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1. Introduction  

Neural networks expanded to complex domains have recently been studied in the field of 
computational intelligence. Complex-valued neural networks are effective for learning the 
relationships between complex inputs and outputs, and applications to complex analysis 
and complex image processing have been studied (Hirose, 2006). In addition, the 
effectiveness of the computational complexity and the number of training data has been 
confirmed when learning mappings in two-dimensional space (Nitta, 1997). Also, a method 
for complex-valued network inversion to produce an inverse mapping was proposed as a 
related technique using a complex-valued neural network (Ogawa, 2009). We can obtain 
forward mappings and inverse mappings in complex domains using these methods. 

Image filters are important in bio-inspired systems, machine vision, and image processing. 
We can extract relevant information or remove unnecessary information from any given 
image using various image filters (Gonzalez & Woods, 2010; Pratt, 2007). In machine vision, 
image filters are effective for transforming, mapping, and making a required filter adaptive. 
In this work, we propose to adaptively map an image filter using a neural network to make 
an appropriate filter. We show that the mapping requires less training data when using 
complex-valued neural networks. 

In this work, we examine the transformation of image filters using complex-valued neural 
networks. First, we conduct a simulation to learn the transformation, and demonstrate the 
capacity for forward and inverse mapping using complex-valued neural networks. We then 
demonstrate various transformations of image filters, such as Gaussian filters, using 
complex-valued neural networks. In addition, we present the results of image filtering using 
the transformed image filters. 

2. Complex-valued neural networks 

Complex-valued neural networks have recently been used to directly learn and recognize data 
in a complex region. These networks learn complex input–output relationships using complex 
weights and complex neurons. Various models have been proposed for representing these 
networks, such as the multilayer-type neural network (Benvenuto & Piazza, 1992), the self-
organizing map (Hirose & Hara, 2003), and associative memory (Nemoto & Kubono, 1996), 
and a number of applications of these networks have also been studied.  
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Complex-valued neural networks are effective for processing data in a coordinate system 
where the phase rotates or for learning relationships in the frequency domain. Applications 
of complex-valued neural networks include adaptive design of patch antennas (Du et al., 
2002), radar image processing (Hara & Hirose, 2004), and traffic-dependent optimal control 
of traffic signals (Nishikawa & Kuroe, 2004).  

2.1 Complex-valued multilayer neural networks 

In this study, complex-valued multilayer neural networks are used for filter transformation 

based on their capacity for mapping. Complex-valued multilayer neural networks are an 

extension of the usual multilayer neural networks to complex regions. This method 

determines the relationships between complex inputs and outputs using complex neurons 

and complex weights. They are typically composed of an input layer, some hidden layers, 

and the output layers. All functions can be realized in complex-valued multilayer neural 

networks if there is at least one hidden layer and a normal multilayer network. In this study, 

we used a neural network with three layers, namely, input layer, hidden layer, and output 

layer, for simulation.  

In this study, we considered a multilayer neural network based on an error backpropagation 

learning method. This model learns complex input–output relationships using complex 

weights and complex neurons. Complex-valued neural networks are classified on the basis 

of their architecture and the type of neurons found in these networks. For instance, one type 

of complex-valued neural networks is based on the transfer function of the neuron, while 

another consists of real-type neurons. Here, we consider a neuron that independently 

applies a sigmoid function to the real and imaginary parts of the weighted sum of inputs. 

This neuron independently applies a complex sigmoid function to each real part and 

imaginary part, which can be defined as 

 ( ) ( ) ( ) ( )
u

C R I u

e
f s f s if s f u

e
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,

1

−

−

−
= + =
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where i and s = sR + isI indicate the imaginary unit and the weighted sum of the neuron 

input, respectively. The architecture of the complex-valued sigmoid neuron is shown in Fig. 

1. The neuron transforms the weighted sum s = sR + isI of the input xn = xnR + ixnI and the 

weight wn = wnR + iwnI to the output fc(s)=f(sR)+if(sI) using the sigmoid function of equation 

(1). In this network, complex-valued neurons are used for the hidden layer and the output 

layer.  

