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1. Introduction 

Many technological, social and biological systems have been modeled in terms of large 
networks providing invaluable insight in the understanding of such systems. Systems 
biology is an emerging and multi-disciplinary discipline that studies the interactions of 
cellular components by treating them as part of an integrated system. Thus, systems biology 
has shown that functional molecules are involved in complex networks of inter-
relationships, and that most of the cellular processes depend on functional modules rather 
than isolated components. Large amounts of biological network data of different types are 
available, e.g., protein-protein interaction, transcriptional regulatory, signal transduction, 
and metabolic networks. Since proteins carry out most biological processes, the protein 
interaction networks (PINs) are of particular importance. The advancement of the functional 
genomics and systems biology of model organisms such as Saccharomyces cerevisiae, 
Caenorhabditis elegans, and Drosophila melanogaster has contributed to the development of 
experimental and computational methods, and also to the understanding of human complex 
diseases. The availability of these methods has facilitated systematic efforts at creating large-
scale data sets of protein interactions, which are modeled as PINs. 

Usually, a PIN is represented as a graph where the proteins are the nodes and the 
interactions are the edges. According to the complex network theory, PINs are scale-free 
networks characterized by a power-law degree distribution. In scale-free networks, most 
nodes have a small number of links between them; whereas, a small percentage of nodes 
interact with a disproportionately large number of others. The nodes with a large number of 
links in PINs are called hub proteins. Functional genomics studies showed that in PINs, the 
deletion of a hub protein is lethal to the organism, a phenomenon known as the centrality-
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lethality rule. This rule is widely believed to reflect the special importance of hubs in 
organizing the network, which in turn suggests the biological significance of network 
topology. Several well-known studied proteins that are implicated in human diseases are 
hub proteins. Examples include p53, p21, p27, BRCA1, ubiquitin, calmodulin, and others 
which play central roles in various cellular mechanisms.  

Despite recent advances in systems biology of model organisms, the systems biology of 
human pathogenic organisms such as those that cause the so-called "neglected-diseases" has 
not received much attention. Neglected-diseases are chronic or related disabling infections 
affecting more than 1 billion people worldwide, mainly in Africa. Pathogens of neglected-
diseases include: Protozoan parasites (e.g., Leishmania spp., Plasmodium spp., and Trypanosoma 
spp.), vector-borne helminthes (e.g., Schistosoma spp., Brugia malayi, and Onchocerca volvulus), 
soil-transmitted helminthes (e.g., Ascaris lumbricoides and Trichuris trichura), bacteria (e.g., 
Mycobacterium tuberculosis and M. leprae), and viruses (e.g., dengue and yellow fever virus). A 
number of factors limit the utility of existing drugs in neglected-diseases such as high cost, 
poor compliance, drug resistance, low efficacy, and poor safety. Since the evolution of drug 
resistance is likely to compromise every drug over time, the demand for new drugs and 
targets is continuous. The drug target identification is the first step in the drug discovery flow-
through process. This step is complicated because a drug target must satisfy a variety of 
criteria. The important factors in this context are mainly related to the toxicity to host, and the 
essentiality of the target to the pathogen's physiology for growth and survival. Thus, the 
topological and functional analysis of neglected-disease pathogen PINs offers a potentially 
effective strategy for identifying and prioritizing new drug targets. 

This chapter will introduce the reader to the basic concepts of network analyses and outline 

why it is important in terms of predicting protein function and essentiality. Work involving 

PINs of neglected-disease pathogens will be explained so that the reader will understand 

the current state in terms of its application to prioritize drug targets. The experimental and 

computational methods most likely to be used to identify and predict PINs, and the 

strategies for identifying multiple potential drug targets in neglected-disease pathogens will 

be also outlined using several biological databases in an integrated way.  

To achieve this goal, the chapter includes three sections. Firstly, we present an outline of the 
conceptual development of network biology. The applied functional genomics involving the 
analysis of PINs of model organisms has led to developing methods and principles for 
elucidating protein function. We will also explain how these concepts are connected with 
protein essentiality to identify their “weak” points on the PINs of neglected-disease pathogens 
and its use for prioritizing drug targets. In the second section, we outline the experimental and 
computational methods that are most extensively to be used to identify and predict PINs. 
Some new approaches for predicting PINs are also introduced. These include the probabilistic 
integrated network methods which have shown the capability to increase the accuracy and 
coverage of the PINs. These primary research articles will be reviewed and the potential 
applications for the future be explained. This section mainly focused on analyzing the PINs of 
most prevalent neglected-disease pathogens in which the use of drugs is often limited by 
factors including high cost, low efficacy, toxicity, and the emergence of drug resistance. The 
potential use as an integrated strategy aimed at prioritizing and identifying drug targets of 
neglected-disease pathogens will be put forward, and the argument for future research 
involving the application of many tools and strategies will be discussed. In the final section, 
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we describe, amenably, the basic criteria to select pathogen drug targets, and the PINs of 
neglected-disease pathogens will be described in such a manner that the chapter will work as a 
source of key literature references for students and researchers. Papers will be reviewed to 
describe these basic principles, using key publications containing data and quantitative 
analyses (models, figures, tables) for PINs of some neglected-disease pathogens. We will 
describe novel lines of research; pros and cons of the use of PINs for prioritizing and 
identifying drug targets of neglected-disease pathogens. 

