data sets were used in this study (Deeb, 2010). The first was an extensive toxicity data 
set that contains 278 substituted benzenes (Feng et al., 2003). The logarithm of half maximal 
inhibitory concentration (log IC50) toxicity to T. pyriformis is used as the toxicity end point. 
Another data set of 95 HSA drug and drug-like compounds and their binding affinities were 
reported by Colmenarejo (Colmenarejo, 2003). The 3D molecular structures of the 
compounds were optimized by Hyperchem software using the semiempirical AM1 level of 
theory. In this study, a total of 1233 and 698 molecular descriptors were calculated for each 
molecule of the substituted benzenes and HSA drug and drug-like compounds, respectively. 
These descriptors are belonging to 17 different types of theoretical descriptors (Table 1). 
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Dragon software was used to calculate 1217 and 684 descriptors gathered into 16 groups for 
the toxic compounds and HSA drug and drug-like compounds, respectively. A group of 16 
and 14 quantum descriptors for the toxic and HSA drug and drug-like compounds, 
respectively, describing the electronic properties of molecules were calculated by 
Hyperchem software. SPSS Software was used for the simple principal component 
regression (PCR) analysis. PCA and ANN regressions were performed in the MATLAB 
environment. 

 

J * Descriptors 
No. of descriptors calculated 

for toxicity of substituted 
benzenes 

No. of descriptors 
calculated for HSA 

binding affinity 

1 Quantum descriptors 16 14 

2 Constitutional 
descriptors 

34 31 

3 Topological 
descriptors 

228 89 

4 Molecular walk 
counts 

15 7 

5 Burden eigenvalue 
(BCUT) descriptors 

64 18 

6 Galvz topological 
charge indices 21 

21 21 

7 2D autocorrelations 96 68 

8 Charge descriptors 14 8 

9 Aromaticity indices 4 0 

10 Randic molecular 
profiles 

41 5 

11 Geometrical 
descriptors 

38 29 

12 RDF descriptors 142 51 

13 3D-MoRSE 
descriptors 

160 95 

14 WHIM descriptors 99 30 

15 GETAWAY 
descriptors 

197 131 

16 Functional group 
counts 

27 40 

17 Atom-centred 
fragments 

37 61 

* J is the index of the group of descriptors.  

Table 1. Types of descriptors used in this study. 

Aiming to test the final model performances, the data set was divided into training (60%), 
validation (20%) and prediction (20%) sets based on descriptor spaces. For this purpose, the 
data matrix containing the total descriptors was subjected to PCA and the first two PCs 
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were plotted against each other. PCA was run twice, once by grouping of descriptors and 
analysis of each group separately. This approach is referred to as the individual PCA 
approach, PCA(I). And once, by analysis of the entire set of calculated descriptors 
simultaneously. This approach is referred as the combined PCA approach, PCA(C). In 
PCA(I) procedure, each group of descriptors was subjected to PCA separately and the 
subset of PCs that explained 95% of the variances in the original descriptors data matrix 
were extracted from each set. The PCs extracted from this approach are named in the form 
“PCi–j” where “i” indicates the descriptors group and “j” indicates the PC number in the ith 
group which is related to its ranked eigenvalue. In a similar manner, in PCA(C) procedure 
all calculated PCs were collected in a single data matrix and the PCs were extracted. A feed-
forward neural network with back-propagation of an error algorithm was constructed to 
model the structure–activity relationship. Our network has one input layer, one hidden 
layer, and one output layer. The input vectors were the set of PCs, selected according to 
PCA(I) and PCA(C) in combination with stepwise regression (SR) and correlation ranking 
(CR) procedures. The number of nodes in the input layer is dependent on the number of  
PCs introduced in the network. The number of nodes in the hidden layer is optimized 
through a learning procedure. Fgure 4 illustrates the four ANN analyses carried out in this 
study. 

 

Fig. 4. PC-ANN approaches used in this study. 

The results of modeling the toxicity data indicates that the residual plots for the training, 

validation and test sets are not scattered and they do not warranty the stability of the 

models. There is a strong relationship between the residual and actual values which reflects 

that the obtained models have systematic error, therefore a correction scheme is done to 

correct this issue.  The cross-validation parameters for the chosen models before and after 

correction are shown in Table 2. This table shows that the correction term improves the 

cross-validation parameters by lowering the RMSE and increasing the R2CV values. 