Complex-valued multilayer neural networks are usually used in two phases of learning and 

estimation, as shown in Fig. 2. In the learning phase, we provide the training input and 

output, and model the forward relation using the error backpropagation algorithm. During 

the estimation phase, we obtain the output for a given input by fixing the weights obtained 

in the leaning phase.  

Next, we explain learning in a complex-valued neural network using the error 

backpropagation algorithm, which is enhanced for complex regions. Here, we consider a 

three-layer network with an input layer, a hidden layer, and an output layer. The output 

error E = ER + iEI is defined by the squared error as 
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where y’r = y’rR + iy’rI and yr = yrR + iyrI are the r-th tutorial output and the network output, 
respectively. First, we formulate the weight update procedure between the hidden and 

output layers. The error signal r rR rIiδ δ δ= + from the output layer is calculated by 

 ( )( )( ) ( )( )( )rR rR rR rR rR rI rI rI rI rIy y y y y y y y1 1 , 1 1δ δ′ ′= − − + = − − + . (3) 

Also, the gradient of the output error for the weight wrk = wrkR + iwrkI between the hidden 
and output layer is expressed by 

 R I R I
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where vk = vkR + ivkI indicates the input from the k-th hidden neuron. Therefore, the weights 

are updated by 

 ( ) ( )new old new old
rkR rkR t rR kR rI kI rkI rkI t rI kR rR kIw w v v w w v v,ε δ δ ε δ δ= − + = − −  (5) 

where εt denotes a training gain. In this way, complex weights are updated between the 
hidden and output layers. Next, we formulate the weight update procedure between the input 

and hidden layers. The error signal k kR kIiδ δ δ= +  from the hidden layer is calculated by 
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Also, the gradient of the output error for the weight wkm = wkmR + iwkmI between the input 

and hidden layer is expressed by 

 R I R I
kR mR kI mI kR mI kI mR

kmR kmR kmI kmI

E E E E
x x x x

w w w w
, , ,δ δ δ δ

∂ ∂ ∂ ∂
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where xm = xmR + ixmI indicates the input from the m-th input neuron. Therefore, the weights 

are updated by 

 ( ) ( )new old new old
kmR kmR t kR mR kI mI kmI kmI t kI mR kR mIw w x x w w x x,ε δ δ ε δ δ= − + = − −  (8) 

where εt is a training gain. In this way, the complex weights between the input and hidden 

layers are updated. The input-output relationship is learned by correcting each complex 

weight according to the above equations. In general, the afore-mentioned weight correction 

is repeated until a prescribed error value or repetition number. The principle of weight 

correction is based on the output error, as shown in Fig. 3.  

The output is estimated from a given input using the learned complex-valued multilayer 

neural network. In the network studied, the output corresponding to the given input can be 
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estimated by fixing the weights obtained during learning with a given input and obtaining 

the output.  

 

Fig. 1. A complex-valued sigmoid neuron. 

 

Fig. 2. Two-step estimation with complex-valued neural network. 
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Fig. 3. Iterative correction of weights by error backpropagation learning. 

2.2 Complex-valued network inversion 

The inverse problem determines the inner mechanism or cause of an observed 

phenomenon. The concept of the inverse problem is shown in Fig. 4. The cause is 

estimated from a fixed model and a given result in the inverse problem, whereas the 
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result is determined from a given cause by using a certain fixed mathematical model in 

the forward problem (Groetsch, 1993). We consider the estimation process with the neural 

network from the viewpoint of the direction of the problem. A multilayer neural network 

is a normal solution for the forward problem because it estimates the output from the 

input based on the forward relationship obtained by training. In contrast, an inverse 

problem can be solved using a multilayer neural network inversely with the forward 

relationship obtained during training. 

