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Concepts in Crop Rotations 

H. Arnold Bruns 
USDA-Agricultural Research Service,  

Crop Production Systems Research Unit, Stoneville, MS,  
USA 

1. Introduction 

1.1 Crop rotations – A historical perspective 

Crop rotation is the production of different economically important plant species in 
recurrent succession on a particular field or group of fields.  It is an agricultural practice that 
has been followed at least since the Middle Ages.  During the rule of Charlemagne crop 
rotation was vital to much of Europe which at that time followed a two-field rotation of 
seeding one field one year with a crop and leaving another fallow.  The following year the 
fields were reversed (Butt, 2002).  Sometime during the Carolingian period the three-field 
rotation system was introduced.  It consisted of planting one field, usually with a winter 
cereal, a second with a summer annual legume, and leaving a third field fallow.  The 
following year a switch would occur.  Sometime during the 17th and /or 18th centuries it was 
discovered that planting a legume in the field coming out of fallow of the three-field rotation 
would increase fodder for livestock and improve land quality, which was later found to be 
due to increased levels of available soil nitrogen (N).  During the 16th century Charles 
Townshend 2nd Viscount Townshend (aka Turnip Townshend) introduced the four-field 
concept of crop rotation to the Waasland region of England (Ashton, 1948).  This system, 
which consisted of a root crop (turnips (Brassica rapa var. rapa)), wheat (Triticum aestivum 
L.), barley (Hordeum vulgare L.), and clover (Trifolium spp.) followed by fallow.  Every third 
year introduced a fodder crop and grazing crop into the system, allowing livestock 
production the year-round and thus increased overall agriculture production.  Our present 
day systems of crop rotation have their beginnings traceable to the Norfolk four-year 
system, developed in Norfolk County England around 1730 (Martin, et al., 1976).  This 
system was similar to that developed by Townshend except barley followed turnips, clover 
was seeded for the third year and finally wheat on the fourth year.  The field would then be 
seeded to turnips again with no fallow year being part of the rotation. 

In the new world, prior to the arrival of European settlers, the indigenous people in what is 
now the Northeastern United States, practiced slash-and-burn agriculture combined with 
fishing, hunting, and gathering (Lyng, 2011).  Fields were moved often as the soil would 
become depleted and despite the tale of Native Americans teaching the European settlers to 
put a fish into the corn hills at planting, there is little or no evidence of the aboriginal people 
fertilizing their crops.  Maize would be planted in hills using crude wooden hoes with 
gourds and beans (Phaseolus spp. L.) being planting alongside and allowed to climb the 
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maize stalks. When an area would become depleted of plant nutrients, it would be 
abandoned and over time, would recover its natural fertility.   Lyng (2011), describes the 
Native Americans of the northeast as not so much conscience ecologist but rather people 
with a strong sense of dependences on nature minus the pressure to provide for consumer 
demands.  Plains Indians on the other hand are classified as being of two cultures.  There 
were the nomadic nations that followed the herds of bison that roamed the region and lived 
mainly on a diet of bison meat and what they might gather in the way of wild berries, fruits, 
and nuts with very little farming except for some maize and tobacco (Nicotiana tabacum L.).  
There were then the nations that lived on a combination of meat and crops they would raise.  
These peoples tended to live in established villages and would fish, hunt, and gather wild 
fruit and berries. The crop farming they practiced again, were maize, beans, and squash 
(Cucubina spp. L.), sometimes referred to as “The Three Sisters” in Native American society 
(Vivian, 2001).  As with the nations in what would become the northeastern United States, 
the Plains Indians that practiced crop farming would usually clear their garden areas by 
slash and burn, grow their crops, and then allow a two-year fallow before planting again.  
Just prior to planting, some villages would carry in brush and other plant debris to burn 
along with the refuge that grew in the field during fallow to “enrich” the soil for the crops 
about to be planted. 

The early European settlers attempted to raise those crops (wheat, and rye (Secale cereal L.)) 
which they were accustom to, using cultivation methods they had used in the old country.  
They also, introduced livestock, (cattle, swine, and sheep) which were not found in the New 
World but that had been a major source of food for them in their native homeland.  They 
soon discovered that clearing fields for planting and pasturing was an arduous task and in 
order to survive adopted some of the crop production techniques practiced by the 
indigenous peoples and allowed their livestock to forage open-range (Lyng, 2011).  As 
colonization expanded and available labor increased along with the demand for food, the 
permanent clearing of arable land increased along with the introduction of more Old World 
crops and, unfortunately, their pests that continue to demand time and financial resources 
to contain today.  

The first export from the American colonies to England was tobacco.  Though not a food 
crop, tobacco played a pivotal role in helping sustain the Jamestown colony and gave the 
settlers something to exchange for necessary items to survive. Tobacco is a high cash value, 
very labor intensive crop.  Even as of 2002, with only about 57,000 total farms in the United 
States being classed as tobacco farms producing an average of 3 hectares of the crop per 
farm, the average cash value of those 3 hectares was nearly $42,000 (Capehart, 2004).  
Though tobacco preserved the Virginia colony, within seven years of its cultivation and 
export, its continued production in the New World would usher in the African slave trade, 
the darkest part of America’s past, and would culminate 200 years later into the American 
Civil War.  

Prior to colonization, a species of cotton, Gossypium barbadense, was being grown by the 
indigenous people of the New World (West, 2004).  Columbus received gifts from the 
Arawaks  of balls of cotton thread upon making landfall in 1492. Egyptian cotton (G. 
hirsutum L.) was introduced to the colonies as early as 1607 by the Virginia Company in an 
attempt to encourage its production and help satisfy the European appetite for the fiber that 
was currently being exported from India .  However, tobacco production and the lucrative 
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prices being paid for it along with the belief that cotton depleted the soil and required too 
much hand labor, dissuaded the colonist from planting the crop.  Even encouragement from 
the colonial Governors, William Berkley and Edmund Andors could not convince the 
settlers to switch to cotton.  Small hectarages of G. hirsutum L. though were grown along the 
Mid Atlantic colonies for individual household use.  The Revolutionary War halted imports 
of large quantities of cotton to the former colonies from Britain and forced the Americans to 
grow their own supply.  By the mid 1780’s production had expanded and the newly formed 
United States became a net exporter of cotton to Britain.   

After the development of the cotton gin by Eli Whitney in 1793 the key to financial success 
in the southern states was acquiring large hectares of land for cotton production and large 
numbers of slaves to tend to the crop.  Maize, small grains, forages, and food crops were 
grown only in sufficient quantities to sustain the plantations that had developed.  These 
crops were not grown for the purpose of commerce and were often relegated to some of the 
marginal lands on the plantation or near the homestead for convenient harvest.  The bulk of 
all cleared fields were devoted to production of tobacco or “King Cotton” as it would 
become known.  From 1800 to 1830 cotton went from making up 7% ($5 million) of exports 
from the United States to 41% ($30 million) (West, 2004).  Tobacco production went from 
45.4 million kg at the outbreak of the Revolutionary War to 175.8 million kg prior to the 
Civil War (Jacobstein, 1907).  Crop rotation was not even considered an option with respect 
to these crops due to the cash value paid for them.  By 1835 the top soil of eastern Georgia 
had eroded away with the remaining clay unsuitable for cotton production.  As soils became 
depleted of nutrients necessary for the crops’ production, more wilderness, particularly 
further west would be cleared and farmed.  This resulted in conflicts with the native peoples 
that resulted in their forced resettlement onto reservations and the spread of slavery 
westward into newly chartered states in the south.  This further deepened political and 
economic conflicts that would explode into the American Civil War. 