Considering the number of variables entered to the regression model for the SR-PC-ANN 
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approach, PCA(I) based-model which has lower number of variables (3 variables) is 

superior over the PCR(C) based-model which has 13 variables due to chance correlation 

possibilities. It also shows that, after applying the correction scheme, model 3 obtained from 

the SR-PC-ANN(I) explains 58.5% of the data variances and has a 0.471 RMSE of prediction. 

This model has regression coefficients of 0.811 and 0.858 for the training and test sets, 

respectively. The RMSE of prediction for the CR-PC-ANN(I) model is less than that of the 

CR-PC-ANN(C) optimal model (0.571 and 0.590, respectively). The optimal model obtained 

using the CR-PC-ANN (I) procedure has correlation coefficients of 0.817 and 0.866 for the 

training and test sets, respectively and explains 53.4% of the data variances while the 

optimal model obtained from the CR-PC-ANN(C) procedure explains 51.1% of the data 

variances. 

 

Approach used PCs entered in the model RMSEc R2
CV

c RMSEp 

SR-PC-ANN(I) PC2-1 + PC17-3 + PC13-2 

0.657 0.496 0.668 

0.498 0.585 0.471 

SR-PC-ANN(C) 
PC2 + PC5 + PC6 + PC30 + PC29 + PC8 + PC3 
+ PC48 + PC1 + PC24 + PC11 + PC10 + PC18 

0.618 0.558 0.619 

0.404 0.734 0.451 

CR-PC-ANN(I) PC2-1, PC17-3, PC16-2 

0.691 0.443 0.691 

0.525 0.534 0.571 

CR-PC-ANN(C) 
PC2, PC1, PC3, PC12, PC4, PC5, PC45, PC34, 
PC24, PC26, PC48, PC43, PC27 

0.682 0.452 0.643 

0.551 0.511 0.590 

Table 2. Cross validation parameters for the original models (grey background) and the 
corrected ones (white background) for the optimal ANN models of the different approaches 
used for modeling the toxicity data. 

A randomization test was performed and the results obtained for five trails shows that the 

probability of obtaining chance models (with high correlation coefficients) from the PCA(C) 

approach is more than that for the PCA(I) approach. Furthermore, it is noticed that the 

chance correlation coefficients obtained for the CR-PCANN( I) approach are lower than 

those obtained for the SR-PC-ANN(I) approach. This indicates that model obtained from the 

CR-PC-ANN(I) approach is more accurate than the other models. 

Following the same procedure used for modeling the toxicity of substituted benzenes, the 
SR-PC-ANN and CR-PC-ANN approaches were compared for modeling the HSA binding 
affinity with the PCs extracted according to PCA(I) and PCA(C) approaches. The results of 
this analysis are summarized in table 3. 
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Approach used PCs entered in the model RMSEc R2
CV

c RMSEp 

SR-PC-ANN(I) 
PC16-1 + PC15-1 + PC6-1 + PC5-1 + PC4-1 + 
PC14-1 + PC1-1 + PC8-1 + PC2-2 + PC11-1 

0.361 0.441 0.245 

0.258 0.509 0.077 

SR-PC-ANN(C) 
PC4 + PC8 + PC1 + PC33 + PC9 + PC3 + PC22 + 
PC12 + PC17 + PC31 + PC28 + PC7 + PC34 + 
PC10 + PC46 + PC20 + PC26 

0.282 0.642 0.419 

0.270 0.747 0.388 

CR-PC-ANN(I) 
PC17-1, PC2-3, PC2-2, PC7-1, PC4-1, PC15-1, 
PC8-1, PC5-1, PC16-1, PC6-1, PC13-1, PC11-1, 
PC1-1, PC14-1 

0.339 0.414 0.545 

0.419 0.583 0.586 

CR-PC-ANN(C) 
PC4 , PC8 , PC1 , PC33 , PC9 , PC3 , PC22 , PC12 , 
PC17 , PC31 , PC28 , PC7 , PC34 , PC10 , PC46 , 
PC20 , PC26 , PC27 , PC6 , PC25 

0.284 0.633 0.454 

0.258 0.764 0.321 

Table 3. Cross validation parameters for the original models (grey background) and the 
corrected ones (white background) for the optimal ANN models of the different approaches 
used for modeling the HSA binding affinity. 