A normal multilayer neural network can be used to solve the forward problem. Given a 

normal multilayer network where training is completed, the input-output relationship is 

given by y = f (w, x), where x, y, and f are the input vector, the output vector, and the 

function defined by the interlayer weights w of the network, respectively. Given the input 

vector x, the network calculates the output vector y. Linden and Kindermann proposed a 

method for network inversion (Linden & Kindermann, 1989). Using this method, we can 

determine the observed output data y with f fixed after finding the forward relationship f by 

training. Then, the input x can be updated according to the calculated input correction 

signal, based on the duality of the weights and input. The input is actually estimated from 

the output by the iterative updating of the input based on the output error. In this way, the 

inverse problem for estimating input x from output y is solved with a multilayer neural 

network by using the forward relationship inversely. Further, network inversion has been 

applied to image restoration (Valova et al., 1995) and the inverse kinematics of robot arms 

(Ogawa & Kanada, 2010). 

The network is used in two phases, forward training and inverse estimation, to solve the 

inverse problem by network inversion, as shown in Fig. 5. During the training phase, we 

provide the training input x and the training output y and calculate the output error E. 

Then, the weight w is updated by 

 
new old

t

E
w w

w
ε

∂
= −

∂
 (9) 

where εt is the training gain, because the output error is due to maladjustments of the 

weights. The forward relationship is obtained by repeating this update procedure. This 

procedure is based on the usual backpropagation method. During the inverse estimation 

phase, we fixed the relationship obtained during training, given the random input x and the 

test output y, and we calculated the output error E. The input x is then updated by 

 new old
e

E
x x

x
ε

∂
= −

∂
 (10) 

where εe denotes the input update gain, because the output error is due to the error of the 

input. The input is estimated from the output by repeating this update procedure. The 

principle of input correction is shown in Fig. 6. 

A complex-valued network inversion is an extension of the principle of the network 

inversion to a complex number. In a complex-valued network inversion, the network 

inversion technique extended to a complex number is applied to a learned complex-valued 
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multilayer neural network to solve inverse problems. As a result, the complex input is 

estimated from a complex output, which is given to a learned complex-valued neural 

network. The network learns the input and output relationship using the error 

backpropagation algorithm extended to the complex region, which is explained in the 

previous section. 

During the inverse estimation phase, the input is estimated from the given output. Thus, the 

provided initial random input is repeatedly updated by the output error, which is 

backpropagated to the input via the fixed weights. To provide an initial random input xm = 

xmR + ixmI, the squared error E = ER + iEI is calculated as  

 ( ) ( )R rR rR R rI rI
r r

E y y E y y
2 21 1
, ,

2 2
′ ′= − = −∑ ∑  (11) 

where yr = yrR + iyrI and y'r = y'rR + iy'rI indicate the network output and tutorial output, 

respectively. The error signals from the output and hidden layers are also formulated as  

 ( ) ( ) ( ) ( ) ( ) ( )rR rR rR rR rR rI rI rI rI rIy y y y y y y y1 1 , 1 1 ,δ δ′ ′= − ⋅ + ⋅ − = − ⋅ + ⋅ −  (12) 

and 
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where vk = vkR + ivkI indicates the input from the k-th hidden neuron to the output neurons. 

Equations (12) and (13) are similar to equations (3) and (6), respectively. The error signal to 

the input layer is then calculated by 
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δ δ δ

δ δ δ

= − ⋅ + ⋅ −
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∑

∑
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where xm = xmR + ixmI indicates the input from the m-th input neuron to the hidden neurons. 

The error signal δm = δmR + iδmI indicates a demand for input correction to the m-th input 

neuron, so the complex inputs are iteratively corrected as  

 new old new old
mR mR e mR mI mI e mIx x x x,ε δ ε δ= − = −  (15) 

where εe is the inverse estimation gain. When the error reaches the target, the input 

correction is terminated and the obtained complex input becomes a solution. As a result, the 

complex input can be inversely estimated from the complex output by using the complex 

weight distribution obtained during training. This is similar to correcting the weights or the 

input iteratively during training and inverse estimation. However, the inverse estimation 

uses iterative corrections for a given pattern, which differs from training by repeated 

correction of plural patterns. 
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Fig. 4. Concept of inverse problems. 

 

Fig. 5. Two-step estimation to solve inverse problems by complex-valued network inversion. 
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Fig. 6. Iterative correction of inputs by network inversion. 

