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1. Introduction

As you know, the energy method in the Fourier space is useful in deriving the decay estimates
for problems in the whole space R

n. Recently, the author studied half space problems in R
n
+ =

R+ × R
n−1 and developed the energy method in the partial Fourier space obtained by taking

the Fourier transform with respect to the tangential variable R
n−1. Then the author applied

this energy method to the half space problem for linearized viscous conservation laws with
convex condition and proved the asymptotic stability of planar stationary waves by showing
a sharp convergence rate for t → ∞ (see, [14]).

In this chapter, we consider the half space problem for linearized viscous conservation laws
with non-convex condition, and derive the asymptotic stability of planar stationary waves and
the corresponding convergence rate. Our proof is based on the energy method in the partial
Fourier space with the anti-derivative method.

In this present chapter, we are concerned with the half space problem for the viscous
conservation laws:

ut − ∆u +∇ · f (u) = 0, (1.1)

u(0, x′, t) = ub, (1.2)

u(x, 0) = u0(x). (1.3)

Here x = (x1, · · · , xn) is the space variable in the half space R
n
+ = R+ × R

n−1 with n ≥ 2;

we sometimes write as x = (x1, x′) with x1 ∈ R+ and x′ = (x2, · · · , xn) ∈ R
n−1; u(x, t) is the

unknown function, u0(x) is the initial data satisfying

u0(x) → 0 as x1 → ∞,

and ub is the boundary data (assumed to be a constant) with ub < 0; f (u) = ( f1(u), · · · , fn(u))
is a smooth function of u ∈ R with values in R

n and satisfies

f1(0) = 0, f1(u) > f1(0) (= 0) (1.4)

for u ∈ [ub, 0). Here we note that the condition (1.4) is the necessary condition for the
existence of the planar stationary waves (for the detail, see Section 2.2). We emphasize that
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2 Will-be-set-by-IN-TECH

the assumption (1.4) is weaker than the convex condition

f ′′1 (u) > 0 (1.5)

for u ∈ [ub, 0] and f1(0) = 0. Namely, we do not assume the convex condition for our problem
(1.1)–(1.3).

For viscous conservation laws (1.1) with the convex condition (1.5), there are many results on
the asymptotic stability of nonlinear waves. First, Il’in and Oleinik in [3] studied the stability
of nonlinear waves in the one-dimensional whole space. Liu, Matsumura and Nishihara
in the paper [8] discussed the stability of stationary waves in one-dimensional half space.
More precisely, they proved the asymptotic stability of several kind of nonlinear waves
such as rarefaction waves, stationary waves, and the superposition of stationary waves and
rarefaction waves. Later, in a series of papers [5–7], their stability result of stationary waves in
one-space dimension was generalized to the multi-dimensional case. Kawashima, Nishibata
and Nishikawa [5] first considered the stability of non-degenerate planar stationary waves

in two-dimensional half space and obtained the convergence rate t−1/4−α/2 in L∞ norm by
assuming that the initial perturbation is in L2

α(R+; L2(R)). Furthermore, the papers [6, 7]
studied the n-dimensional problem in the Lp framework. In particular, the paper [7] showed
the stability of non-degenerate planar stationary waves and obtained the convergence rate

t−(n/2)(1/2−1/p)−α/2 in Lp norm under the assumption that the initial perturbation belongs to
L2

α(R+; L2
x′ ).

Next, we refer to viscous conservation laws with non-convex condition. Liu and Nishihara
in [9] and Nishikawa in [10] investigated the asymptotic stability of travelling waves in
the one-dimensional and multi-dimensional whole space, respectively. On the other hand,
Hashimoto and Matsumura in [1] studied the asymptotic stability of stationary waves in
the one-dimensional half space. Especially, in order to relax the convex condition, Liu and
Nishihara in [9] and Nishikawa in [10] employed the anti-derivative method and achieved the
desired result. Moreover, Hashimoto and the author in [2] used the same method to derive
the asymptotic stability of stationary waves for damped wave equations with non-convex
convection term in one-dimensional half space. Inspired by these arguments, we try to
relax the convex condition (1.5) and get the asymptotic stability of planar stationary wave
for the multi-dimensional problem (1.1)–(1.3). Unfortunately, Nishikawa in the paper [10]
considered some special situation for the nonlinear term to make a good combination of the
energy method and the anti-derivative method. For the same reason, we will treat the special
situation (for the detail, see Section 3).