1.2 Advent of agricultural education and research 

The Morrill Act of 1862 and again 1892 established the American Land-Grant colleges in 
each state and charged them with the responsibility of teaching the agricultural and 
mechanical disciplines, along with other responsibilities necessary to an advanced 
education.  The Hatch Act of 1887 then established the Agriculture Experiment Station 
system which, in most states, is administered by the Land-Grant Universities and was to 
provide further enhancement of agricultural teaching through experimentation.  In 1914 the 
Smith-Lever Act established the State Cooperative Extension Service which disseminates 
information to the public of advances in agriculture production discovered by the state 
agricultural experiment stations.  All three of these legislative acts came about because of a 
need to better understand sound farm management practices, including crop rotations, to 
improve the nation’s farm economy.   

The concept of agriculture research stations was not an American idea.  The Rothamsted 
Experiment Station in the United Kingdom is said to be the world’s oldest, being established 
in 1843, while Möcken station in Germany, established in 1850, is said to be the world’s 
oldest state supported agricultural research station.  Agricultural research stations can now 
be found in most all developed countries and even many less developed nations.  Research 
on crop rotations has been and continues to be conducted at virtually all of these stations, 
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with specialization towards the environment and crop species indigenous to their location.  
Some of these studies have been in existence since the late 19th century (Rothamsted, 2011).   

Some of the more famous experiments in the United States that continue to be performed at 

some of the Land-Grant Universities, and are now designated on the National Register of 

Historic Places, include The Old Rotation experiment on the Auburn University campus in 

Alabama, The Morrow Plots on the campus of the University of Illinois, and Sanborn Field at 

the University of Missouri.  Mitchell et al., (2008) published that the Old Rotation experiment in 

Alabama has shown over the long-term, seeding winter legumes were as effective as fertilizer N 

in producing high cotton lint yields and increasing soil organic C levels.  Rotation schemes with 

corn or with corn-winter wheat- and soybean (Glycine max L. Merr.) produced  no yield 

advantage beyond that associated with soil organic C (Table 1).  However, winter legumes and 

crop rotations contributed to increased soil organic matter and did result in higher lint yields. 

 

Cotton Lint Yield (kg ha-1) 

Continous 
Cotton    

1986-
1995†  

1996-
2002†  

Soil OM %‡ 

 
0 N/no winter 

legumes 
392d 

 
403b 

 
0.8e 

winter legumes 952ab 1131a 1.8c 

 
134 kg N ha-1 792c 1154a 1.6d 

Cotton-Corn Rotation 

winter legumes 870ab 1120a 1.8c 

 
legumes   + 134 kg N 

ha-1 
970a 

 
1276a 

 
2.1b 

3-Year Rotation (common- 

winter legumes 

corn-small grain-soybean 850ab 1109a 2.3a 

†Values followed by the same letter are not significantly different at P<0.05 
‡Recent data show the effect of increasing soil organic matter on cotton productivity. 

Table 1. Long-term effects of crop rotations, winter legumes and nitrogen fertilizer on cotton lint 
yields at the “Old Rotation Experiment” of Auburn University in Alabama. (Mitchell, 2004). 

Data from the Morrow Plots in Illinois have shown that yields from continuous corn have 

always been much less than corn yields from a of corn-oats (Avena sativa L.) rotation or a or 

corn-oats-and hay (clover (Trifolium spp.) or alfalfa (Medicago sativa L.)) rotation (Aref and 

Wander, 1998).  After the introduction of hybrid corn varieties in 1937, the first plots to 

show an increase in corn yields due to these varieties were the corn-oats-hay rotation.  Yield 

increases due to hybrids were not noticed in the corn-oat plots until the late 1940’s and in 

the continuous corn plots until the early 1950’s.  These lower corn yields of the continuous 

corn and the slower response to corn hybridization in the corn-oat rotation appear to 

coincide with long-term average levels of soil organic matter and nitrogen observed in the 

various plots (Table 2).   
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Rotation 
 

C (g kg-1) N (g kg-1) C-N ratio 

Continuous corn 19.2a 1.55a 12.36a 

Corn-oats 23.0b 1.84b 12.46a 

Corn-oats-hay 26.5c 2.12c 12.48a 

Table 2. Soil carbon C, nitrogen N, and C-N ration from a crop rotation experiment on the 
Morrow Plots of the University of Illinois.  

Means of samples taken in 1904, 1911, 1913, 1923, 1933, 1943, 1953, 1961, 1973, 1974, 1980, 
1986, and 1992. (Aref and Wander, 1998).  Values within a column followed different letters 

are significantly different P0.05. 

Corn and wheat yields at Sanborn Field at the University of Missouri have been consistently 
higher when grown in rotation with each other along with red clover (Trifolium pratense L.) 
inter-seeded into the wheat in late winter for forage the following year (Miles, 1999).  Plots 
of both corn and wheat have been grown continuously since the site’s establishment in 1888, 
some receiving animal manure, some commercial fertilizer, and some no fertility treatment.  
All have had reduced grain yields compared to those grown in rotation, even with the 
added manure and/or fertilizer.   

Thirty years after Sanborn Field’s establishment, its focus began to shift to the study of 
cropping systems as related to soil erosion and the resulting loss of productivity.  An 
experiment conducted in 1917 by F.L. Duley and M.F. Miller on the campus of the 
University of Missouri used seven test plots to measure soil erosion resulting from rainfall 
(Duley and Miller, 1923).  This research led to creation of the Soil Conservation Service of 
the USDA, which in now a component of NRCS-USDA.  It led to the establishment of 
experiment stations throughout the United States dedicated to the study of crop rotations on 
soil erosion and developing cropping systems to minimize erosion’s impact (Weaver and 
Noll, 1935).   Experiments at these stations in Iowa, Missouri, Ohio, Oklahoma, and Texas all 
showed plots planted to a continuous cropping system had higher surface soil losses and 
losses of rainfall than plots planted to a forage or in a three or four year rotation (Uhland, 
1948).  