2. Systems and network biology: Basic concepts 

Systems biology is a holistic approach that involves the study of the inter-relationships of all 
the different elements in a biological system in order to understand non-deterministic 
behaviors that emerge from interaction between the cellular components and their 
environment and not by studying them in an isolated manner, one at a time (Hood and 
Perlmutter 2004, Weston and Hood 2004, Kohl and Noble 2009). Thus, the cell’s behavior 
can be understood as a consequence of the complex interactions between its numerous 
constituents such as DNA, RNA, proteins, and metabolites. These interactions are also 
responsible for performing processes critical to cellular survival. For example, during 
transcription process the regulatory proteins can activate or inhibit the expression of genes 
or regulate each other as part of gene regulatory networks. Likewise, the cellular 
metabolism can be integrated into a metabolic network whose fluxes are regulated by 
enzymes. Similarly, the PINs represent how the proteins work together through interactions 
that lead to the modification of protein functions or new roles in protein complexes. 

The biological systems consisting of interacting cellular components have led to the use of 
graph theory and mathematical tools based on graphs where the individual components are 
represented by nodes and the interactions by links (Fig. 1). Albert and Barabási (2002) have 
shown the general properties found among several networks ranging from the Internet to 
social and biological networks (Albert and Barabási 2002). The analysis of topology of those 
networks showed that they deviate substantially from randomly built networks as studied 
by Erdös and Rényi (Fig. 1a) (Erdös and Rényi 1960). Also, these networks did not show a 
well-shaped frequency distribution of the number of links per node as expected from 
randomly formed networks; instead, they showed a power-law distribution, which is 
characteristic of scale-free networks (Fig. 1b and 1c) (Amaral et al., 2000, Albert 2005). 

In scale-free network, the majority of nodes have only a few links, whereas very few nodes 
have a large number of links. Those nodes are called hubs and they represent the most 
vulnerable points of a network (Barabasi and Albert 1999, Albert et al., 2000, Jeong et al., 
2001, Yu et al., 2004a, Tew et al., 2007). The topological features of networks can be 
quantified by measuring topological parameters whose information content provides a 
description from local (e.g., single nodes or links) to network-wide level (e.g., connections 
and relationships between nodes). For example, the nodes of a graph can be characterized 
by means of the number of links they have (the number of other nodes to which they are 
connected). This parameter is called “node degree”. In directed networks, it is possible to 
distinguish the number of directed links that points toward the node (in-degree), and the 
number of directed edges that points outward the node (out-degree). The node degree 
characterizes individual nodes; however, in order to relate this parameter to whole network, 
a network degree distribution can be defined. The degree distribution P(k) represents the 
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fraction of nodes that have degree k and it is obtained by counting the number of nodes 
N(k) that have k = 1, 2… links and dividing it by the total number of nodes N. The degree 
distributions of numerous networks such as the Internet, social, and biological networks, 
follow a power law (Fig. 1b and 1c) which is defined by the functional equation P(k) ~ kγ, 
where γ represents the degree exponent, taking usually values in the range between 2<γ<3 
(Barabasi and Oltvai 2004). This function is intimately linked to the growth of the network in 
which new nodes are preferentially attached to already established nodes, a property that is 
also thought to characterize the evolution of biological systems (Jeong et al., 2000).  

 

Fig. 1. Three types of network models and their associated distributions: (a) random 
network, (b) scale-free network, and (c) hierarchical network. 
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The distance between any two nodes in a network could be defined by the path length. In 
other words, it represents how many links we need to pass between two nodes. 
Nevertheless, it could have many alternative paths between two nodes in a network.  The 
path with the smallest number of links between the selected nodes (shortest path) is of 
special interest. A common characteristic of several biological networks, including metabolic 
networks (Jeong et al., 2000, Wagner and Fell 2001) and PINs (Giot et al., 2003, Yook et al., 
2004) is that any two nodes can be connected with a path of a few links only. The main 
biological implications of this characteristic are related to: i) how the biological networks are 
capable of rapid responses to perturbations; ii) its capacity to employ alternative roads for 
the same input and output; and iii) the ability to efficiently compensate the perturbations in 
essential pathways.  

Another important issue derived from network analysis is the concept of modularity, which 

can be used to describe how a group of physically or functionally linked nodes work 

together to achieve a particular function. The topological parameter used to quantify the 

modularity in a network is the clustering coefficient Ci, which represents the ratio between 

the number of links connecting nodes adjacent to node i and the total possible number of 

links among them (Watts and Strogatz 1998). It is worth noting that in first instance, the 

modularity concept might be in contradiction of the scale-free nature of the networks 

because the presence of modules implies that there are clusters of nodes that are relatively 

isolated from the rest of the network. However, it has been demonstrated that modularity 

and scale-free properties naturally co-occur in biological networks indicating that modules 

are not independent, instead, they are combined to form a hierarchical network (Fig. 1c) 

(Ravasz et al., 2002). 

Biological networks, including PINs and metabolic networks are good examples of network 
modularity because they exhibit high average Ci, which are associated to a high level of 
network robustness (Alon et al., 1999, Ravasz et al., 2002, Barabasi and Oltvai 2004). The 
most common representation of a module or cluster in a network is as a highly 
interconnected group of nodes. The biological implication of the modularity concept is that 
the nodes that integrate a module tend to participate in related biological processes and 
pathways; for example, protein and nucleic-acid synthesis, protein degradation, signal 
transduction, and metabolic pathways (Ma'ayan et al., 2005). The analysis of experimental 
PINs have shown to have a remarkably modularity character (Giot et al., 2003, Yook et al., 
2004). These findings in experimental PIN maps have been used to improve the 
understanding of the pleiotropic effects, and how perturbations on genes or proteins can 
propagate through the network and produce, in appearance, unrelated or extensive effects.  