All these stability results mentioned above are obtained by employing the energy method in
the physical space. On the other hand, it is useful to apply the energy method in the partial
Fourier space to show sharper convergence rate. Indeed the author’s paper [14] considered
our problem (1.1)–(1.3) with the convex condition (1.5) and obtained the sharper convergence
rate of the planar stationary waves. We shall show the result of the paper [14] in detail.

We are interested in the asymptotic stability of one-dimensional stationary solution φ(x1)
(called planar stationary wave) for the problem (1.1)–(1.3): φ(x1) is a solution to the problem

−φx1x1 + f1(φ)x1 = 0, (1.6)

φ(0) = ub, φ(x1) → 0 as x1 → ∞. (1.7)
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Application of the Weighted Energy Method in the Partial Fourier Space to Linearized Viscous Conservation Laws with Non-Convex Condition 3

To show the stability, it is convenient to introduce the perturbation v and write the solution u
in the form

u(x, t) = φ(x1) + v(x, t).

The original problem (1.1)–(1.3) is then reduced to

vt − ∆v +∇ · ( f (φ + v)− f (φ)) = 0, (1.8)

v(0, x′, t) = 0, (1.9)

v(x, 0) = v0(x), (1.10)

where v0(x) = u0(x)− φ(x1); notice that v0(x) → 0 as x1 → ∞.

Under the convex condition (1.5), the author in [14] showed the asymptotic stability of the
planar stationary wave φ(x1) by proving a sharp decay estimate for the perturbation v(x, t).

To this end we employed the energy method in the partial Fourier space R̂
n
+ = R+ × R

n−1
ξ

which is obtained by taking the Fourier transform with respect to the tangential variable x′ =

(x2, · · · , xn) ∈ R
n−1; ξ = (ξ2, · · · , ξn) ∈ R

n−1
ξ is the Fourier variable corresponding to x′ ∈

R
n−1. For the variable x1 ∈ R+ in the normal direction, we use L2 space (or weighted L2

space). As the result, for the corresponding linearized problem with f (φ + v)− f (φ) replaced

by f ′(φ)v in (1.8), we showed the following pointwise estimate with respect to ξ ∈ R
n−1
ξ :

|Fv(·, ξ, t)|L2 ≤ Ce−κ|ξ|2t|Fv0(·, ξ)|L2 , (1.11)

where C and κ are positive constants. Here F denotes the Fourier transform with respect to
x′ ∈ R

n−1 and | · |L2 is the L2 norm with respect to x1 ∈ R+. This pointwise estimate (1.11)
enables us to get the following sharp decay estimate:

‖v(t)‖L2 ≤ Ct−(n−1)/4‖v0‖L2(L1), (1.12)

where ‖ · ‖L2 denotes the L2 norm with respect to x = (x1, x′) ∈ R
n
+, ‖ · ‖L2(L1) is the norm in

L2(R+; L2
x′ ∩ L1

x′ ), and C is a positive constant.

Furthermore, when the planar stationary wave φ(x1) is non-degenerate, the author applied

the weighted energy method in the partial Fourier space R̂
n
+ = R+ × R

n−1
ξ . Namely, we used

the weighted space L2
α with respect to x1 ∈ R+. In this case, the pointwise estimate (1.11) is

improved to

|Fv(·, ξ, t)|L2 ≤ C(1 + t)−α/2e−κ|ξ|2t|Fv0(·, ξ)|L2
α
, (1.13)

where | · |L2
α

denotes the L2
α norm with respect to x1 ∈ R+. Consequently, we had the decay

estimate
‖v(t)‖L2 ≤ C(1 + t)−α/2t−(n−1)/4‖v0‖L2

α(L1), (1.14)

where ‖ · ‖L2
α(L1) is the norm in L2

α(R+; L2
x′ ∩ L1

x′ ). For the above results, we refer to the reeder
[14] in detail.