2.3 Learning of complex-mapping by complex-valued neural networks 

A multilayer neural network can learn the nonlinear mapping relationships between inputs 
and outputs. A complex-valued multilayer neural network and a complex-valued network 
inversion can estimate, respectively, the forward mapping and the inverse mapping 
between an input and output. In this study, we examined the forward and inverse 
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estimation problems using these networks. In the complex-mapping problem, it is important 
that learning is related to the mapping of points on a complex plane. A complex-valued 
neural network has the particular advantage of learning a map with a coordinate system 
that rotates. We consider the use of complex-valued neural networks by replacing the 
mapping with a transformation of the rotation with a mapping on a complex plane.  

We consider the problem of mapping a point on a complex plane using a network with an 

input and an output. The network learns the input/output relationship using a given 

complex learning pattern for input and output learning. During the forward estimation of a 

complex-valued multilayer neural network, we provide the input to obtain the output by 

fixing the weights obtained in learning. During the inverse estimation of the complex-

valued network inversion, we provide a complex random input pattern and iteratively 

correct the input from a given complex output pattern by fixing the weights obtained in 

learning.  

Various kinds of information can be expressed by assigning meanings to the coordinates in 

complex mapping problems. In this study, we examined the allocation of the values of 

image filters to a complex plane and performed various conversions. We can generally 

implement filters that achieve non-symmetric filtering and direction-related filtering. These 

are effective tools in machine vision. In this study, we considered the conversion of an 

image filter using complex-valued neural networks. 

We examined the linear transformation of expansion/compression and rotation, and general 

projective conversion, which are important methods for transforming image filters. First, we 

considered a figure g(x, y) in two-dimensional space, where each value of the coordinates (x, 

y) is moved to coordinates (x', y') repeatedly. Generally, a linear transform is expressed by 

 
x a b x

y c d y

′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (16) 

using a matrix expression. Various linear transforms can be executed by choosing the four 

parameters a, b, c, and d. Here, we set the parameters b = c = 0 as 

 
x a x

y d y

0

0

′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (17) 

to consider the transform of expansion/compression shown in Fig. 7 (a). The parameters a 

and d indicate the rate of expansion/compression in the x-direction and y-direction, 

respectively. Expansion is indicated if these parameters are larger than 1.0, whereas 

compression is indicated if they are lower than 1.0. The transform of rotation is given as 

 
x x

y y

cos sin

sin cos

θ θ

θ θ

′ −⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (18) 

where θ denotes the counterclockwise angle around the origin, as shown in Fig. 7 (b). These 

are linear transforms, and they are realized by simple parameter estimation; however, we 

need to learn and estimate these transforms to illustrate the procedure for complex-valued 
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neural networks used in this study. More general geometric transforms include a projective 

transform. A projective transform is expressed by  

 
a x a y a

x
a x a y a

11 12 13

31 32 33

,
+ +

′ =
+ +

a x a y a
y

a x a y a
21 22 23

31 32 33

,
+ +

′ =
+ +

 (19) 

which includes nine parameters aij. An example of a projective transform is shown in Fig. 7 
(c). In this study, we consider these three transforms as geometric transforms on a complex 
plane, and we use them for estimation with complex-valued neural networks.  

0 
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x 0
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y

x       0

θ

y

x

(x, y)

(x', y')

     0

y

x 0

y

x  
            (a)       (b)        (c) 

Fig. 7. Examples of geometric transforms: (a) expansion and compression, (b) rotation, and 
(c) projective transforms. 

3. Image filters 

Image filters are an important tool in the fields of bio-inspired systems, robot vision, and 
image processing. Relevant information is extracted or unnecessary information is removed 
from a given image with various image filters. In robot vision, it is useful if the image filter 
can transform or adaptively map when making a necessary filter. In this section, we propose 
to adaptively map an image filter using a neural network to make an appropriate filter. 
Complex-valued neural networks are known to effectively map using less training data. 