In addition to the modules, within a network, small and recurring sub-graphs, known as 
interaction motifs, with well-defined topologies can be identified (Fig. 2). The frequency 
analysis of these interaction motifs in networks revealed that they are over-represented 
when compared to a randomized version of the same network, suggesting that not all sub-
graphs are equally significant in networks and that interaction motifs form functionally 
separable building blocks of cellular networks (Mangan and Alon 2003, Wuchty et al., 2003, 
Alon 2007). For example, triangle motifs, also called feed-forward loops in directed 
networks, appear in both transcription-regulatory and neural networks. Likewise, there is 
evidence suggesting that specific motif type aggregates to form large motif clusters and that 
also appear to be commonly involved with certain functional roles (Milo et al., 2002, Shen-
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Orr et al., 2002, Wuchty et al., 2003). For example, in the E. coli transcription regulatory 
network, most motifs overlap, in which the specific motifs are no longer clearly separable 
(Shen-Orr et al., 2002).  

 

Fig. 2. Some types of interaction motifs found in biological networks. 

The relevance of any node in mediating the communications flow among other nodes in the 

network is quantified by its betweenness centrality, which is defined as the total number of 

non-redundant shortest paths going through a certain node or edge (Freeman 1977). Girvan 

and Newman (2002), have proposed that the edges with high betweenness are the ones that 

are “between” network clusters; therefore, the information flow within a network could be 

altered by removing these edges (Girvan and Newman 2002). Dunn et al., (2005) using an 

edge betweenness based-method have shown that clusters in PINs tend to share similar 

functions (Dunn et al., 2005). Moreover, Yu et al., (2007) have reconsidered the classical 

meaning of betweenness as a measure of the centrality of the nodes in a PIN. They have 

defined those nodes as “bottlenecks” with the highest betweenness centrality and find that 

bottlenecks nodes have a higher probability to be essential (Yu et al., 2007). 

It is worth noting that the topological parameters might be combined between them or with 

additional information of functional annotations regarding the network nodes (genes or 

proteins). Thus, a network provides testable predictions ranging from single interactions to 

essential genes and functional modules (del Rio et al., 2009). Likewise, the functions of un-

annotated genes or proteins can be also predicted on the basis of the annotation of their 

interacting partners. This approach to predict the protein/gene function is known as “guilty 

by association”. Additionally, the integration of information related to diseases or specific 

phenotypes with network approaches also enhances the understanding of human diseases, 

pharmacology response, and phenotype prediction (Ideker and Sharan 2008, Lee et al., 

2008a, Lee et al., 2010, Wang and Marcotte 2010, Lee et al., 2011). 

3. Methods to identify protein interactions networks (PINs) 

3.1 Experimental methods 

In the postgenomic era, the accumulation of protein-protein interaction data has enabled the 
biology systems studies at PINs levels (von Mering et al., 2002). However, PIN analysis 
requires methods amenable to high throughput (HT) screening, such as large-scale versions 
of  techniques like yeast two hybrid (Y2H) and tandem affinity purification coupled to mass 
spectrometry (TAP-MS) for performing systematic screens (Ito et al., 2001a, Cusick et al., 
2005). In addition, there are a wide variety of methods to detect, analyze, and quantify 
protein interactions, including surface plasmon resonance spectroscopy, nuclear magnetic 
resonance (NMR), x-ray crystallography, and fluorescence-based technologies. These 
techniques provide detailed information on physical properties of protein interactions. 
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These methods are of paramount usefulness; however, herein, the techniques that can be 
applied to determine protein-protein interactions, at large-scale level, will be highlighted. 
In particular, the outcomes of Y2H system and TAP-MS are used further to perform in 
silico global network analysis. Both techniques were intensively applied to map the PIN of 
yeast, the first model organism with available PINs (Uetz et al., 2000, Ito et al., 2001b, 
Gavin et al., 2002, Ho et al., 2002, Ito et al., 2002, Tong et al., 2004, Yu et al., 2008). 
Afterwards, large-scale efforts have been made to determine PINs for other model minor 
eukaryotic organisms: D. melanogaster (Giot et al., 2003), and C. elegans (Li et al., 2004); 
pathogenic microorganisms:  Helicobacter pylori, Campylobacter jejuni, Treponema pallidum, 
M. tuberculosis (Wang et al., 2010),  herpes simplex virus 1 (Lee et al., 2008b), and Kaposi's 
sarcoma-associated herpesvirus (Uetz et al., 2006, Rozen et al., 2008), and   major 
eukaryotic organisms: Arabidopsis thaliana (de Folter et al., 2005) and humans (Rual et al., 
2005, Stelzl et al., 2005, Gandhi et al., 2006). Even though the PINs are not completed, the 
available PINs provide insight into how particular properties of proteins are integrated at 
systems level, and also, as a useful resource to predict the functional role of genes or 
proteins. 

3.1.2 Yeast two-hybrid (Y2H) system 

The Y2H system has considerably accelerated the in vivo large-scale screening of protein 
interactions enabling the detection of physically interacting proteins by using the modular 
organization of eukaryotic transcriptional activators. The eukaryotic transcription activators 
are formed by at least two distinct domains, one responsible of binding to a DNA region 
(BD) promoter and the other of activating the transcriptional processes (AD). It is well-
known that splitting BD and AD domains will inactivate the transcriptional processes, but 
the transcription can be restored if a BD domain is re-associated with an AD domain (Fields 
and Song 1989). Thus, the standard Y2H system includes a DB domain fused to the “bait” 
protein-coding region and an AD domain fused to the “prey” protein-coding region. When 
DB-bait and AD-prey domains are co-expressed in the nucleus of yeast cells, “bait”-“prey” 
domain interaction reconstitutes a functional transcription factor that activates the 
transcription of one reporter gene (Fig. 3). The most used Y2H system is based on 
GAL4/LexA, where the GAL4 protein controls the expression of the LacZ gene encoding 
beta-galactosidase. 