2. Crop rotations vs. continuous cropping 

Crop rotation schemes are, by and large, regional in nature and a specific rotation in one 
environment may not be applicable in another. Continuous cropping schemes or 
monocultures for the most part, have fallen out of favor in many farming regions.  Roth 
(1996) published mean corn yields from a 20 year crop rotation experiment in Pennsylvania 
that included rotation with both soybean and alfalfa showing higher yields with all rotation 
schemes than continuous corn (Table 3). The extensive use of commercial fertilizers and 
pesticides has helped mask most of the beneficial effects of crop rotation.  But Karlen et al. 
(1994) has stated” no amount of chemical fertilizer or pesticide can be fully compensated for 
crop rotation effects”.  However, economics continues to be the large determining factor into 
how a field is managed.  
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Crop Rotation Yield Mg ha-1 

Continuous corn 8.7 
Corn/soybean 9.1 
Corn/two-year alfalfa 9.6 
Corn/corn/three-year alfalfa 9.6† 
Corn/corn/three-year alfalfa 9.3‡ 

†First year corn yield 
‡Second year corn yield 

Table 3. Mean corn grain yields as influence by crop rotation from 1969 to1989 at Rock 
Springs, PA. (Roth, 1996). 

One primary benefit to crop rotation is the breaking of crop pest cycles.  Roth (1996) states 

that in Pennsylvania, crop rotations help control several of the crop-disease problems 

common to the area such as gray leaf spot in corn (Cercospora zeae-maydis) take-all in wheat 

(Gaeumannomyces graminis var. tritici), and sclerotina in soybean (Sclerotinia sclerotiorum). In 

corn, corn rootworms (Diabrotica virgifera  spp.) can be a devastating pest and crop rotation 

was considered to be the most effect method of control.  However,  beginning in the late 

1980’s there was a variant of the Western corn root worm (D. virgifera virgifera LeConte) that 

began egg laying in soybean fields, making larvae present to feed upon first year corn in a 

soybean-corn rotation (Hammond et al., 2009).  Prior to this time the standard method to 

avoiding rootworm damage was to rotate.  However, during the mid-1960’s in the Cornbelt 

there was a movement to engage in growing corn continuously on highly productive soils.  

Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was being readily adopted 

for weed control in corn and a number of insecticides were becoming available for of control 

corn rootworm and other corn insects.  Also sources of nitrogen fertilizer were readily 

available and relatively inexpensive.  Competitive profits for other crops, particularly 

soybean, and continued research showing tangible benefits to rotations though returned 

most fields to some sort of rotation scheme.  However, there are some producers today who 

are profitable at growing continuous corn.  But, such a system appears to require strict 

adherence to sound management practices. 

Cotton is probably the principle crop that has been grown continuously on many fields, 
some for over 100 years.  The crop was profitable and well suited for production in areas 
prone to hot summer temperatures and limited rainfall.  There was also an infrastructure 
available in these production regions for processing the lint and seed as well as a social 
bond that connected the crop to the people who grew it.  Corn, hay, and small grains were 
the “step children” of agronomic crops for generations of southern planters.  Corn and 
winter oats were grown in the Cottonbelt solely as feed grains for the draft animals used to 
grow cotton and the meat and dairy animals grown for home consumption.  There were 
basically no markets available or facilities to handle some of these crops for commercial 
trade.  Despite being introduced in the 1930’s, it wasn’t until the early 1950’s that soybean 
became an important crop in the lower Mississippi River Valley (Bowman, 1986).  Rice 
(Oryza sativa L.) was introduced to the Mississippi River Delta in 1948 and together these 
crops provided alternative sources of agronomic income to cotton but did little to encourage 
crop rotation.  Both rice and soybean were relegated to the heavier clay soils of the 
Mississippi Delta with the sandy loams, silts, and silty clays remaining in cotton.  It wasn’t 
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until changes in government support programs in the mid-1990’s that planters in the Mid 
South became interested in alternatives to continuous cotton and began to produce corn for 
commercial sale and rotate it with cotton.  Corn hectareage in the states of Arkansas, 
Louisiana, and Mississippi increased from 161,000 ha in 1990, to 382,000 ha in 2000, to 
630,000 ha in 2010 (USDA-NASS,  2011).  

Until 2007 research information about corn-cotton rotations were limited.  An extensive 
study on various corn-cotton rotation schemes yielded data on the effects of rotation on 
yields and reniform nematode (Rotylenchulus reniformis) a serious pest to cotton.  Bruns, et al. 
(2007), reported corn grain yields were greater following cotton than in plots of continuous 
corn.  Pettigrew, et al. (2007), noted that cotton plant height increased 10% in plots following 
one year of corn and 13% following two years of corn when compared to continuous cotton 
(Table 4). Lint yields increased 13% following two years of corn primarily due to a 13% in 
bolls per m2.  No other  increases were noted however.  Stetina, et al., (2007) found that 
following two years of corn production, reniform nematode populations remained below 
damaging levels to the cotton plants.  However, cotton following just one year of corn 
would have reniform nematode populations rebound to damaging levels towards the end of 
the growing season. 

 

       Yield(kg ha-1)   

Crop  
Rotation 

sequence† 
 2000  2001  2002  2003 

            
Cotton  continuous cotton  1101a  1036a  1257  1266b 
  corn-cotton-corn-cotton xxx  1068a  xxx  1353ab 
  cotton-corn-corn-cotton 1117a  xxx  xxx  1460a 
            
Corn  continuous corn  10,364a  10,107b  7587a  9032 

  corn-cotton-corn-cotton 10,297a  xxx  8157a  xxx 
  cotton-corn-corn-cotton xxx  10,675a  7730a  xxx 

 †Lint yield for cotton; grain yield at 155 g kg-1 seed moisture; all values are means of eight reps 
averaged across four genotypes. 
‡Within each crop and year, means followed by the same letter are not significantly different by lsd (P0.05) 

Table 4. Effect of crop rotation sequence on crop yield of corn and cotton from 2000 to 2003 
in Stoneville, MS. (Stetina et al., 2007). 

3. Rice production and crop rotation 

Rice ranks third behind corn and wheat in total tons of grain produced in the world but it is 
the primary dietary staple for more people than any other cereal (Raun and Johnson, 1999).  
It is grown on every continent except Antarctica.  By the 1990’s rice was providing 35% to 
59% of the total calories consumed by nearly 2.7 billion people in Asia (Neue, 1993).  Peng et 
al. (1999) quoted that world rice production would need to be at least 600 million tons by 
2025, an increase of 266 million tons above 1995 production just to maintain current 
nutrition levels.  This increase will likely not be sufficient to alleviate current malnutrition in 
many of the rice dependent cultures (Neue, 1993).  In areas where it is virtually the sole 
source of calories it is seldom grown in rotation with other crops.  Anders, et al., (2004) 
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stated that producers growing continuous rice will likely experience lower grain yields than 
those using a rice-soybean rotation.   

A common rotation with rice in southern and eastern Asia is a rice-wheat rotation system that 
occupies an estimated 24 to 27 million hectares (Wassmann, et al., 2004).  Lattimore (1994) 
reviewed the literature pertaining to rice-pasture rotations in southeastern Australia.  Annual 
pastures based on subterranean clover (Trifolium subterraneum L.) are well adapted to this part 
of the world and the rice cropping system.  It provides considerable fixed N to the rice crop 
thus reducing the need level of supplemental N fertilizer as well as breaking weed cycles.  It 
helps sustain a complimentary animal agriculture to use crop residues and provides 
opportunities for improved farm income.  With respect to disease control in rice, both false 
smut (Ustilaginoidea virens (Cooke) Takah) and kernel smut (Neovossia horrida (Takah.) Padwick 
& A. Khan, syn. Tilletia barclayana (Bref.) Sacc. & P. Syd.) two serious fungal pests in rice 
production areas of the United States, appear to be best controlled when rice is grown in three 
year rotations with soybean and corn between rice crops (Brooks, 2011).  Traditional rotations 
of rice-soybean, with winter wheat grown between the two summer annuals, were observed to 
have the highest levels of these diseases especially with high N- fertility levels. 