It shows that the correction terms improve the cross-validation parameters by increasing the 

R2CV and decreasing the RMSE values. This table shows also that the RMSE of prediction of 

the model obtained from the SR-PC ANN(I) approach is smaller than those for of the models 

obtained from the other approaches. The corrected model explains 50.9% of the data 

variances and has a RMSE of prediction of 0.077, regression coefficients of 0.714 and 0.670 

for the training and test sets, respectively. On the other hand, the corrected model obtained 

from the CR-PC-ANN(I) approach explains 53.7% of the data variances and has a RMSE of 

prediction of 0.586, regression coefficients of 0.733 and 0.675 for the training and test sets, 

respectively. 

In summary, the performance of the two novel QSAR algorithms, principal component-

artificial neural network modeling method, named SR-PC- ANN and CR-PC-ANN, 

combined with two factor selection procedures, named PCA(I) and PCA(C), is compared. 

These methods are applied to predict the toxic activity of a large set of compounds (278 

substituted benzenes) as well as HSA binding affinity (94 compounds). The optimal 

model for the toxicity data set has a prediction RMSE of 0.471 while the optimal model for 

the HSA binding affinity has a prediction RMSE of 0.077. Comparison of the models 

shows that the results obtained by the CR-PC-ANN procedure are more accurate than 

those obtained from the SR-PC-ANN procedure. Generally, the models obtained from the 

PCA(I) approach are better than those obtained from the PCA(C) approach regardless 

which approach was used to perform the ANN analysis. Both the external and cross-

validation methods are used to validate the performances of the resulting models. 
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Randomization test is employed to check the suitability of the models and to investigate 

the possibility of obtaining chance models. 

3.2.2 Exploring QSARs of some analgesic compounds 

Analgesics are a class of drugs used to reduce pain. The pain relief induced by analgesics 
occurs either by blocking pain signals going to the brain or by interfering with the brain's 
interpretation of the signals, without loss of awareness. There are essentially two kinds of 
analgesics: non-narcotics and narcotics. Because of the potential to relieve pain, they play an 
important role in medical therapy. The dose required to produce analgesia frequently does 
not change the functions of central nervous system. Analgesia is believed to engage 

activation of -receptors largely at supraspinal sites and k-receptors mainly within the 
spinal cord. It has been demonstrated that log IC, where IC refers to the half maximal (50%) 
inhibitory concentration of a drug, can be successfully used to predict analgesic activity. The 
aim of this study is to apply PC-ANN with different molecular descriptors in the 
development of new statistically validated QSAR models. This model will predict the 
analgesic activity of the heterogeneous data set of different types of analgesics (narcotic, 
opioid, and non-opioid) as a whole without splitting them into categorizes. The strength and 
the predictive performance of the proposed models were verified using both internal (cross-
validation and randomization) and external statistical validations. 

In this study (Deeb and Drabh, 2010), a data set of 95 analgesic compounds and their 
analgesic activity (log IC) obtained from reference (Mathur, 2003) were used in this study. 
HyperChem software was used to optimize the structure of the  different compounds on 
AM1 semi-empirical level. The optimization was preceded by the Polak-Rebiere algorithm 
to reach 0.01 root mean square gradient. In this study, a pool of molecular descriptors 
including constitutional, topological, chemical, quantum, and functional descriptors were 
calculated using Hyperchem and Dragon software. A condensed set of 150 descriptors were 
obtained by removal of highly intercorrelated (r > 0.95) descriptors in addition to 
descriptors having constant values. Descriptors that have zero for almost all the cases were 
also removed together with those descriptors that include outliers' values to enclose a set of 
132 descriptors. This set was then declined to 24 descriptors by stepwise regression. 

In the MLR analysis, different regression models were suggested in which the number of 
descriptors in these models varied between 1 and 20. The best correlation coefficient 
obtained is 0.760 for a regression model with 20 descriptors. The linear relationships 
according to MLR analysis provide models with poor cross-validation parameters. 
Therefore, ANNs algorithm was used to investigate non-linear relationships for the best 
MLR models according to the cross-validation coefficient of determination (R2CV). 

In PC-ANN, the inputs of the ANN were the subset of the descriptors used in different MLR 

models. From the correlation data matrix for these descriptors, some of them represent 

considerable degree of collinearity. Therefore, the PCA was performed first to classify the 

molecules into training, validation, and prediction (test) sets. Performing PCA on the whole 

data of 95 compounds, 132 descriptors and plotting the first and second principals (Figure 

5), shows that 11 compounds behave differently (outliers)  from other compounds with 

respect to both molecular structure (descriptors) and analgesic activity. Therefore, these 

compounds are not used in the future analysis (Figure 6). 
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Fig. 5. First and second principal components for the factor spaces of the descriptors and 
analgesic activity data. 