The main purpose of this chapter is to derive the sharp decay estimate (1.11)–(1.14) for the
linearized problem of (1.8)–(1.10) with non-convex condition (1.4), i.e.,

vt − ∆v +∇ · ( f ′(φ)v) = 0 (1.15)
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with (1.9), (1.10). To overcome the difficulty occured by the non-convex condition, we make
a good combination of the weighted energy method in partial Fourier space employed in [14]
and the anti-derivative method employed in [2, 9], and get the desired results. Once we obtain
the linear stability results for the problem (1.15), (1.9), (1.10), we may apply this results to the
asymptotic stability for the nonlinear problem (1.8)–(1.10).

The remainder of this chapter is organized as follows. In Section 2, we introduce function
spaces and some preliminaries used in this chapter. Especially, we reformulate our problem
(1.15), (1.9), (1.10) by using the anti-derivative method in Section 2.3. In the final section,
we treat the half space problem for the reformulated viscous conservation laws and (1.15),
(1.9), (1.10), and develop the weighted energy method in the partial Fourier space with the
anti-derivative method. In this section, we derive pointwise estimates of solutions and prove
the corresponding decay estimates.

2. Preliminaries

2.1 Notations and function spaces

Let us consider functions defined in the half space R
n
+ = R+ ×R

n−1. We sometimes write the
space variable x = (x1, · · · , xn) ∈ R

n
+ as x = (x1, x′) with x1 ∈ R+ and x′ = (x2, · · · , xn) ∈

R
n−1. The symbols ∇ = (∂x1 , · · · , ∂xn ) and ∆ = ∑

n
j=1 ∂2

xj
denote the standard gradient and

Laplacian with respect to x = (x1, . . . , xn), respectively. The symbol ∇x′ = (∂x2 , · · · , ∂xn )
denotes the gradient of the tangential direction with respect to x = (x2, . . . , xn). Thus we
have ∇ · g = ∑

n
j=1 ∂xj gj for g = (g1, · · · , gn), and ∇x′ · g∗ = ∑

n
j=2 ∂xj gj for g∗ = (g2, · · · , gn).

Let v̂(x1, ξ) be the Fourier transform of v(x1, x′) with respect to x′ ∈ R
n−1:

v̂(x1, ξ) = F [v(x1, ·)](ξ) = (2π)−(n−1)/2
∫

Rn−1
v(x1, x′)e−ix′ ·ξ dx′, (2.1)

where ξ = (ξ2, · · · , ξn) ∈ R
n−1
ξ is the Fourier variable corresponding to x′ = (x2, · · · , xn) ∈

R
n−1 and x′ · ξ = ∑

n
j=2 xjξ j.

Let 1 ≤ p ≤ ∞. We denote by L
p
x′ = Lp(Rn−1) the Lp space with respect to x′ ∈ R

n−1, with

the norm ‖ · ‖L
p

x′
. For a nonnegative integer s, we denote by Hs

x′ = Hs(Rn−1) the Sobolev

space over R
n−1 with the norm

‖v‖Hs
x′
=

( s

∑
k=0

‖∂k
x′v‖2

L2
x′

)1/2
,

where ∂k
x′ denotes the totality of all the k-th order derivatives with respect to x′ ∈ R

n−1. Also,
we denote by Lp(R+) the Lp space with respect to x1 ∈ R+, with the norm | · |Lp . For a
nonnegative integer s, we denote by Hs(R+) the Sobolev space over R+, with the norm | · |Hs .
For α ∈ R, we denote by L2

α(R+) the weighted L2 space over R+ with the norm

|v|L2
α
=

(

∫ ∞

0
(1 + x1)

α|v(x1)|
2dx1

)1/2
.