The main advantages of Y2H system are: i) the DNA ( not the protein) is manipulated to 

study both bait and prey proteins (Walhout and Vidal 2001a); ii) it allows to identify protein 

interactions in vivo; iii) to identify transitory protein interactions, and iv) it is amenable to 

high-throughput screening methods (Buckholz et al., 1999, Uetz and Hughes 2000, Walhout 

and Vidal 2001b, Ito et al., 2002, Rual et al., 2005).  

The drawbacks include: i) a high proportion of false-positives and negatives (Vidal and 
Legrain 1999, Ito et al., 2002); ii) it forces sub-cellular localization of bait and prey in the yeast 
nucleus which might preclude certain interactions from taking place (Cusick et al., 2005). For 
example, membrane protein interactions cannot be identified by standard Y2H system 
because the AD-prey fusion will be retained at the membrane, thus, avoiding the 
reconstitution of a functional transcription factor (Xia et al., 2006); iii) the over-expression of 
tested proteins, thus modifying the relative concentrations of potential interaction partners 
in comparison to the in vivo state; iv) the presence of auto-activators, i.e. proteins initiating 
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transcription by themselves (Cusick et al., 2005), and v) the differences in post-translational 
modifications and protein folding processes between yeasts and other organisms 
(Shoemaker and Panchenko 2007). Given these cons, several modifications have been made 
to improve the quality of the Y2H system results, including the development of membrane 
Y2H, the inclusion of different promoters of reporter genes, the use of low copy vectors, and 
the reduction of auto-activators. Once that these drawbacks are reduced, the quality of the 
Y2H system is significantly improved (Lehner et al., 2004, Li et al., 2004, Rual et al., 2005, Yu 
et al., 2008). 

 

Fig. 3. The Y2H system. Y2H detects interactions between proteins X and Y, where X is 
linked to BD domain which binds to DNA region promoter. 

3.1.3 Tandem affinity purification-tag coupled to mass spectrometry (TAP-MS) 

TAP-MS method is a powerful approach to determine the composition of relevant protein 
complexes. In this method, a target protein-coding region is fused with a DNA sequence 
encoding an affinity tag which will be expressed with other cellular proteins, followed by 
two-step affinity purification (AP) and elucidation of the complex components by mass 
spectrometry (MS). A typical TAP tag is formed by an immunoglobulin interacting domain 
of protein A (protA) and a calmodulin-binding peptide (CBP) (Fig. 4). The protA/CBP 
binding domains are separated by a short recognition sequence for the site-specific tobacco-
etch virus protease (TEV protease). The TEV site allows proteolytic elution of the protein 
complex from IgG-sepharose after the first affinity-purification step, which is based on the 
protA/IgG-sepharose interaction. The eluted protein complex is further purified by binding 
to a calmodulin affinity resin, eluted with EGTA and processed for identification with MS 
analyses. 
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Fig. 4. TAP-MS method. TAP purifies protein complexes and removes the molecules of 
contaminants and MS identifies the complex components. 

Similar to Y2H system results, TAP–MS method shows a high rate of false-positives and 
negatives, missing many transient interactions. In contrast to the Y2H system, the TAP–MS 
method can elucidate higher-order interactions beyond binary interactions and, therefore, 
provides direct information on protein complexes. Several large-scale studies of protein 
complexes have been performed using the TAP–MS method (Gavin et al., 2002, Ho et al., 
2002, Gavin et al., 2006). For example, Gavin et al., (2006) used 5,500 ORFs fused to DNA 
sequences encoding an affinity tag to analyze PIN of S. cerevisiae. They found 491 complexes, 
of which 257 are novel, showing that PIN in S. cerevisiae has a modular organization (Gavin 
et al., 2006). In addition, Stingl et al., (2008), have elucidated the urease interactome of H. 
pylori. They combined the tandem affinity purification protocol with in vivo cross-link in 
order to capture transient interactions, which represent an improvement to TAP–MS 
method (Stingl et al., 2008). 

The use of experimental orthogonal approaches has demonstrated that Y2H and TAP-MS 
interaction data sets contain mostly highly reliable interactions. It has been suggested  
that the integration of data from the two approaches can also serve to increase confidence  
in either data set, and has provided support to derivate predictions from these approaches 
(Cusick et al., 2005). Moreover, Venkatesan et al., (2009) have developed a framework  
to estimate various quality parameters associated with currently used methods to identify 
PINs. The combination of these quality parameters (screening completeness, assay 
sensitivity, sampling sensitivity, and precision), has shown an estimate of the size of human 
binary interactome and a path toward the completion of its mapping (Venkatesan et  
al., 2009).   
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Despite the technical or biological limitations (Cusick et al., 2005) of the aforementioned 
methods, that does not preclude a reduction on their impact in PINs studies, instead they 
are marking a paradigm change from one-gene/one-function reductionist approach to a 
more systemic approach that can capture all potential interactions encoded in a genome or 
proteome. 

3.1.4 Protein interaction databases 

The huge amounts of protein interaction data produced by high-throughput experimental 

methods as Y2H and TAP-MS and analyzed by bioinformatics have led to the conformation 

of several research groups aimed at conducting  important efforts in designing and setting 

up databases that include carefully analyzed information to provide useful scientific 

knowledge about protein-protein interactions. Table 1 shows a summary of most significant 

public databases of protein-protein interactions published to date. These databases contain 

interactions obtained by direct submission from experimentalists, text-mining and other 

data sources. Also, there are other online resources integrating information from several of 

the databases that are listed in Table 1, or tools to browse and visualize such data; for 

example resources like APID (Prieto and De Las Rivas 2006, Hernandez-Toro et al., 2007) 

and PINA (Wu et al., 2009). The information deposited in these databases is verified using 

automated algorithms or manual curation like in the DIP database (Deane et al., 2002). 

Altogether, protein interaction databases are an invaluable resource to develop projects that 

aims to analyze PINs of organisms ranging from viruses to humans.  