Checking the structure of the outlier compounds shown in Figure 6 reveals that they all 
morphine derivatives and belong to the same family of opiates analgesic.  

 

Fig. 6. Structure of outliers suggested from principal component analysis. 

According to the pattern of the distribution of the data in factor spaces (Figure 5), the 
training, validation, and prediction compounds were selected homogenously, so that 
compounds in different zones of Figure 5 belong to all three subsets. After removing the 
outliers, the classified data were used as an input for the ANN. In this study, a three-layered 
feed-forward ANN model with back-propagation learning algorithm was employed. At 
first, non-linear relationship between the subset of descriptors selected by stepwise 
selection-based MLR and analgesic activity was preceded by PC-ANN models with similar 
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structure. The number of hidden layer's nodes was set to 8 for all models, and the number of 
nodes in the input layer was the number of PCs extracted for each subset of descriptors. 
After that, for the best models, optimization of the number of hidden nodes was done. 

Cross-validation parameters show that the prediction ability is improved for model the best 

model which has a relative standard error of prediction of 5.396% and the correlation 

coefficient of 0.834 ands 0.846 for the training and test sets, respectively. The cross-

validation coefficient of determination is 0.656 which means that the six PCs selected by 

eigenvalue ranking procedure can explain at least 63.6% variances in log IC for the 

calibration. Consequently, the optimal performance occurs for the best model when using 

nine hidden nodes. A randomization test was performed to investigate the probability of 

chance correlation for the optimal model. The results of randomization test indicate that the 

correlation coefficients obtained by chance are low in general, while the predicted error 

values are high. This indicates that the model obtained from PCA-ANN is better than those 

obtained by chance. 

In summary, the results obtained by principal component-artificial neural network give 

advanced regression models with good prediction ability using a relatively low number of 

principal components. A 0.834 correlation coefficient was obtained using principal 

component- artificial neural network with six extracted principal components. 

3.2.3 QSAR Model of drug-binding to human serum albumin 

In this study (Deeb and Hemmateenejad, 2007), a data set of 94 HSA drug and drug-like 

compounds and their binding affinities reported by Colmenarejo (Colmenarejo, 2003) are 

used in this study. HYPERCHEM software was used to optimize the structure of the 

different compounds on AM1 semi-empirical level. The optimization was preceded by the 

Polak-Rebiere algorithm to reach 0.01 root mean square gradient (298 K, gas phase). Esbelen 

(compound number 8) was dropped from this set because Se is not parameterized for AM1 

semiempirical method. In this study, a set of 60 molecular descriptors including 

constitutional, topological, chemical, and quantum descriptors were calculated using 

Hyperchem and Dragon software. 

Multiple linear regression analysis with stepwise selection and elimination of variables was 

employed to model the binding affinity (log K'hsa) relationships with different set of 

descriptors. The number of descriptors in the suggested MLR models is varied between 1 

and 25. The best correlation coefficient obtained is 0.912 for a regression model with 25 

descriptors. The number of descriptors is large according to the rule of the thumb, whereas 

the statistical parameters are not so high. Therefore, ANNs algorithm was used seeking for 

better regression model. 

In PC-ANN, the inputs of the ANN were the subset of the descriptors used in different MLR 

models. The correlation data matrix for these descriptors indicated that some descriptors 

represent high degree of collinearity. Principal component analysis groups together 

descriptors that are collinear to form a composite indicator capable of capturing as much of 

common information of those descriptors as possible. Application of PCA on a descriptor 

data matrix results in a loading matrix containing factors or PCs, which are orthogonal. 