A Gaussian function is often used as an expression of the frequency domain of a filter. For 
example, let H(u) denote the 1-D frequency domain Gaussian filter as 

 uH u Ae
2 22( ) σ−=  (20) 

where σ is the standard deviation of the Gaussian function. This function can be used as a 

one-dimensional low-pass filter. Moreover, let H(u, v) denote the 2-D frequency domain 

Gaussian filter as  

 D u vH u v e
2 2( , ) 2( , ) σ−=  (21) 

where ( )D u v u v2 2( , ) = +  and the origin, u = v = 0, is considered as the center of the filter.   

Various filters can be made by applying the Gaussian function using the above-mentioned 

function, which basically provides a low-pass filter. For instance, a high-pass filter is 

produced by assuming H u v1 ( , )− . Moreover, a filter of the lateral inhibition type can be 

produced based on the difference of two Gaussian functions with different standard 

deviations. This is called the DOG function and it can be used as an edge enhancement filter.  
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Moreover, an orientation selectivity filter can be produced from the rotated elliptic function 
by compressing and rotating a Gaussian function. This filter can extract a line segment or 
filter an image in a specific direction. A filter with various features can be produced by 
variously compressing and rotating the Gaussian filter. Thus, linear transformations and 
nonlinear transformations can be produced by learning using neural networks. As an 
example, we consider a nonlinear conversion, such as a projective transform. Fig. 8 shows 
examples of the plot of 2-D filter functions related to Gaussian functions: a low-pass filter, a 
high-pass filter, a lateral inhibition filter based on the difference of Gaussian functions, and 
an orientation selectivity filter that is obtained using an elliptical Gaussian function. 

uv

H
(u
,v
)

uv

H
(u
,v
)

 
          (a)         (b)  

uv

H
(u
,v
)

uv

H
(u
,v
)

 
         (c)          (d)  

Fig. 8. Plots of 2-D filter functions related to Gaussian functions: (a) low-pass filter, (b) high-
pass filter, (c) lateral inhibition filter based on the difference of Gaussian functions, and (d) a 
directional filter obtained using an elliptical Gaussian function. 

4. Simulation  

We conducted a simulation of a forward and inverse transform of the filter using forward 
and inverse mappings with a complex-valued multilayer neural network and a complex-
valued network inversion. First, we examined the geometric conversions namely, the 
expansion/compression, rotation, and projective conversions, on a complex plane to 
demonstrate the learning procedure and the estimation of the complex mapping. The result 
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was a transformation of the geometric figure, the movement vector on the complex plane, 
and a conversion of the filter. In addition, we filtered the image with the transformed filter 
and showed the effect of the filter conversion with complex-valued neural networks. 

We use a network with an input and an output, and we considered the problem of mapping 
one point to another on a complex plane. We provided complex input and output patterns 
and made the network learn the input/output relationship during learning. Then, we 
examined the forward estimation of the multilayer neural network and the inverse 
estimation using the network inversion of the learned network. Thus, we obtained an output 
from a given input by using the learned relation as it was and obtained the input from the 
given output by using the learned relation inversely. The network parameters and network 
architecture are presented in Table 1 and Fig. 9, respectively. The following section shows 
the results of the expansion/compression conversion, the rotational transformation, and the 
projective conversion. 

  
       (a)              (b) 

Fig. 9. Network architectures for (a) forward estimation and (b) inverse estimation. 

 

 
Expansion/compression 

Rotation 
Projective 
transform (symmetry) (asymmetry) 

Input neurons 1 

Hidden neurons 10 

Output neurons 1 

Training rate εt 0.01 

Input correcting rate εe 0.1 

Maximum number of training epochs 50000 10000 50000 50000 

Maximum number of estimation epochs 10000 10000 10000 10000 

Criterion for learning convergence 0.0001 0.0001 0.0001 0.0001 

Criterion for estimation convergence 0.001 0.001 0.001 0.001 

Table 1. Network parameters. 