 
 

Database 
 

Type of 
data 

 
Number of 
interactions 

 
Website 

 
DIP E,C,S 71,589 http://dip.doe-mbi.ucla.edu 

MINT E,C 235,635 http://mint.bio.uniroma2.it 
IntAct E,C 275,144 http://www.ebi.ac.uk/intact/ 

BioGRID E,C 282,005 http://thebiogrid.org/ 
HPRD E,C 39,194 http://www.hprd.org/ 
APID I 322,579 http://bioinfow.dep.usal.es/apid/apid2net.html 
PINA I 221,702 http://cbg.garvan.unsw.edu.au/pina 

 

Table 1. Most representative databases of protein-protein interactions. (E) high-throughput 
experimental data; (S) structural data; (C) manual curation, and (I) integrative resource. The 
number of interactions was updated on September 29, 2011. 

3.2 Computational methods to predict protein interactions networks (PINs)  

Parallel to the experimental methods, several computational methods have been designed to 
predict protein-protein interactions. Initially, these methods were strictly limited to proteins 
whose three-dimensional structures had been determined (structure-based methods). The 
completion of genome sequences has provided large amounts of genomic information 
enabling the analysis from a genomic context of a given gene. Thus, a number of 
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computational methods and resources have been developed for the prediction of protein 
interactions resulting from genomic information (genomic context-based methods), even in 
those cases where the three-dimensional structures are unknown yet (Galperin and Koonin 
2000, Huynen et al., 2000, Huynen and Snel 2000).  

Hereinafter, we will describe computational methods and resources available for protein 
interaction prediction that exploit the genomic and biological contexts of proteins for 
complete genomes.  

3.2.1 Genomic context-based methods 

3.2.1.1 Gene neighborhood 

The gene neighborhood method exploits the notion that genes which physically interact or 
are functionally associated to the same process or functional pathway will be adjacent to 
each other in the genome (Fig. 5a) (Tamames et al., 1997, Overbeek et al., 1999, Bowers et al., 
2004). For example, Dandekar et al. (2005), have shown that the neighborhood relationship 
could be used as fingerprint, suggesting that the proteins encoded by these genes may 
physically interact (Dandekar et al., 1998). The most representative example of this 
phenomenon can be found in bacterial operons, where genes that work together are 
generally transcribed as a unit. Furthermore, operons which encode for co-regulated genes  

 

Fig. 5. Genomic context-based methods. (a) Gene neighborhood plots for four organisms, 
showing a pair of genes (blue and magenta) which are in close proximity in all four 
organisms. (b) Example phylogenetic profiles of four proteins from the three organisms. The 
proteins 1 and 4 have the same patterns of co-occurrence in all three organisms, and may 
physically interact based on this evidence. (c) A gene fusion event between two proteins 
(green and magenta) in two organisms is shown. Thus, the proteins a y b from organism 1 is 
predict to interact because they form part of a single protein in organism 2.  
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are usually conserved. The neighborhood relationship tends to be more relevant when it is 
conserved across different species (Tamames et al., 1997). Hence, the gene neighborhood 
method, like many of the comparative genomics approaches, increases its robustness when a 
larger numbers of genomes are used for the prediction. Since operons and genes 
neighborhood are uncommon in eukaryotic species (Zorio et al., 1994, Blumenthal 1998, Liu 
and Han 2009, Fitzpatrick et al., 2010), this method is principally applicable to bacteria 
where such genome properties are relevant.  

3.2.1.2 Phylogenetic profiles 

The phylogenetic profile method is based on the co-occurrence of pairs of genes across 
multiple genomes (Fig. 5b). Consequently, a pair of orthologous genes remains together 
across many distant species representing a concerted evolution mechanism  and indicating 
that these genes need to be simultaneously present to participate in the same biological 
process, pathway or physically interacting.  A phylogenetic profile is commonly represented 
as a vector for the presence or absence of a gene across multiple genomes (Fig.), where “0” 
or “1” denoted the presence/absence at each position of a profile (Ouzounis and Kyrpides 
1996, Rivera et al., 1998, Pellegrini et al., 1999). 

The main drawbacks of this method are: it can only be applied to complete genomes; the 
prediction robustness is dependent on the number and distribution of genomes used to 
build the profile, thus, a pair of genes with similar profiles across many bacterial, archaeal 
and eukaryotic genomes is much more likely to interact each other than those genes found 
to co-occur in a small number of closely related species; its high computational cost since it 
needs to compare many complete genomes; and, fails in homology detection between 
distant organisms.   

Like others genomic context methods, with the increasing number of completely sequenced 

genomes, it is expected that the accuracy of these predictions will be improved over time.  

3.2.1.3 Gene fusion 

The gene fusion method is based on the fact that some interacting protein domains (termed 

the rosetta stones) have homologs in other genomes that are fused into one protein chain 

(Fig. 5c). Thus, gene fusion events have been proposed for the identification of potential 

protein-protein interactions, metabolic or regulatory networks (Sali 1999, Galperin and 

Koonin 2000). The information about gene fusion events can be combined with 

phylogenomic profiling and identification of conserved chromosomal localization, to test 

hypotheses leading to the characterization of proteins of unknown function (Marcotte et al., 

1999a, Marcotte 2000, Enright and Ouzounis 2001). Marcotte et al., (1999) found 6,809 

potentially interacting pairs of non-homologous proteins in E. coli, revealing that, for more 

than half of the pairs, both involved members were functionally associated. More 

approaches with similar results have been used, including in eukaryotic genomes (Enright 

and Ouzounis 2001).  

The drawbacks of this method are related with the domain complexity of eukaryotic proteins, 
the presence of promiscuous domains, and large degrees of paralogy (Enright et al., 2002). 