4. The corn-soybean rotation 

One of the more widely practiced rotations in the United States involves the corn-soybean 
rotation scheme used extensively in the North Central and Mid-Atlantic States.  Within the 
20 year period between 1988 and 2008 nearly 30 publications were known to have been 
published that compared corn-soybean rotations to continuous corn (Erickson, 2008).  
Virtually all of this research showed increases in corn grain yields from plots that had been 
planted to soybean the previous year.  A few of these experiments followed soybean with 
two years of corn and in those studies yields from the second year corn crop were equal to 
or still greater than those from plots of continuous corn but less than the first year corn crop.  
One of these studies (Porter et al., 1997) examined the effects of various corn-soybean 
rotation schemes at three locations in the northern Corn Belt.  Data from these studies 
showed that not only were both corn and soybean yields higher in rotation compared to 
monocultures of the two crops (Table 5), but that differences between rotations and 
monocultures were greater in low-yielding environments than in high-yielding conditions.  
 

    Yield (Mg ha-1)   

Crop†  1st-yr 2nd-yr 3rd-yr 4th-yr 5th-yr Cont.  
S-C 
rotation 

     

Corn  9.00a 8.04b 7.90b 7.90b 7.88b 7.81b  8.83a 

Soybean  3.26a 2.99b 2.84c 2.82cd 2.8cd 2.77d  3.05b 

†Crops were grown under corn or soybean monoculture of the respective crop in the following 
sequence: 1st-yr, 2nd-yr, 3rd-yr, 4th-yr and 5th-yr corn or soybean after 5 yr of corn or soybean; Cont. 
(continuous corn  or soybean); and S-C (alternating soybean and corn).  Values followed by the same 
letter or letters within each crop species are not significantly different at (P0.05). 

Table 5. Corn and soybean yields from 3 locations in Minnesota and Wisconsin representing 
29 environments. (Porter, et al., 1997) 
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 Studying the net returns of various crop rotation schemes involving corn, Singer and Cox 
(1998) calculated a greater net return ($250 US ha-1) with a corn-soybean rotation than a 
continuous corn ($193 US ha-1) or a three year soybean-wheat/red clover rotation ($133 US 
ha-1).  A recent study reported though, that yield comparisons are not the appropriate basis 
for decision making on cropping systems but rather economics is most important (Stanger et 
al., 2008).  This report showed that, with the exception of continuous corn grown with 224 
kg N ha-1, a corn-soybean rotation was the most stochastically efficient cropping system 
across a range of N fertility treatments and other rotation schemes. 

4.1 Other soybean rotations 

Though soybean is one of humankind’s oldest crops, it did not really become of significance 
in the United States until the late 1940’s.  The species was introduced in Europe from China 
in the mid 18th century and into the new world in the early 19th century where it was used 
primarily as a hay crop.  The combination of the destruction in China from World War II 
and the Cultural Revolution removed it as the world’s primary supplier of soybeans and 
opened an opportunity for the United States to develop the crop as a major oil seed (North 
Carolina Soybean Producers Assn. , 2011).  Currently the United States produces about 40% 
of the world’s soybeans followed by Brazil and Argentina combining to produce 50%.  
Besides corn, soybean is being rotated with rice or cotton in the Mid South and Southeastern 
States (Anders et al., 2004: Stallcup, 2009).  In the eastern Great Plains soybean is often 
rotated with wheat or grain sorghum (Sorghum bicolor L. Moench) as well as corn (Kelley et 
al., 2003).  Kelley et al. (2003), found that in general soybean yields grown in rotations with 
wheat or grain sorghum produced a 16% greater seed yield than when grown in a 
monoculture (Table 6).  One of these rotations was soybean double-cropped behind winter 
wheat which is frequently practiced in areas of the United States south of 39o N latitude.  
This practice does risk failure from drought either causing poor emergence or poor seed set.  
Above 39o N there is also the risk of early frost terminating growth and above 40o N the 
practice of double-crop soybean after wheat is not advisable. 
 

 Rotation†  
W-S/S W-Fal/S GS/S Cont. S 

 Yield Mg ha-1‡   
1.91 2.09 1.99 1.68 

†W-S/S=Wheat-double crop soybean/soybean; W-F/S= Wheat-fallow/soybean; GS/S= Grain 
sorghum/soybean; Cont. S= continuous soybean. 
‡All means are significantly different by LSD (P0.05). 

Table 6. 10 Year average 2nd year soybean yields in a two year rotation scheme at Columbus, 
KS from1980 to1998. (Kelley et al., 2003) 

5. Rotations for forage crops 

Prior to the extensive production of soybean for seed in the United States, and important 
rotation scheme in much of the New England, Mid-Atlantic and North Central states was 
corn-winter wheat-red clover.  Frequently the red clover would be over seeded in late 
winter or early spring in the developing wheat crop.  Many times timothy (Phleum pretense 
L.) a cool-season perennial grass would be seeded along with the red clover.  The mixture 
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would provide some pasture or hay the first year after the wheat was harvested but was 
most productive the following year.  The two species combined will provide more forage 
production together than each species separately (Martin and Leonard, 1967).  These fields 
would frequently then be plowed in fall or spring of the second year with the sward 
providing a green manure crop for the following season.  Sometimes only red clover would 
be over seeded in the wheat solely for the purpose of being used as a green manure crop.  
Other grass species would occasionally be seeded with the red clover and sometimes the 
field would remain in red clover-grass for two or more years to provide hay and grazing.  
Though this rotation is comparatively old, it is still practiced, especially where there are 
numerous beef cow-calf, dairy, or horse enterprises. 

Both beef and dairy cattle farming involves crop management challenges that many tend to 
overlook when thinking about crop rotations.  Many people do not think of pasture swards 
as being a “crop”.  But to the cattleman it is a very important source of income and deserves 
as much attention to management as any other economic plant life.  Dairy farms are very 
dependent on careful management of feed and forage resources in order to be sustainable.  
Not only is the quantity of feed and forage important to the dairy animal but quality as well, 
to insure maximum milk production during lactation.  Roth et al., (1997), list a number of 
suggestions to aid dairy farmers in developing long term crop rotation plans that address 
production issues, such as feed quantities, forage quality, fertility, and pest control issues as 
it relates to corn silage production.  Greater restrictions on pesticide use, are often placed on 
dairy operations due to concerns over traces of some chemicals carrying over into milk that 
is consumed by children.  Continuous corn silage production carries the risk of corn 
rootworm damage, and as pointed out earlier, the western corn rootworm has adapted to 
egg laying in soybean fields and can damage corn following soybean.  Roth (1996) points 
out that western corn rootworm larvae cannot tolerate a rotation to alfalfa.  Therefore, 
seeding alfalfa after corn for silage will not only provide a good source of quality hay but 
also eliminate the need for a soil insecticide for rootworm control in the following corn crop.   