Now we introduce function spaces over the half space R
n
+ = R+ × R

n−1. Let 1 ≤ p, q ≤ ∞, s

be a nonnegative integer, and α ∈ R. The space Lq(Lp) = Lq(R+; L
p
x′ ) consists of Lq functions
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Application of the Weighted Energy Method in the Partial Fourier Space to Linearized Viscous Conservation Laws with Non-Convex Condition 5

of x1 ∈ R+ with values in L
p
x′ with respect to x′ ∈ R

n−1. The norm is denoted by ‖ · ‖Lq(Lp).
When q = p, we simply write as

Lp = Lp(Lp), ‖ · ‖Lp = ‖ · ‖Lp(Lp).

The space Hs(Lp) = Hs(R+; L
p
x′ ) consists of Hs functions of x1 ∈ R+ with values in L

p
x′ with

respect to x′ ∈ R
n−1. The norm is denoted by ‖ · ‖Hs(Lp). Also, L2

α(Lp) = L2
α(R+; L

p
x′ ) denotes

the space of L2
α functions of x1 ∈ R+ with values in L

p
x′ with respect to x′ ∈ R

n−1. The norm
is denoted by

‖v‖L2
α(Lp) =

(

∫ ∞

0
(1 + x1)

α‖v(x1, ·)‖2
L

p

x′
dx1

)1/2
.

We sometimes use
L2

α = L2
α(L2), ‖ · ‖L2

α
= ‖ · ‖L2

α(L2).

L2(Hs) = L2(R+; Hs
x′ ) denotes the space of L2 functions of x1 ∈ R+ with values in Hs

x′ with

respect to x′ ∈ R
n−1, whose norm is given by

‖v‖L2(Hs) =
(

∫ ∞

0
‖v(x1, ·)‖2

Hs
x′

dx1

)1/2

=
( s

∑
k=0

∫ ∞

0
‖∂k

x′v(x1, ·)‖2
L2

x′
dx1

)1/2
=

( s

∑
k=0

‖∂k
x′v‖2

L2

)1/2
.

By the definition (2.1) of the Fourier transform, we see that

sup
ξ∈R

n−1
ξ

|v̂(·, ξ)|L2 ≤ C‖v‖L2(L1) (2.2)

with C = (2π)−(n−1)/2. Also, it follows from the Plancherel theorem that

‖∂k
x′v‖L2

α
=

(

∫

R
n−1
ξ

|ξ|2k|v̂(·, ξ)|2L2
α
dξ

)1/2
. (2.3)

Let T > 0 and let X be a Banach space defined on the half space R
n
+. Then C([0, T]; X) denotes

the space of continuous functions of t ∈ [0, T] with values in X.

In this paper, positive constants will be denoted by C or c.

2.2 Stationary solution

We review the results on the stationary problem (1.6)–(1.7). For the details, we refer the reader
to [2, 8, 11–13].

Proposition 2.1 ([8]). Assume the condition (1.4). Then f ′1(0) ≤ 0 is necessary for the existence of
solutions to the stationary problem (1.6)–(1.7). Conversely, under the condition f ′1(0) ≤ 0, we have
the following existence result:

(i) Non-degenerate case where f ′1(0) < 0: In this case the stationary problem (1.6)–(1.7) admits a
unique smooth solution φ(x1) with φx1 > 0 (resp. φx1 < 0), provided that ub < 0 (resp. 0 < ub and
f1(u) < f1(0) for 0 < u < ub). The solution verifies

|φ(x1)| ≤ Ce−cx1 , x1 > 0,

253Application of the Weighted Energy Method 
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where C and c are positive constants.