These factors used as the inputs of ANN instead of the original descriptors. 
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The procedure used in this study is similar to that used in the QSAR study of some 

analgesics compounds. Performing PCA on the whole data of 94 compounds and 60 

descriptors and plotting the first and second principal, shows that compounds 62 and 91 are 

outliers. According to the pattern of the distribution of the data in factor spaces the training, 

validation, and prediction molecules were selected homogenously. After removing the 

outliers the classified data was used as an input for the ANN. A three-layered feed-forward 

ANN model with backpropagation learning algorithm was employed. At the first, the 

nonlinear relationship between the subset of descriptors selected by stepwise selection-

based MLR and drug HSA binding constant was proceeded by PC-ANN models with 

similar structure. The number of hidden layer's nodes was set 3 for all models and the 

number of nodes in the input layer was the number of PCs extracted for each subset of 

descriptors. The results of PC-ANN modeling for MLR model numbers 15–25 shows that the 

best model which has almost the highest correlation coefficient for the external test set 

(0.8065) which indicates a high predictive power. This model has also a relatively low 

PRESS/SST ratio (0.4485) compared with other models which make it the most reasonable 

model among all. The R2 values for the cross-validation and prediction for this model are 

0.5515 and 0.5100, respectively, which means that the six PCs selected by eigenvalue ranking 

procedure can explain at least 55.2% and 51% variances in log K'hsa for the calibration and 

prediction, respectively. In order to optimize the performance of the ANN model , we 

trained the ANN using different number of hidden nodes starting from 1 hidden node to 20 

hidden nodes. The results for the optimization indicate that an ANN with eight hidden 

nodes resulted in the optimum network model. Using eight hidden nodes, we obtained 

almost the highest correlation coefficient for both the training set (0.9218) and the prediction 

set (0.8302). This model gives the lowest PRESS/SST ratio (0.2757) which makes it the most 

reasonable. The results of the randomization test shows that the correlation coefficients 

obtained by chance are low in general while PRESS and PRESS/SST ratio are high. This 

indicates that the model obtained from PCA-ANN is better than those obtained by chance. 

3.3 Exploring QSARs for inhibitory activity of non-peptide HIV-1 protease inhibitors by 
GA-PLS and GA-SVM 

Human immunodeficiency virus (HIV), the causative agent of AIDS infects millions of 
people worldwide. Although a treatment has not been found yet for this serious disease, 
rapid advances in molecular biology along with the 3-D elucidation of HIV proteins have 
led to new drug-targeting approaches for designing antiviral agents that specifically bind to 
key regulatory proteins that are essential for HIV replication. Thus, by developing new 
inhibitors of HIV-1 protease activity, the treatment of AIDS can be advanced. Several 
peptidic inhibitors are currently under clinical trials and significant efforts to improve their 
pharmacology continues. In this study, we picked out small non-peptide HIV protease 
inhibitors with potentially better pharmacological characteristics based on the structural 
features of peptidic inhibitors bound to the enzyme, and performed QSAR study. 

In this study (Deeb and Goodarzi, 2010), a data set of 46  non-peptide HIV-1 protease 
inhibitors and their inhibitory activity reported by Tummino et al. (Tummino et al. 1996) are 
used in this study. Molecular chemical structure was built using Hyperchem. AM1 method 
was applied to optimize the molecular structure of the compounds. All calculations were 
carried out at the restricted Hartree-Fock level with no configuration interaction. The 
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molecular structures were optimized using the Polak–Ribiere algorithm until the root mean 
square gradient was 0.01 Kcal ⁄mol. 

One thousand four hundred eighty one descriptors belonging to eighteen different 

theoretical descriptors were calculated for each molecule. The calculated descriptors were 

first analyzed for the existence of constant or near constant variables. The detected ones 

were then removed. Correlation among descriptors with the activity of the molecules was 

examined and collinear descriptors (i.e. r > 0.9) were detected. Descriptors that contain a 

high percentage (> 90%) of identical values were discarded to decrease the redundancy 

existing in the descriptor data matrix. Among the collinear descriptors, the one presenting 

the highest correlation with the activity was retained and others were removed from the 

data matrix. The dataset was splitted into two sets based on activity range; training set (85%) 

with activity ranges from 3.921 to 8.444 and test set (15%) with activity ranges from 4.538 to 

8.208.  In this work, genetic algorithm (GA) variable subset selection method (Leardi et al., 

1992) was used for the selection of the most relevant descriptors from the pool of remaining 

descriptors. These descriptors would be used as inputs for PLS and SVM in the construction 

of QSAR models.  

In GA-PLS, model validation was achieved through leave-one-out cross-validation (LOO 

CV) to find the best number of latent variables (Lv) to be used in calibration and prediction. 