Temporary meadows, which are seeded into a forage species for one to three years and then 
cultivated for a grain crop are sometimes included in discussions regarding crop rotations.  
However, a number of dairy farms and beef cow-calf operations occur in areas that include 
land unsuitable for tillage of any kind and are often used as permanent pastures that should be 
managed with the same intensity as any other cropland.  Without proper attention these areas 
will often revert to a high proportion of weedy or woody species that are not useable by 
livestock and low yielding forage that reduces the pasture’s carrying capacity or places greater 
demands on tillable cropland to provide necessary feed to maintain the animal enterprise. 
Johnson et al., (2007) states that periodic renovation or “renewing” of a pasture is the best way 
to improve forage yield and animal performance.  Pasture renovation is in a way a form of 
crop rotation if you consider crop rotation as a means of maintaining land productivity.  In 
temperate climates renovation usually begins in the fall by overgrazing the pasture to be 
renovated to remove excess vegetative material that might interfere with seeding and 
germination of the new pasture mix ( Johnson et al., 2007; Lacefield and Smith, 2009). Seeding 
usually occurs in mid-winter while the soil is frozen in the first few centimeters.  The thawing 
and refreezing of the soil surface is usually sufficient to allow good contact of the forage seed 
with the soil for germination.  Sometimes a light cultivation  with a disk or spike-toothed 
harrow is done to improve the chances of a good soil-seed contact.   
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Soil tests are usually acquired prior to seeding to determine nutrient availability. 
Applications of pulverized limestone are often required to supply Ca and adjust pH levels 
to facilitate establishment of a forage legume. Many soils in temperate climates tend to be 
acidic (pH 4.5 to 5.5) and require liming to elevate soil pH levels to 5.7 or higher to be more 
suitable for legume establishment. Virtually all recommendations for pasture renovation in 
temperate climates call for the establishment of one or two legumes in the sward (Wheaton 
and Roberts, 1993; Johnson et al., 2007; Lacefield and Smith, 2009; Teusch and Fike, 2009).  
Wheaton and Roberts (1993) listed 10 benefits of including a forage legume in a pasture mix.  
Among them were an increase in animal gain, decrease in herd health problems, an 
increased conception rate by cows, an increased protein yield per hectare, N being furnished 
by the legume to the grass, and reduced pasture production costs.  Johnson et al., (2007) 
stated some of the same benefits along with a better seasonal distribution of forage because 
legumes are generally more productive in mid-summer than cool-season grasses which are 
the more common grass types grown in temperate climates.  Lacefield and Smith (2009), 
reported that tall fescue (Festuca arundinacea Schreb.) growing in conjunction with red clover 
seeded at 6.7 kg ha-1 yielded more dry matter (12,400 kg ha-1) than fescue alone fertilized 
with 202 kg N ha-1 (11,100 kg ha-1).  Teusch and Fike (2009) list several legume species to be 
considered for seeding in pasture renovation.  The more common legume species 
recommended are red clover, ladino clover (Trifolum repens L.), annual lespedeza (Lespedeza 
striata Maxim.), alfalfa, and birdsfoot trefoil (Lotus corniculatus Cav.).  As stated previously, 
in temperate climates cool season grass species are frequently selected to be seeded along 
with the legume when renovating pastures.  For permanent pastures the species of choice 
are often tall fescue, orchard grass (Dactylis glomerata L.), or smooth brome (Bromus inermis 
L.).  Pasture management is an on-going operation and additional seedings may be 
necessary to maintain a profitable sward.  Birdsfoot trefoil has the ability to reseed itself 
even under grazing and alfalfa is a long-lived legume with individual plants able to survive 
up to five years.  Red clover, though a perennial, will usually last only about three years and 
will need to be reseeded.  Some forage specialists have found that over-seeding the pasture 
annually with 4.5 kg ha-1 of red clover seed in mid-winter will maintain the sward at about 
30% legume which is recommended as the proper mix of grass and legume (H.N. Wheaton, 
1975, personal communication).  Even with good management, most pastures will need 
renovation about ever four to five years due to weed growth. 

Pasture renovation in sub-tropical climates usually involves complete destruction of the old 
sward and reseeding or sprigging to reestablish the grass. The reasons or renovation in the 
sub-tropics are usually for weed control, or to reestablish swards lost to insects, over 
grazing, prolonged drought and in some cases multiple freezes during late winter that kill 
off the grasses. Renovation may also be done to replace an older grass cultivar with a newer 
more productive one (Woodruff et al., 2010).  One basic difference between temperate 
pasture renovation and sub-tropical pastures is that in the sub-tropics the old sward is 
essentially destroyed and a new one established (Verdramini et al., 2010). Sub-tropical 
pastures are not as apt to include a forage legume due to most of those species being cool-
season and may not survive well in hot humid summer months. Also, many of the grass 
species used are aggressive in nature and effective at crowding out less aggressive species.  
The more common species grown as pasture grasses in the subtropics are hybrid 
bermudagrass (Cynodon dactylon (L.) Pers.), bahiagrass (Paspalum notatum), atra paspalum 
(Paspalum atratum Swallen), digitgrass (Digitaria decumbens) (En), limpograss (Hemarthria 
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altissima), and Rhodes grass (Chloris gayana (Kunth)) (Verdramini et al., 2010).  All of these 
grasses except atra paspalum, bahiagrass and Rhodes grass require vegetative propagation 
in order to be established.  As with temperate pastures, the pasture must first be properly 
prepared by controlling weeds, insects, removing old or dead vegetative material and 
fertilizing to soil test recommendations. Burning is often used in preparing bermudagrass 
pastures for renovation (Stichler and Bade, 2005).  Tillage operations are often performed 
during dry periods in the spring to further control weeds and old sward growth as well as 
better prepare the land for vegetative propagation with the onset  of summer rains (Stichler 
and Bade, 2005;Verdramini et al., 2010).  In both the subtropical and temperate climates 
warm season annual forages may be included into crop rotations on land used primarily for 
cultivated crops.  This is to provide additional pasture, hay or silage for livestock 
operations.  Species such as pearl millet (Pennisetum glaucum (L.) R.Br.), sudangrass 
(Sorghum bicolor subsp. Drummondii (Steud.) de Wet ex Davidse), and other forage sorghum 
and sorghum x sudangrass crosses often fill this role (Hancock, 2009). 