Currently, there are excellent resources implementing the genomic context-based methods. 
The most notable are the Search Tool for the Retrieval of Interacting Genes/Proteins 
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(STRING) and ProLinks. The STRING (URL: http://string-db.org) and ProLinks (URL: 
http://prl.mbi.ucla.edu) resources provide a web interface giving comprehensive access to 
gene context information in 1,100 and 900 complete genomes, respectively (Szklarczyk et al., 
2011, Bowers et al., 2004). 

3.2.2 Interologs 

The use of homology relationships is a key paradigm in molecular biology and genomics. 
This approach has been extensively exploited to predict protein structure (Abagyan and 
Batalov 1997, Brenner et al., 1998, Rost 1999), to study sub-cellular localization (Nair and 
Rost 2002), enzymatic activity (Devos and Valencia 2001, Todd et al., 2001), and for 
comparative genomics (Marcotte et al., 1999b, Pellegrini et al., 1999). Thus, interologs is 
defined as a conserved interaction between a pair of proteins of a given organism which 
have interacting homologs in another organism (Yu et al., 2004b). For example, the 
experimental observation that two yeast proteins interact is extrapolated to predict that the 
two corresponding homologs in human also interact in a similar way. Walhout (Walhout 
and Vidal 2001b) and Vidal (2001) have used yeast experimental interaction data (Uetz et al., 
2000, Ito et al., 2001b) to infer similar interactions in worm (Fig. 6). Mika and Rost (2006) 
suggested that the extrapolation of interactions between distant organisms has to be 
undertaken with some caution. They found that the homology transfers are only accurate at 
high levels of sequence identity, and it is more reliable for protein pairs from the same 
species than for two protein pairs from different organisms (Mika and Rost 2006). Likewise, 
Wiles et al., (2010) have developed a scoring schema to assess the confidence of interologs 
prediction. They have predicted protein interactions across five species (human, mouse, fly, 
worm, and yeast) based on available experimental evidence and conservation across species 
(Wiles et al., 2010). Also, they developed the Interolog Finder (URL: 
http://www.interologfinder.org) to provide access to these data. 

 

Fig. 6. The Interlog method. The A and B are interacting proteins in worm, and A’ and B’ are 
homologs in human of A and B proteins. Then  A’ and B’ in human also interact in a similar 
way. 
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3.2.3 Integrative approaches 

Currently, high-confidence PINs data sets are limited; however, they still provide a 

framework onto which other types of biological information can be integrated. Thus, new 

approaches that integrate other types of data, including protein-protein interactions, text 

mining, homology-based, and functional genomics approaches (Lee et al., 2004, Chua et al., 

2007, Lee et al., 2008a, Pena-Castillo et al., 2008, Linghu et al., 2009, Lee et al., 2010, Wu et al., 

2010, Lee et al., 2011, Szklarczyk et al., 2011), have shown to be the most effective way to 

assign function to uncharacterized proteins that are components of the network (Fig. 7).  

 

Fig. 7. General scheme for integrative approaches. N1, N2, N3 and N4 are networks 
representing four data sources. Each node is a protein, while each edge is a binary 
relationship. The edges are weighted into common weight that is consistent across different 
data sources. N1, N2, N3 and N4 are then combined and re-scored to form the final high 
confidence network N’. 

The most representative example of these approaches is STRING which integrates 
experimental as well as predicted interaction information, mostly from the methods 

www.intechopen.com



Analysis of Protein Interaction Networks to  
Prioritize Drug Targets of Neglected-Disease Pathogens 41 

aforementioned. STRING provides ease of access to explore this integrated information 
(URL: http://string-db.org). Moreover, for each protein-protein interaction it provides a 
confidence score, and supplementary information such as protein domains and 3D 
structures, all within a stable and consistent identifier space. The version 9.0 of STRING 
includes the information of more than 1,100 completely sequenced organisms, ranging from 
bacteria and archaea to humans allowing to periodically execute interaction prediction 
algorithms and update such data depending on genome sequence information (Szklarczyk 
et al., 2011). 

Similarly, several groups have integrated multiple networks to predict protein functions, 
interactions and functional modules including data from multiple sources, ranging from co-
expression patterns, sequence similarity to genomic context-based methods (Kemmeren et 
al., 2002, Jansen et al., 2003, Lee et al., 2004, Lu et al., 2005, Chua et al., 2007, Lee et al., 2008a, 
Pena-Castillo et al., 2008, Linghu et al., 2009, Lee et al., 2010, Wu et al., 2010, Lee et al., 2011). 
For example, Marcotte´s group have shown the predictive power of an integrated functional 
network for C. elegans (Lee et al., 2008a). Firstly, they computationally built an integrated 
functional network covering approximately 82% of C. elegans genes. Second, they used this 
network to predict the effects of perturbing individual genes on the organism’s phenotype, 
identifying genes causing specific phenotypes ranging from cell cycle defects in single 
embryonic cells to life-span alterations, neuronal defects, and altered patterning of specific 
tissues. They select a set of candidate genes and their interactions associated to a phenotype 
and used RNAi to test whether targeting these candidate genes suppressed such phenotype. 
They found that 20% of such interactions suppressed the studied phenotype; instead, using 
only an RNAi, at large-scale screening, inactivation of 0.9% of genes produces such effect. 
Therefore, predictions arising from interactions of integrated network are 21-fold better than 
those expected by chance. They suggested a network-guided schema to accelerate research 
by using screening methods to identify genes and interactions for pathways of interest in 
human diseases. 

The main limitation of integrative approaches is related with the availability of functional 
association data of genes/proteins. For example, these methods will not be able to make 
extensive predictions if no associations are available, as in the case of a novel genome with 
no known sequence or domain homology with known sequences, poorly studied genomes, 
and lack of functional genomics studies. 