4.1 Expansion/compression transform 

We examined the learning, forward estimation, and inverse estimation of the 

expansion/compression transform on a complex plane with the complex-valued neural 

networks. Both symmetric and non-symmetric transforms along the vertical and horizontal 

axes are important for transforming an image filter such as the orientation selectivity filter. 
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Thus, symmetric transforms and non-symmetric transforms are examined here. As the 

learning data, we provided 22 pairs of data that satisfied x ax′ = , y dy′ = , y x= , y x= − , 

where a and d are constants, and (x, y) and (x‘, y‘) are points before and after the transform, 

respectively. We prepared the 11 points x = (-1.0, -0.8, ..., 1.0).  

First, we examined the learning, forward estimation, and inverse estimation of the 
symmetric expansion/compression transform by setting parameters a = d = 0.5. The forward 
mapping vector by forward estimation and the inverse mapping vector by inverse 
estimation are shown in Figs. 10 (a) and (b), respectively. Based on these results, it was 
confirmed that the transform vectors were correctly obtained. In Fig. 11, we show the results 
of the forward and inverse estimation of the expansion/compression transform of a circle, 
whose radius and center are 0.5 and the origin, respectively. Based on these results, it was 
confirmed that the forward and inverse estimations were correctly conducted. In addition, 
Fig. 12 shows the results of the forward and inverse estimation of the 
expansion/compression of the Gaussian function. Based on these results, it was found that 
the expansion/compression is correctly conducted. Therefore, it was shown that a complex-
valued neural network can realize the forward and inverse transforms of 
expansion/compression.  

Next, we examined the learning, forward estimation, and inverse estimation of an 
asymmetric expansion/compression transform by setting parameters a = 1.0, d = 0.2. Fig. 13 
shows the forward mapping vector and the inverse mapping vector obtained by learning. 
Based on these results, it was found that the expansion/compression was applied only 
along the y-axis. Fig. 14 shows the results of the forward and inverse estimation of the 
expansion/compression transform of a circle, whose radius and center are 0.5 and the 
origin, respectively. Based on these results, it was found that the forward and inverse 
estimations of the expansion/compression were correctly shown to be an oval distribution 
of the estimated points. In addition, Fig. 15 shows the results of the forward and inverse 
estimation of the expansion/compression of the Gaussian function. Therefore, it was shown 
that a complex-valued neural network can realize the forward and inverse transforms of the 
asymmetric expansion/compression.  
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               (a)               (b)  

Fig. 10. Transform vector obtained by learning of the symmetric expansion for (a) forward 
estimation and (b) inverse estimation.  
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         (a)        (b)  

Fig. 11. Results of symmetric expansion of a circle by (a) forward estimation and (b) inverse 
estimation.  
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Fig. 12. Results of symmetric expansion of a Gaussian function by (a) forward estimation 

and (b) inverse estimation.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re.

Im
.

 
             (a)            (b)  

Fig. 13. Transform vector obtained by the learning of asymmetric expansion with (a) 

forward estimation and (b) inverse estimation.  
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          (a)        (b)  

Fig. 14. Results of the asymmetric expansion of a circle by (a) forward estimation and (b) 
inverse estimation.  
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Fig. 15. Results of asymmetric expansion of a Gaussian function by (a) forward estimation 
and (b) inverse estimation.  

4.2 Rotation transform 

We examined the learning, forward estimation, and inverse estimation of the rotation 

transform on a complex plane with complex-valued neural networks. As learning data, we 

provided 22 pairs of data that satisfied y x ysin cosθ θ′ = + , y x= , y x= − , where (x, y) and 

(x‘, y‘) are the points before and after the transform, respectively. We prepared the 11 points 

x = (-0.5, -0.4, ..., 0.5). 

We examined the learning, forward estimation, and inverse estimation of the rotation 

transform by setting parameter θ = 45°. Fig. 16 shows the forward mapping vector and the 
inverse mapping vector obtained by learning. Based on these results, it was confirmed that 
the transform vectors were correctly obtained. Fig. 17 shows the results of the forward and 
inverse estimation of the rotation transform of an ellipse whose major axis, minor axis, and 
center were 0.5, 0.125, and the origin, respectively. Based on these results, it was confirmed  
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             (a)              (b)  

Fig. 16. Transform vector obtained by learning of the rotation with (a) forward estimation 
and (b) inverse estimation.  