6. Summer fallow  

Summer fallow, the practice of growing a crop every other year and in most systems, 
controlling weed growth during the off-year, has been used almost exclusive in semi-arid 
regions for the production of wheat or other small grains. Its purpose is to accumulate 
sufficient limited rainfall during the fallow year to grow a crop the following year and to 
break crop disease cycles.  Most of the world’s drylands are in developing countries where 
water resources are usually limited by a lack of rainfall and potential irrigation (Ryan et al., 
2008).  Stewart et al. (2006) has stated that dry regions worldwide supply about 60% of 
human food stuffs.  Areas where this is a common practice are the Mediterranean, semiarid 
regions of Africa, Asia, Australia, the Pacific Northwestern United States, and the western 
regions of the Canadian and United States Great Plains.   Many of these areas practice a 
“clean” summer fallow where the land is kept weed free during the fallow year, usually by 
cultivation or herbicides.  However, in northern Africa a weedy fallow is often employed 
where palatable weeds and volunteer crop plants are allowed to grow and then be grazed 
by livestock (Ryan et al., 2008).  This allows for an animal agriculture to exist that provides 
needed calories and returns manure to the land to provide nutrients for the following crop.   

In semiarid areas of the Pacific Northwestern United States summer fallow wheat 
production has been practiced nearly 130 years (Schillinger et al., 2007).  In recent years 
though, studies have been conducted in semiarid regions of the United States and Canada to 
adapt a continuous cropping system to replace summer fallow.  Water storage efficiency in 
most summer fallow-wheat rotations is usually less than 25% of the rainfall received during 
a 14 month period using conventional tillage (McGee et al., 1997).  Research from Colorado 
and Nebraska demonstrated that precipitation storage efficiency could be improved to 40% 
to 60% through minimum or no-till which allows crop residue to remain on the soil surface 
and soil disturbance is held to a minimum or eliminated (Croissant et al., 2008).  However, 
such practices added little or no increase in wheat yields and it was concluded that the 
resultant water savings could only be converted to profit by employing intensive cropping 
systems where fallow time is decreased and summer crops such as maize, grain sorghum, or 
annual forages and included in the rotation.  Under no-till it was determined that it cost 
more to save the additional water than the value of the added grain yield.  Lyon et al. (2004) 
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reported that winter wheat yields in the central Great Plains were negatively affected by 
eliminating the 11 to 14 month summer fallow by spring planting a transitional crop before 
wheat in the fall.  However, a spring planted forage crop that was harvested early had a 
minimum negative impact on wheat yields and that the value of the forage combined with 
the following wheat yields resulted in greater income than the traditional winter wheat-
fallow rotation.  Research from the Horse Heaven Hills region of Washington looked at a 
continuous no-till hard red spring wheat system verses a winter wheat-fallow rotation and 
found the hard red spring no-till system did not match the winter wheat-fallow system of 
production in yield or income.  However, the continuous no-till system did offer a benefit of 
providing ground cover that reduced wind erosion and air pollution by dust particles 
(Young et al., 2000). 

Summer fallow is also practiced on fields used to produce castor bean (Ricinus communis L.) 
the previous year.  This is not done for accumulating moisture but to rid the field of any 
volunteer plants.  Castor bean contains a very deadly toxin, ricin, which in very small 
quantities can kill humans and livestock.  Summer fallow in this case allows volunteer 
plants to be destroyed and the field cleaned for future feed and food crops. 

7. Organic farming and crop rotations 

Organic farming has embraced crop rotations as its backbone to success.  Crop rotation is 
practiced with what appears to be, much more intensity than most conventional farming 
systems with particular emphasis on sustainability.  A crop rotation plan and accompanying 
records for a field and/or farm are required for certification as an organic farming operation 
(Johnson and Toensmeier, 2009).  Organic farming and its use of crop rotations could be 
summed up in part, as the employment of proven crop management practices prior to the 
advent of pesticides and processed fertilizers.  This is not to say that improvements on those 
rotation systems have not occurred.  Most have been modified to accommodate 
mechanization and most other time saving ideas.  But, yields may be lower.  Maeder et al., 
(2002) reported on a 21 year study in Europe that crop yields on organic farms were 
generally 20% lower.  However, there was an offsetting decrease of 34% in fertilizer expense, 
a 53% reduction in energy costs, and a 97% decrease in pesticides.  Reganold et al., (1987) 
reported a comparison of the long-term effects (40 years) of conventional farming to organic 
systems found that organic farms had significantly higher levels of soil organic matter than 
conventional systems, greater top soil depth, higher polysaccharide content, and less soil 
erosion. Clark et al., (1998) reported that over an eight year period of applying organic crop 
rotation practices that soil organic matter had increased 2% over a comparable field that 
used conventional practices in a two-year rotation scheme.  

A major challenge to organic crop production is control of weeds.  Weed management has 
been identified by producers as the principle problem in organic farming (Walz, 1999).  The 
advent and subsequent extensive use of herbicides after World War II altered crop 
production practices, especially crop rotations.  Conventional crop farming today usually 
involves two- or three-crop crop rotations as have been previously mentioned with a heavy 
reliance on herbicides to at least reduce or eliminate weed problems.  Regardless of the type 
of farming system used, conventional or organic, weeds are a constant annual drag on 
achieving maximum yields of high quality produce.  Nave and Wax (1971) reported a 
reduction in soybean seed yields of between 25% to 30% compared to weed free plots due to 
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the presence of one smooth pigweed (Amaranthus hybridus L.) per 30 cm of row and that 
yield losses from stubble, lodging and stalks were more than double in pigweed and giant 
foxtail (Setaria fabric Herrm.) infested plots compared to weed free plots.   Weeds compete 
with a crop for water, light, and soil nutrients directly reduce yields.  Some species have 
alleopathnogenic effects upon certain crops, reducing their growth and yield or in extreme 
cases causing their death. Weeds can harbor insect pests or serve as alternate hosts to plant 
diseases that further reduce yields and produce quality.  They can add off-flavors to crop 
products or in some cases provide toxins to produce, rendering it unhealthy to consume.  
Weeds present during harvest can also damage the crop being harvested.  Ellis et al., (1998) 
reported increases in damaged soybean seeds by 8.2% to 11.1% with the presences of a plant 
per m of row of any of five common weed species found in the Mid South.  In organic 
farming, crop rotations are vital to controlling weed growth.  Teasdale et al., (2004) 
evaluated the weed seed dynamics of three organic crop rotations and found that seedbanks 
of smooth pigweed and common lambsquarter (Chenopodium album L.) were usually lower 
following a hay sward in a four-year rotation or wheat in a three-year rotation than 
following soybean in a two-year rotation prior to being planted to corn.  However, annual 
grassy weed seedbanks prior to corn planting were generally higher following the hay 
sward of the four-year rotation than the wheat of three-year rotation or the soybean of the 
two-year rotation. Porter et al., (2003) also found that weed control in organic corn and 
soybean were better when they were part of a four-year rotation of corn-soybean-oat-alfalfa 
compared to a two-year corn-soybean scheme. 

Nitrogen is probably the most important of the macro-nutrients in crop production.  