External validation (for a test set), and the predictive ability was statistically evaluated 

through the root mean square errors of calibration (RMSEC) and validation (RMSECV). The 

results indicate that four latent variables are the best number to make a model. The 

following equation represents the best model achieved by GA-PLS: 

pIC50 = -3.405737 (±1.447) + 0.525607 (±0.052) TE2  

+  0.911090 (±0.236)Ui  

+ 2.586873 (±0.369) GATS5e  

 - 47.069316 (±8.558)Mor13e 

 - 0.207581 (±0.027) ATS7m   

+ 13.338116 (±3.599 ) Ss 

-0.001142 (±0.000) Mor27e 

 + 49.494231 (±7.841) RDF035e (7) 

The best model shown above reveals that the most significant contribution comes from the 
RDF035e. Table 4 gives brief description of these descriptors. 

In GA-SVM, the quality of SVM for regression depends on several parameters namely, 
kernel type k, which determines the sample distribution in the mapping space, and its 

corresponding parameter σ, capacity parameter C, and -insensitive loss function. The three 
parameters were optimized in a systematic grid search-way and the final optimal model 
was determined.  Six general statistical parameters were selected to evaluate the prediction 
ability of the constructed model. These parameters are: root mean square error of prediction 
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(RMSEP), relative standard error of prediction (RSEP), mean absolute error (MAE), square 
of correlation coefficient (R2), F-statistical and t test. Table 5 shows the results of GA-PLS 
and GA-SVM and the calculated statistical parameters. This table shows that the results of 
the GA-SVM are better than GA-PLS. 

 

No Symbol Class Meaning 

1 TE2 
Charge 
descriptors 

Topographic electronic descriptor(bond 
resctricted) 

2 Ui 
Empirical  
descriptors 

Unsaturation index 

3 GATS5e 
2D 
autocorrelations 

Geary autocorrelation-lag5/weighted by atomic 
Sanderson  electronegativities 

4 Mor13m 
3D-MoRSE 
descriptors 

3D MoRSE-signal13/weighted by atomic masses 

5 ATS7m 
2D 
autocorrelations 

Broto-Moreau autocorrelation of a topological 
structure- lag7/ weighted by atomic masses 

6 Ss 
Constitutional 
descriptors 

Sum of Kier-Hall electrotopological States 

7 Mor27e 
3D-MoRSE 
descriptors 

3D MoRSE-signal27/weighted by atomic 
Sanderson electronegativities 

8 RDF035e RDF descriptors 
Radial Distribution function-3.5/weighted by 
atomic Sanderson electronegativities 

Table 4. Description of the selected descriptors in this study. 

 

Parameters GA-SVM GA-PLS 

NOCa  4 
Q2 LOOb 0.9672 0.8259 

σ 0.5  
ε 0.06  
C 8  

RMSEP 
Training set 0.2027 0.3934 

Test set 0.2751 0.3962 

RSEP(%) 
Training set 3.1520 6.1156 

Test set 4.0216 5.7928 

MAE(%) 
Training set 6.5080 8.9351 

Test set 18.093 21.745 

R2 
Training set 0.9800 0.8935 

Test set 0.9355 0.8603 

F statistical 
Training set 1815.2 310.26 

Test set 72.481 30.792 

T test 
Training set 42.606 17.614 

Test set 8.5136 5.5491 

a Number of components 
b Q2 Leave-one-out Cross-validation 

Table 5. Results and statistical parameters of GA-PLS and GA-SVM. 
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Figure 7A shows calculated pIC50 against experimental values, while Figure 7B shows their 
residual values against the experimental pIC50 using GA-SVM. 

 

Fig. 7. A) Calculated pIC50 against the experimental values using GA-SVM. B) Residual 
values against experimental pIC50 using GA-SVM. 

In summary, the support vector machine (SVM) and partial least square (PLS) methods were 
used to develop quantitative structure activity relationship (QSAR) models to predict the 
inhibitory activity of nonpeptide HIV-1 protease inhibitors. Genetic algorithm (GA) was 
employed to select variables that lead to the best-fitted models. A comparison between the 
obtained results using SVM with those of PLS revealed that the SVM model is much better 
than that of PLS. The root mean square errors of the training set and the test set for SVM 
model were calculated to be 0.2027, 0.2751, and the coefficients of determination (R2) are 
0.9800, 0.9355 respectively. Furthermore, the obtained statistical parameter of leave-one-out 
cross-validation test (Q2) on SVM model was 0.9672, which proves the reliability of this 
model. Omar Deeb is thankful for Al-Quds University for financial support. 
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