4. PINs as a tool to prioritize drug targets of neglected-disease pathogens 

4.1 Drug targets prioritization 

Despite the advent of the high-throughput techniques sparked by the genomics revolution, 
discovery and development of new drugs for neglected-disease pathogens has lagged in 
recent years due to the serious problems such as high cost, poor compliance, low efficacy, 
poor safety, evolution of antibiotic resistance, among others (Schmid 1998).  

Target identification is the first step in the drug discovery process and such task can provide 
the foundation for years of dedicated research in the pharmaceutical industry (Read et al., 
2001). As compared with all the other steps in drug discovery, this stage is complicated by 
the fact that the identified drug target must satisfy a variety of criteria to permit progression 
to the next step. For example, the target must be selectively present in the pathogen, i.e. 
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target coding genes that are conserved across different pathogens and have no human 
homologs represent attractive target candidates for new broad-spectrum drugs (Schmid 
2006); relevant for the pathogenesis process (Galperin and Koonin 1999, Sakharkar et al., 
2004); and, the essentiality of the target to the pathogen's growth and survival (Koonin et al., 
1998, Thanassi et al., 2002, Galperin and Koonin 2004); suitability of the target for expression 
and assayability, and the availability of structures or models to initiate rational drug design 
(Aguero et al., 2008). Hence, the integrated uses of above-mentioned strategies are 
considered as the basic schema in the drug target prioritization approaches. The criteria 
values of this basic schema can be found by querying publicly available bioinformatics 
resources and databases. For example, using metabolic pathway databases such as Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999, Kanehisa and Goto 2000), 
protein classification sets such as Clusters of Orthologous Groups (COGs), Gene Ontology 
(GO), and resources to evaluate the “druggability” of proteins (Hopkins and Groom 2002, 
Russ and Lampel 2005, Hambly et al., 2006), like “Structure-based DrugEBIlity” online 
service at EBI (URL: https://www.ebi.ac.uk/chembl/drugebility/structure). For drug 
targets of neglected-disease pathogens, the TDR Targets Database (URL: 
http://tdrtargets.org) is an extensive resource for neglected tropical diseases (Aguero et al., 
2008). This database includes extensive genetic, biochemical, and pharmacological data 
related to tropical disease pathogens and computationally predicted druggability for 
potential targets. The database contains the data on the tuberculosis pathogen M. 
tuberculosis; the leprosy pathogen M. leprae; the malaria parasites Plasmodium falciparum and 
P. vivax, the toxoplasmosis parasite Toxoplasma gondii; the trematode Schistosoma mansoni; the 
filariasis helminth Brugia malayi and its intracellular symbiont bacterium Wolbachia; and the 
kinetoplastid parasites Leishmania major, Trypanosoma brucei, and T. cruzi, which are 
responsible for kala-azar and other forms of leishmaniasis, sleeping sickness, and Chagas 
disease, respectively. 

4.2 PINs, drug targets, and neglected-disease pathogens 

Networks analysis is a broadly applicable tool for the drug discovery and development 
process. Any type of association data linking one gene to another, a protein or a compound, 
can be modeled, visualized and analyzed as networks (Lee et al., 2004, Chua et al., 2007, Lee 
et al., 2008a, Linghu et al., 2009, Lee et al., 2010, McGary et al., 2010, Wu et al., 2010, Lee et al., 
2011). Hence, data from pre-clinical and clinical trial studies can be included in network 
analyses (Nikolsky et al., 2005). Thus, networks could represent the standard for data 
integration and analysis. Network analysis involving neglected-disease pathogens is a very 
young area of research. Moreover, despite the availability experimentally PINs of model 
organisms  as S. cerevisiae, C. elegans, and D. melanogaster, and some bacterial pathogens like 
H. pylori, C. jejuni, Treponema pallidum, the number of experimentally neglected-disease 
pathogens PINs is limited. For example, LaCount et al., (2005) identified protein-protein 
interactions of P. falciparum through a high throughput screening version of the yeast two-
hybrid system (LaCount et al., 2005). They found 2,846 unique interactions in more than 
32,000 P. falciparum protein fragments. In order to determine clusters of interacting proteins 
they used computational methods such as analysis of network connectivity, gene co-
expression, and enrichment of Gene Ontology terms. The results of the network analysis 
was the identification of two protein clusters, one of which related to the chromatin 
modification, transcription, messenger RNA stability, and ubiquitination and the other 
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implicated in the invasion of host cells. They suggested that the information provided  
by this network may be relevant to understand the basic biology of the parasite and to 
discover new drug and vaccine targets. Wang et al., (2010) built a PIN of the M. tuberculosis 
H37Rv strain based on a high-throughput bacterial two-hybrid method. They found more 
than 8,000 novel interactions and performed a cross-species PINs comparison, showing  
94 conserved sub-networks between M. tuberculosis and several prokaryotic PINs (Wang et 
al., 2010).  

Additionally, even the lack of data, several computational studies aims to predict PINs of 
neglected-disease pathogens and prioritize drug targets have been performed. Florez et al., 
(2010) built an in silico PIN of L. major by combining information of PSIMAP, PEIMAP, 
iPfam databases, and using the interologs method (Florez et al., 2010). They predicted 33,861 
interactions for 1,366 proteins, and also analyzed the PIN by calculating topology 
parameters such as connectivity and betweenness centrality detecting 142 potential and 
specific drug targets without human orthologs (Fig. 8). Pedamallu and Posfai (2010) have 
developed a simple open source package module (OpenPPI_predictor) to predict putative 
PIN for target genomes (Pedamallu and Posfai 2010). The package is based on interologs 
method and uses experimental data from a related organism.  Thus, they assayed 
OpenPPI_predictor to infer a PIN for B. malayi using experimental PIN data from C. elegans. 
They identified 118 and 143 clusters in B. malayi and C. elegans interactomes, 

  

Fig. 8. Predicted PIN of Leishmania major by Florez et al., (2010). The nodes in color red 
represent predicted essential proteins without human orthologs. 
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respectively, and found that highly connected region contains 363 and 340 proteins in B. 
malayi and C. elegans PINs. They suggests that core cellular functions of the two related 
organisms have similar complexity and that further analysis of these highly connected 
regions may provide clues about genes missing from a conserved pathway, or proteins 
missing from a complex.  