Libraries at all major agricultural universities have a seemingly endless supply of research 

articles and texts pointing out the importance of adequate N-fertility in the growth and 

development of every crop important to humankind.  In organic crop farming, and 

increasingly in conventional cropping systems, the use of crop rotations that supply ample 

supplies of N to non-leguminous cereals is an important management strategy.  Prior to the 

escalating energy prices and the increasing cost of manufactured N-fertilizer sources, the 

use of legumes that fix atmospheric N by Rhizobium-legume symbiosis, especially clover 

species, as green manures or cover crops had diminished sharply.  Even prior to World War 

I legumes would almost always be seeded for a green manure crop preceding corn (Heichel 

and Barnes, 1984).  In organic farming, where the emphasis is to refrain from using 

manufactured N-fertilizer, green manure crops or cover crops are a vital source of N for 

much of their production.  Lupwayi et al., (1998) reported that microbial diversity was 

greater under wheat preceded by red clover manure or field peas (Pisum sativum L.) than 

under continuous wheat.  Long-term crop rotation research in Iowa has shown very little or 

no increase in corn yields from plots receiving N-fertilizer compared to those following one 

or two years of an alfalfa- bromegrass- red clover meadow (Voss and Shrader, 1984).  

Species selection for organic crop rotations is probably more thought out than for 
conventional crop rotations.  As explained earlier, conventional crop rotations are heavily 
influenced by market price of the various commodities available to be grown.  Though 
commodity price is important to practitioners of organic farming it is not the primary 
driving force in making species selections.  Baldwin (2006) states that organic farmers face 
the challenge of practicing crop rotations by defining systems that maintain farm profits 
while improving soil quality and preserving the environment.  Frequently organic farmers 
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will develop rotation schemes and select species based upon the crop’s ability to extract 
nutrients and water from the soil.  Some organic producers include vegetable crops into 
their operations due to these species tendency to extract nutrients and water from shallow 
depths then follow with a cereal that generally feeds to greater soil depths.  Species selection 
is also made on the basis of weed, insect, and disease control.  Delate and Hartzler (2003), 
states that rye has allopathic properties and is often used as a winter cover crop following 
corn to aid in weed control in preceding soybean or oat crops. Sustainability through the 
natural preservation of soil fertility is paramount to the organic farmer and makes the 
selection of species an important part of the operation. Organic crop production makes as 
much use of natural pest control, including crop rotations, as is possible. 

8. Biofuels production and crop rotations 

Interest in using lignocellulosic biomass to produce ethanol is gaining in popularity. 
Lignocellulosic biomass production mainly involves growing and harvesting plants 
generally not used for food or feed. Woody species such as willow (Salix. spp.) and poplars 
(Populus spp.) (Matthew et al., 2010) and grasses such as switchgrass (Panicum virgatum), big 
bluestem (Andropogon gerardii), reed canarygrass (Phalaris arundinacea) are several sources of 
lignocellulosic biomass that have shown to be useful in ethanol production (Hill, 2007).  
Rotation schemes for growing lignocellulocsic crops are, for the most part, still in 
development.  Production of these materials for biofuels though is being done mostly on 
land not suitable for extensive corn and soybean production thus relieving pressure to grow 
more hectares of these crops to satisfy the conventional and biofuels markets.  Worldwide it 
is estimated that about 1% of crop land or about 11-12 million hectares are being used to 
grow biofuels (de Fraiture et al., 2008).  Raghu et al., (2006) points out that some of the traits 
favorable to producing a lignocellulosic crop such as being a C4 photosynthetically, lacking 
pests, rapid early season growth, and long canopy duration can also tend towards them 
being invasive.  This would not work well in a rotation scheme with most conventional 
crops.  Currently lignocellulosic crops contribute little to current U.S. transportation biofuel 
suppliers but will likely provide the great share of ethanol in the near future. 

In the United States, debate is underway concerning the use of corn as a primary source of 
fuel ethanol.  Also, soybean oil is being blended with diesel to extend it.  Diversion of these 
crops for biofuels is believed to increase food prices for consumers as the competing interest 
of food and fuel vie for the available supply.  There is also concern that the increased 
demands for these grains will negatively impact crop rotations, particularly those that help 
conserve soil, water, and plant nutrients.  One of the primary reasons corn and soybean are 
currently popular for biofuels over lignocellulosic crops is the comparatively short time to 
harvest maturity.  Most of the lignocellulosic crops require three to five years to reach 
harvest maturity(Hill, 2007), compared to one year for corn or soybean. Though corn and 
soybean are regularly rotated with one another, history has shown that a substantial 
increase in the price received for any crop can encourage monocultures at the expense of 
proven rotations and their accompanying benefits.  The expanded use of corn and soybean 
as biofuel could diminish the inclusion of small grains and/or forage crops in rotation 
schemes and the tillage of soils that are not well suited for cultivation.  

Besides lignocellulosic crops, the harvesting of crop residues for ethanol production has 
been considered.  Perlack et al., (2006) has reported that nearly 7.0 X 1010 kg of corn stover 
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could be harvested in the U.S. for ethanol production.  Worldwide other crops that produce 
sufficient quantities of residue that could be used to produce ethanol include rice, barley, 
oat, wheat, sorghum, and sugar cane (Saccharum officinarum L.).  The use of crop residues for 
lignocellulosic ethanol production has however run into opposition due to the negative 
impacts such removals have on C sequestration, soil properties, and nutrient availability for 
subsequent crops.  Wilhelm et al., (2007) reported that between 5.25 and 12.50 Mg ha-1 of 
corn stover are required to maintain soil C at productive levels for subsequent crops. Lal 
(2004) states that even though the energy acquired from the world’s crop residue would be 
equivalent to 7.5 billion barrels of diesel, a 30% to 40% removal of crop residue would 
increase soil erosion and its subsequent pollution hazards, deplete soil organic C, and 
increase CO2 and other greenhouse gas emissions from the soil. He suggests establishing 
biofuel plantations of adapted species on marginal lands rather than remove crop residues 
from land used to grow food and feed grains.  Development of such plantations will require 
more aggressive research into developing crop rotation schemes specific for growing 
lignocellulosic crops for biofuel. 

9. Conservation tillage 

Conservation tillage continues to grow in importance in crop production since its inception 
over 40 years ago.  C.M. Woodruff in 1970 was conducting research on strip-planting corn 
into tall fescue sod on Missouri hillsides with the idea of producing a cash grain/feed crop 
along with a forage crop for livestock production while maximizing conservation of the soil 
and rain water (Anonymous, 1970).  Anders et al., (2004) found that phosphorus (P) 
concentrations in run-off water were higher for no-till rice than conventional tilled paddies, 
most likely due to the P being surface applied.  However, total-P concentrations in run-off 
were lower in no-till because of the reduced loss of soil in no-till and its bound P.  
Conservation tillage which includes both minimum tillage and no-till practices, are used to 
grow an array of crops from corn, soybean, cotton, grain sorghum, and several small grain 
species almost always in some rotation scheme.  It is popular not only for the conservation 
of natural resources as just mentioned, but also for the savings in fuel, time, wear and tear 
on farm equipment, and the environmentally sustainable attributes of the various practices.  
Minimum tillage, by reduced soil disturbance, promotes a complex decomposition 
subsystem that enhances soil system stability and efficiency of nutrient cycling.  Basically 
minimum tillage more closely mimics natural ecosystems than conventional cropping 
systems (Francis and Clegg, 1990). Tillage has been reported to reduce the diversity of 
bacteria in the soil by reducing both the substrate richness and evenness (Lupwayi et al., 
1998).   They found that the influence of tillage on microbial diversity in fields planted to 
wheat was more prominent at the flag-leaf stage of growth than at seeding and more 
prominent in bulk soil than in the rhizosphere at the flag-leaf stage. 