(ii) Degenerate case where f ′1(0) = 0: In this case the problem (1.6)–(1.7) admits a unique smooth
solution φ(x1) if and only if ub < 0. The solution verifies φx1 > 0 and

|φ(x1)| ≤ C(1 + x1)
−1/q, x1 > 0,

where q is the degeneracy exponent of f1 and C is a positive constant.

In this chapter we only treat the stationary solutions φ(x1) with φx1 > 0 and discuss
their stability; however, we must get the similar stability result of the monotone decreasing
stationary solutions by using the same argument introduced in this chapter. (We refer the
reader to [2].)

2.3 Reformulated problem

In this subsection we reformulate our problem by the anti-derivative method. To this end we
introduce a new function z(x, t) as

z(x, t) = −
∫ ∞

x1

v(y, x′, t) dy. (2.4)

Here, we assume the integrability of v(x, t) over R+. This transformation is motivated by
the argument in Liu-Nishihara [9]. By using (2.4), we can reformulate (1.8)–(1.10) in terms of
z(x, t) as

zt − ∆z + f ′(φ) · ∇z +
∫ ∞

x1

φx1 f ′′∗ (φ) · ∇x′z dy = −g1 +∇x′ · h∗, (2.5)

zx1 (0, x′, t) = 0, (2.6)

z(x, 0) = z0(x), (2.7)

where z0(x) = −
∫ ∞

x1
(u0(y, x′) − φ(y))dy, f ′′∗ (φ) = ( f ′′2 (φ), · · · , f ′′n (φ)), and g1, ∇x′ · h∗ are

nonlinear terms defined by h∗ = (h2, · · · , hn) and

gj = f j(φ + zx1 )− f j(φ)− f ′j (φ)zx1 , hj =
∫ ∞

x1

gj dy.

Once we obtain the solution for the problem (2.5)–(2.7), the differentiation v = zx1 is the
solution for (1.8)–(1.10). Namely, we will apply the weighted energy method in the partial
Fourier space and try ot derive the global solution in time to the reformulated problem
(2.5)–(2.7). We will discuss this reformulated problem in Section 3 to prove our main theorems.

2.4 Weight function

We introduce the weight function employed in the weighted energy method. Our weight
function is defined as

w(u) = (−eAu + 1)/ f1(u) for u ∈ [ub, 0], (2.8)
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Application of the Weighted Energy Method in the Partial Fourier Space to Linearized Viscous Conservation Laws with Non-Convex Condition 7

where A is a positive constant determined in Lemma 2.2. This weight function is very
important to derive a priori estimate in the latter section. For this weight function, we obtain
the following lemma.

Lemma 2.2 ([2]). Suppose that f1(u) satisfies (1.4). Let w(u) be the weight function defined in (2.8).
Then there exists a positive constant δ such that if A ≥ δ, then w(u) satisfies the following conditions:

(i) (w f1)
′(u) < 0 for u ∈ [ub, 0],

(ii) (w f1)
′′(u) < 0 for u ∈ [ub, 0].

(2.9)

Moreover, let φ be the stationary solution constructed in Proposition 2.1. Then the weight function
satisfies the following properties.

(i) Non-degenerate case where f ′1(0) < 0: The weight function w(φ) satisfies

c < w(φ) < C for φ ∈ [ub, 0].

(ii) Degenerate case where f ′1(0) = 0: The weight function w(φ) satisfies

c(1 + x1) < w(φ) < C(1 + x1) for φ ∈ [ub, 0].

Here, C and c are some positive constants which independent of x1.

The detail of the proof is omitted here. For the details, we refer the reader to [2].

3. Asymptotic stability with convergence rates

In the final section, we apply our weighted energy method in the partial Fourier space to
the linearized problem. We consider the linearized problem corresponding to the half space
problem (2.5)–(2.7). Namely, we consider (2.5) with gj = 0 for j = 1, · · · , n. For this linearized
equation, we treat the special situation that

" f j(u) are linear in u ∈ [ub, 0] for j = 2, · · · , n."