 
         (a)        (b)  

Fig. 17. Results of the rotation of an ellipse by (a) forward estimation and (b) inverse 
estimation.  
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Fig. 18. Results of the rotation of an elliptic Gaussian function by (a) forward estimation and 
(b) inverse estimation.  
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that the forward and inverse estimations were correctly conducted. In addition, Fig. 18 
shows the results of the forward and inverse estimation of the rotation of an elliptic 
Gaussian function. Based on these results, it was found that the rotation was correctly 
conducted. Therefore, it was shown that a complex-valued neural network can realize the 
forward and inverse transforms of the rotation. 

4.3 Projective transform 

We examined the learning, forward estimation, and inverse estimation of a projective 

transform on a complex plane with complex-valued neural networks. As learning data, we 

prepared 22 pair of data on y x=  or y x= −  that satisfied equation (19), where (x, y) and (x‘, 

y‘) were the points before and after the transform, respectively. We prepared the 11 points x 

= (-0.5, -0.4, ..., 0.5).  

First, we examined the learning, forward estimation, and inverse estimation of a projective 
transform by setting the parameters a11 = 3, a12 = 0, a13 = 0, a21 = 0, a22 = 3, a23 = 0, a31 = 0, a32 = 6, 
and a33 = 6. Fig. 19 shows the forward mapping vector and the inverse mapping vector  
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           (a)             (b)  

Fig. 19. Transform vector obtained by learning a projective transform with (a) forward 
estimation and (b) inverse estimation.  

 
          (a)       (b)    

Fig. 20. Results of the projective transform of a circle by (a) forward estimation and (b) 
inverse estimation.  
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obtained by learning. Based on these results, it was confirmed that the transform vectors  

were correctly obtained. Fig. 20 shows the results of the forward and inverse estimation of 

the rotation transform of an ellipse whose major axis, minor axis, and center were 0.5, 0.125,  

and the origin, respectively. Based on these results, it was confirmed that the forward and 

inverse estimations were correctly conducted. In addition, Fig. 21 shows the results of the 

forward and inverse estimation of the rotation of an elliptic Gaussian function. Based on 

these results, it was found that the rotation was correctly conducted. Therefore, it was 

shown that a complex-valued neural network can realize the forward and inverse 

transforms of a projective transform. 
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Fig. 21. Results of the projective transform of an elliptic Gaussian function by (a) forward 

estimation and (b) inverse estimation.  

4.4 Filtering images using transformed filters 

We performed image filtering using the transformed filter estimated in the previous 

simulations and examined the results. We used four transformed filters: an expanded 

Gaussian low-pass filter with forward estimation, an expanded Gaussian low-pass filter 

with inverse estimation, a rotated elliptic Gaussian filter with forward estimation, and a 

rotated elliptic Gaussian filter with inverse estimation. The transformed image spectrum 

I’(u, v) can be described as the product of the transfer function H(u, v) and the original image 

spectrum I(u, v); that is, 

 I u v H u v I u v( , ) ( , ) ( , )′ =  (22) 

The standard image on which the filtering was performed is shown in Fig. 22(a). Fig. 22(b) 

shows simple line segments that indicate the orientation selectivity of the rotated elliptic 
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Gaussian filter. The results for the standard image are shown in Fig. 23. Fig. 24 shows a 

magnification of the upper-left part of Fig. 23. Part (a) in Figs. 23 and 24 shows the 

standard image filtered using the expanded Gaussian low-pass filter with forward 

estimation; part (b) shows the case for expanded Gaussian low-pass filter with inverse 

estimation. In Fig. 23 (c) and (d), a striped pattern flowing from upper left to lower right 

and from upper right to lower left, respectively, is observed; this indicates that orientation 

selection was performed. To clearly demonstrate the effects of the orientation selectivity, 

the simple line segments were filtered by transformed elliptic Gaussian filter, as shown in 

Fig. 25. It was found that the line segments at 45° and -45° were selectively extracted, as 

shown in Fig. 25 (a) and (b), respectively. This result confirmed that directional selectivity 

had been achieved. 