Kladivko et al., (1986), studied the production of corn and soybean using an array of tillage 
systems ranging from conventional moldboard plowing and seedbed preparation to no-till 
on a range of soils differing in organic matter, texture, and slope for seven-year and six-year 
periods.  At one location on a Chalmers silty clay loam (fine-silty, mixed, superactive, mesic 
Typic Endoaquolls) comparisons of a corn-soybean rotation to continuous crops of these two 
species using various tillage systems was conducted for 10 years (Table 7).  Yields of rotated 
crops tended to be greater than those of the monocultures regardless of tillage. Kladivko et 
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al. (1986) also reported from this research at other locations that conservation tillage systems 
resulted in increased soil water contents, lower soil temperatures, increased soil organic 
matter, and more water-stable aggregates near the soil surface with higher bulk densities 
than conventional tillage.  Corn yields were found to be equal to or better than conventional 
tillage practices when grown on the better drained soils using conservation tillage.  Only on 
the poorly drained soils did corn yields on conservation tilled fields fail to exceed 
conventional tillage, most likely due to low temperatures and excess wetness in the spring 
as depicted with the Chalmers silty clay in Table 7.   
 

Tillage   Previous crop  Corn Soybean Soybean Corn 
System   Crop   Corn Corn Soybean Soybean 

Fall plow 10.7 11.6 3.6 3.8 
Fall chisel  10.3 11.4 3.3 3.6 
Ridge till 10.4 11.6 3.4 3.6 
No-till     9.1 11.2 3.2 3.3 

Table 7. Mean corn and soybean yields (Mg ha-1) in response to tillage system and crop 
rotation on a Chalmers silty clay loam in Indiana in 1980-1984 (data is from 6th to 10th year of 
the study). (Kladivko et al., 1986). 

Roth (1996) presents several crop rotation schemes to use in no-till farming on Pennsylvania 
dairy farms.  One of the more popular is an alfalfa-grass sward for hay followed by no-till 
corn. This involves killing the sod in the fall with herbicides to control weeds and reduce 
residue by early spring to facilitate corn planting.  This rotation seems to work best where 
hay production is limited to three years.  Alfalfa is also successfully no-tilled into fields that 
have just been harvested for corn silage or following the harvest of a spring seeded sorghum 
sudangrass.  Lafond et al., (1992), evaluated no-till, minimum till (one pre-seeding tillage 
operation) and conventional till (fall and spring pre-seeding tillage operations) on a four-
year crop rotation study.  The rotations were fallow-spring wheat- spring wheat-winter 
wheat, spring wheat-spring wheat-flax (Linum usitartissimum L.)-winter wheat, and spring 
wheat-flax-winter wheat- field pea.  Tillage systems did not affect the amount of water 
conserved during fallow.  However, no-till and minimum till did result in an increase in soil 
water from the surface to 120 cm in depth over conventional till.  All three crops in the study 
had greater yields in the no-till and minimum till treatments than in the conventional till.  In 
an experiment using conservation tillage practices (strip-till or no-till) in combination with a 
corn-soybean rotation, both full-season soybean or double-crop soybean following wheat 
had the most consistent increase in seed yields (Edwards et al., 1987). 

In recent years there has been considerable interest in various tillage practices and their 
influence on the sequestration of atmospheric CO2 as a partial means of mitigating its 
current increase and subsequent impact on climate change.  Sampson and Scholes (2000), 
state that the optimization of crop management to facilitate accumulation of soil organic 
matter could help sequester atmospheric CO2 and lower the rate of its increase. West and 
Post (2002), found that, excluding a change to no-till in wheat-fallow rotations, a change 
from conventional tillage to no-till can sequester between 43 to 71 g C m-2 yr-1.  These 
values are within the upper range (10 to 60 g C m2 yr-1) of those reported in a review by 
Follet (2001).  West and Post (2002) also stated that enhanced crop rotation complexity can 
sequester an average of 8 to 32 g C m-2 yr-1 which is similar to an average of 20 g C m-2 yr-1 
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estimated by Lal et al. (1998; 1999) resulting from an improvement in rotation 
management. 

Conservation tillage can present pest control problems that are different from those found in 

conventional systems, particularly weeds.  Weed species composition and abundance often 

change in response to crop and soil management practices (Cardina et al., 2002).  Buhler 

(1995), wrote that most conservation tillage practices rely heavily on increased herbicide use 

and that reduced herbicide efficacy has slowed the adoption of conservation tillage 

practices.  Weed populations have tended to shift more towards perennials, summer annual 

grasses, biennials and winter annual species in conservation tillage systems.  Moyer et 

al.,(1994) stated that successful conservation tillage systems usually involve crop rotations of 

three or more species and several different herbicides. Legere et al., 1997 concluded that 

conservation tillage has the potential to produce sustained yields of spring barley in Quebec, 

provided attention is given to critical aspects such as crop establishment and weed 

management.  With respect to plant diseases, Peters et al., (2003) determined that soil 

agroecosystems can be modified by crop rotation and conservation tillage to increase 

disease suppression by enhanced antibiosis abilities of endophytic and root zone bacteria in 

spring barley and potato (Solanum tuberosum L.). 

10. Conclusions 

Crop rotation is very likely to continue to be an important management practice, especially 

in the developed part of the world.  However, economics is always going to have a major 

say in the decision making process of what gets planted where and by how much.  Our ever 

increasing world population is going to place greater pressure on getting more production 

from our shrinking areas of arable land and potable water needed for drinking, personal 

use, and growing crops.  Climate change is, despite all of the predictive computer models, a 

great unknown, not from the standpoint of whether or not it is occurring but as to just what 

can be realistically done, if anything, to curb it.   

Lands that include a fallow period and/or irrigation to produce crops may eventually be 

taken out of the food and fiber production equation because of both shifts in the climate 

and the loss of water for irrigation.  Production areas of various crop species may shift 

due to climate change.  Changes in crop genetics through biotech and genetic engineering 

may contribute some relief but improvements in water use efficiency are not going to 

eliminate the need for irrigation.  Also, genetically engineered crops in many areas of the 

world are not being well received based on fears, real or imaginary, and increased costs of 

such seed stocks are often prohibitive to many producers.  A nearly 500% increase in 

energy prices and a shift from food, feed, and fiber crops to renewable energy crops will 

have an increasing impact on the land available to grow all crops and the rotations to 

produce them.  Given the history of crop rotations and the overall benefits that appear to 

be gained from them, it is virtually assured that they will continue to be an important 

practice in food production.  Despite the difficulties associated with conducting crop 

rotation research, it will be beneficial to society as a whole to support efforts in this area 

and to adequately reward scientists willing to dedicate their professional efforts in such 

endeavors. 
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