Then our initial value problem of the linearized equation is written as

zt − ∆z + f ′(φ) · ∇z = 0 (3.1)

together with (2.6) and (2.7). Taking the Fourier transform with respect to x′ ∈ R
n−1 for the

linearized problem (3.1), (2.6), (2.7), we obtain

ẑt − ẑx1x1 + |ξ|2 ẑ + f ′1(φ)ẑx1 + iξ · f ′∗(φ)ẑ = 0,

ẑx1 (0, ξ, t) = 0,

ẑ(x1, ξ, 0) = ẑ0(x1, ξ),

(3.2)

where ξ = (ξ2, · · · , ξn) ∈ R
n−1
ξ is the Fourier variable corresponding to x′ = (x2, · · · , xn) ∈

R
n−1, f ′∗(φ) = ( f ′2(φ), · · · , f ′n(φ)), and ξ · f ′∗(φ) = ∑

n
j=2 ξ j f ′j (φ). This is the formulation of our

linearized problem in the partial Fourier space R̂
n
+ = R+ × R

n−1
ξ .

255Application of the Weighted Energy Method 
in the Partial Fourier Space to Linearized Viscous Conservation Laws with Non-Convex Condition

www.intechopen.com



8 Will-be-set-by-IN-TECH

Furthermore, we sometimes use the differentiated problem. We differentiate the problem (3.1),
(2.6), (2.7) with respect to x1. Then this yields our problem (1.15) together with (1.9) and (1.10),
and the corresponding problem in the partial Fourier space:

v̂t − v̂x1x1 + |ξ|2v̂ + ( f ′1(φ)v̂)x1 + iξ · f ′∗(φ)v̂ = 0,

v̂(0, ξ, t) = 0,

v̂(x1, ξ, 0) = v̂0(x1, ξ).

(3.3)

Here we note that v = zx1 . By applying the weighted energy method to the above problems,
we obtain the pointwise estimate of solutions.

3.1 Energy method

We apply the energy method to the problems (3.2) and (3.3) formulated in the partial Fourier
space and derive pointwise estimates of solutions to (3.2). We use L2 space for the variable
x1 ∈ R+ in the normal direction. The result is given as follows.

Theorem 3.1 (Pointwise estimate). Let φ(x1) be a stationary solution with φx1 > 0. Then the
solution to the problem (3.2) verifies the following pointwise estimate.

(i) Non-degenerate case where f ′1(0) < 0: Suppose that ẑ0(·, ξ) ∈ H2(R+) for each ξ ∈ R
n−1
ξ . Then

it holds

|ẑ(·, ξ, t)|L2
α
≤ Ce−κ|ξ|2t|ẑ0(·, ξ)|L2

α
, (3.4)

|ẑx1 (·, ξ, t)|L2 ≤ Ce−κ|ξ|2t(|ẑ0(·, ξ)|L2
α
+ |(ẑ0)x1 (·, ξ)|L2

)

, (3.5)

|ẑx1x1 (·, ξ, t)|L2 ≤ Ce−κ|ξ|2t
(

|ẑ0(·, ξ)|L2
α
+ |(ẑ0)x1 (·, ξ)|H1

)

(3.6)

with α = 0, for ξ ∈ R
n−1
ξ and t ≥ 0, where | · |L2

α
denotes the L2

α norm with respect to x1 ∈ R+, and

C and κ are positive constants.

(ii) Degenerate case where f ′1(0) = 0: Suppose that ẑ0(·, ξ) ∈ L2
1(R+) and (ẑ0)x1 (·, ξ) ∈ H1(R+)

for each ξ ∈ R
n−1
ξ . Then it holds that (3.4)–(3.6) with α = 1.

As a simple corollary we have the following decay estimate.

Corollary 3.2 (Decay estimate). Assume the same conditions of Proposition 3.1. Then the solution
to the problem (3.1), (2.6), (2.7) satisfies the following decay estimate.