The above results confirm that the low-pass filter and orientation selection filter can be 

correctly realized by transforming image filters using a neural network. We can obtain a 

low-pass filter and an orientation selection filter having arbitrary characteristics by 

appropriate scaling and rotation of a Gaussian filter. An advantage of the neural network 

based method is that arbitrary filter characteristics can be obtained by learning of the 

input/output relation. 

The advantage of the transformation of the image filter by a neural network is the adaptive 

composition of the filter by learning. As shown in the above simulation, the use of a neural 

network enables the easy realization of not only linear transformations, such as scaling and 

rotation, but also a nonlinear transformation, namely, projective transformation. Because 

neural networks can obtain a transformation only by a mapping between input and output, 

any transformation is realizable if input and output are known. Moreover, the use of neural 

networks enables the realization of an inverse filter by a network inversion method, which 

can be applied to areas such as image restoration and bidirectional image processing. The 

advantage of transformation by complex-valued neural networks is that the mapping on a 

plane, especially one that has undergone rotation, can be expressed well. Moreover, 

complex-valued neural networks afford lower computational complexity than conventional 

real-valued neural networks because, in the former, two-dimensional information can be 

expressed by a neuron. 

In machine vision, the advantage of filter transformation by the proposed neural network is 

as follows. Neural networks are often used as part of the recognition system in a machine 

vision system. The filter transformation proposed in this work corresponds to the pre-

processing stage in machine vision. Because neural network based pre-processing is 

compatible with a neural network based recognition system, we will be able to integrate the 

pre-processing and recognition system when designing a machine vision system. 

Furthermore, the model of a recognition neural network, such as the neocognitron 

(Fukushima, 1988), includes an orientation selection cell. Therefore, we expect that the 

proposed method can be directly applied to such a model. 

The experimental results indicate that the proposed filter afforded most of the expected 

advantages. The disadvantage of the proposed neural network based method is that its 

computational complexity is slightly high. However, it is expected that this can be resolved 

by further refinement of the computer, system, and calculation method. 
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O riginal Im age

    

O riginal Im age

 
            (a)    (b) 

Fig. 22. Original images used in the simulation: (a) standard image (b) simple line segments. 

Filtered Im age

 

Filtered Im age

 
          (a)    (b) 

Filtered Im age

 

Filtered Im age

 
          (c)    (d) 

Fig. 23. Images filtered using (a) an expanded Gaussian low-pass filter with forward 
estimation, (b) an expanded Gaussian low-pass filter with inverse estimation, (c) a rotated 
elliptic Gaussian filter with forward estimation, and (d) a rotated elliptic Gaussian filter with 
inverse estimation. 
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   (a)     (b) 

      
   (c)      (d) 

Fig. 24. Magnified images of the upper left part of Fig. 23. 

Filtered Im age

     

Filtered Im age

 
       (a)       (b) 

Fig. 25. Image of simple line segments filtered using (a) a rotated elliptic Gaussian filter with 
forward estimation, and (b) a rotated elliptic Gaussian filter with inverse estimation.  

5. Conclusion 

In this study, we showed the mapping ability of a complex-valued neural network and 

proposed its use in the transform of an image filter. We introduced a complex-valued 

multilayer neural network for solving forward problems and a complex-valued network 
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inversion for solving inverse problems and explained each principle of operation in detail. 

Moreover, to demonstrate the mapping ability, we handled complex mapping problems, i.e., 

the linear geometric transforms, namely, expansion/compression, rotation, and projective 

transforms. We confirmed the estimation procedure by simulation. In addition, we applied 

this mapping capacity to the transform of an image filter, and we demonstrated the 

geometric transform of various filters, such as the Gaussian filter. Moreover, we examined 

image filtering with a filter that was transformed using a complex-valued neural network 

and confirmed its effectiveness. 

As the future work, we will apply complex-valued neural networks to nonlinear transforms 
of various image filters. Moreover, we will introduce processing with complex-valued 
neural networks into an actual robot vision system based on the results of this study. 
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