Similarly, computational studies have been developed in order to model host-neglected-
disease pathogens PINs. For example, Dyer et al., (2007) integrated public intra-species PINs 
datasets with protein–domain profiles to predict a Human–P. falciparum PIN. They found 
516 protein interactions between these two organisms, and showed that Plasmodium proteins 
interacting with human proteins are co-expressed in DNA microarray datasets, associated 
with developmental stages of the Plasmodium life cycle (Dyer et al., 2007). Dyer et al., (2008) 
have analyzed the landscape of human proteins interacting with pathogens. They integrated 
human–pathogen PINs for 190 pathogen strains from seven public databases and found that 
both viral and bacterial pathogens tend to interact with proteins with many interacting 
partners (hubs) and those that are central to many paths (bottlenecks) in the human PIN 
(Dyer et al., 2008). Similar results were obtained by Navratil et al., (2011). They used a high-
quality dataset manually curated and validated of virus-host protein interactions to depict 
the “human infectome” (Navratil et al., 2011). Additionally, they showed, by using 
functional genomic RNAi data, that the high centrality of targeted proteins was correlated to 
their essentiality for viruses’ lifecycle. Also, they perform a simulation of cellular network 
perturbations and showed a stealth-attack of viruses on proteins bridging cellular functions, 
which is a property that could be essential in the molecular etiology of some human  
diseases (Fig. 9). Doolittle and Gomez (2011) have predicted interactions between dengue 

 

Fig. 9. The human infectome by Navratil et al., (2011). 

www.intechopen.com



Analysis of Protein Interaction Networks to  
Prioritize Drug Targets of Neglected-Disease Pathogens 45 

 virus (DENV) and its hosts, both human and the insect vector Aedes aegypti. They 

implemented a protocol based on structural similarity between DENV and host proteins, 

and also they supported a subset of the predictions via mining from the literature. They 

predicted, after filtering and based on shared Gene Ontology cellular component, over 2,000 

interactions between DENV and humans, as well as 18 interactions between DENV and the 

A. aegypti vector (Doolittle and Gomez 2011). They suggested those specific interactions 

between virus and host proteins are involved in interferon signaling, transcriptional 

regulation, stress, and the unfolded protein response. 

The most relevant outcome of such computational studies is the identification of human and 

pathogen proteins to target experimentally for developing new drugs. It also provides 

different roadmaps and emerging approaches to develop projects to model and analyze 

PINs of neglected-disease pathogens. For example, novel therapies for human diseases 

employ multi-target drugs (Borisy et al., 2003, Csermely et al., 2005) and compounds 

targeted to inhibit protein-protein interactions (Emerson et al., 2003, Klein and Vassilev 2004, 

Vassilev 2004, Vassilev et al., 2004). 

5. Conclusions 

Because of the development of massive analysis technologies in genomics and 

computational biology, we can outline a trend to interplay and integrate the computational 

and experimental techniques. Thus, the methods and resources to identify protein 

interactions that combine both approaches will be used as a routine protocol in the future. 

Even though the use of network biology approaches to drug discovery are in their initial 

stages, they already contributed to meaningful drug development decisions by accelerating 

hypothesis-driven biology, modeling specific physiologic problems in target validation or 

clinical physiology and,  providing rapid characterization and interpretation of disease-

relevant cell systems.  

Despite the lack of experimental functional genomics and PINs data for neglected-disease 

pathogens, computational approaches represent a starting point and complementary 

approach to current high-throughput screening projects whose aim is to delineate the 

complete genomes of neglected-disease pathogens. Moreover, integrative computational 

approaches have shown to be a powerful tool as guide for large scale-studies improving and 

facilitating the rational identification of therapeutic targets.   

It is clear that for those organisms whose genome has not been sequenced yet, it will be 

difficult to implement the aforementioned protocols. That is the case for some nematodes 

and trypanosomal parasites as T. cruzi, S. mansoni, B. malayi, and O. volvulus, and the soil-

transmitted helminthes (e.g., species of A. lumbricoides, and T. trichura). However, according 

to NCBI Entrez Genome (URL:, http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi; Sep 29, 

2011), the status of most of them is in “assembly”stage. Once the genome of the neglected-

disease pathogen is available, we can use the information of experimental PINs of model 

organism as C. elegans to model and predict PINs of such pathogens enabling the discovery 

of those hubs and bottlenecks proteins that modulate the infectious process and prioritize 

them as drug targets. 

www.intechopen.com



 
Medicinal Chemistry and Drug Design 46

While the computational approaches analyzed here are by nature probabilistic, i.e. it offers 
the likelihood of association of a given pair of proteins, nevertheless it clearly indicates the 
utility of inferring functionally relevant correlations from the available genomic databases 
for systematic drug target identification. The further improvement of computational 
approaches will help to increasing the availability of systematically collected biologic data 
and will provide an easy schema for the integration of different types of data within 
network analysis, thus enhancing the role of such approaches in drug discovery. 

Finally, comprehensive repositories of functional genomic data for neglected-disease 
pathogens will be created. Hence, as soon as large molecular datasets are processed with the 
help of network analysis, a growing set of predicted pathways and PINs will emerge and 
will offer a new paradigm for re-thinking about how to revolutionize the drug discovery 
process.  
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