(i) Non-degenerate case where f ′1(0) < 0: Suppose that z0 ∈ H2(L1). Then this yields

‖∂k
x′z(t)‖L2

α
≤ Ct−(n−1)/4−k/2‖z0‖L2

α(L1), (3.7)

‖∂k
x′zx1 (t)‖L2 ≤ Ct−(n−1)/4−k/2

(

‖z0‖L2
α(L1) + ‖(z0)x1‖L2(L1)

)

, (3.8)

‖∂k
x′zx1x1 (t)‖L2 ≤ Ct−(n−1)/4−k/2

(

‖z0‖L2
α(L1) + ‖(z0)x1‖H1(L1)

)

(3.9)

with α = 0, for t > 0, where k ≥ 0 is an integer and C is a positive constant.
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Application of the Weighted Energy Method in the Partial Fourier Space to Linearized Viscous Conservation Laws with Non-Convex Condition 9

(ii) Degenerate case where f ′1(0) = 0: Suppose that z0 ∈ L2
1(L1) and (z0)x1 ∈ H1(L1). Then this

yields that (3.7)–(3.9) with α = 1.

Proof of Theorem 3.1. Throughout this proof, we use the weighted L2 norm:

|a|L2
w
=

(

∫ ∞

0
w
(

φ(x1)
)

|a(x1)|
2dx1

)1/2
,

where w is the weight function defined by (2.8). For this weighted norm, by using Lemma 2.2,
we see the following properties.

c| · |L2 ≤ | · |L2
w
≤ C| · |L2 for the non-degenerate case : f ′(0) < 0,

c| · |L2
1
≤ | · |L2

w
≤ C| · |L2

1
for the degenerate case : f ′(0) = 0.

(3.10)

We prove (i) and (ii) in Theorem 3.1 in parallel. We first derive (3.4). We multiply (3.2)1 by
w(φ) ¯̂z and take the real part, obtaining

1

2
w(φ)

∂

∂t
|ẑ|2 +

∂

∂x1
F1 +D1 = 0, (3.11)

where

D1 = w(φ)(|ẑx1 |
2 + |ξ|2|ẑ|2)−

1

2
(w f1)

′′(φ)φx1 |ẑ|
2,

F1 =
1

2
(w f1)

′(φ)|ẑ|2 − w(φ)Re( ¯̂zẑx1 ),

and w is a weight function defined by (2.8). By virtue of (2.9)2 in Lemma 2.2, we have

D1 ≥ cw(φ)(|ẑx1 |
2 + |ξ|2|ẑ|2) + cφx1 |ẑ|

2, (3.12)

where c is a some positive constant. Therefore, integrating (3.11) in x1 ∈ R+, we get

∂

∂t
|ẑ|2L2

w
+ c1D̂1 − (w f1)

′(ub)|ẑ(0, ξ, t)|2 ≤ 0 (3.13)

with a positive constant c1, where

D̂1 = |ẑx1 |
2
L2

w
+ |ξ|2|ẑ|2L2

w
+ |

√

φx1 ẑ|2L2 . (3.14)

Here, by virtue of (2.9)1, the last term of the left-hand side of (3.13) is positive. We multiply

(3.13) by eκ|ξ|2t (κ > 0) to get

∂

∂t
(eκ|ξ|2t|ẑ|2L2

w
) + eκ|ξ|2t(c1D̂1 − κ|ξ|2|ẑ|2L2

w
) ≤ 0. (3.15)

Noting that D̂1 ≥ |ξ|2|ẑ|2
L2

w
, we choose κ > 0 such that κ < c1 and integrate (3.15) over [0, t].

This yields

eκ|ξ|2t|ẑ(·, ξ, t)|2L2
w
+

∫ t

0
eκ|ξ|2τ D̂1(ξ, τ)dτ ≤ C|ẑ0(·, ξ)|2L2

w
, (3.16)
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where C is a positive constant.

We next prove (3.5). Multiplying (3.3)1 by ¯̂v and taking the real part, then we have

1

2

∂

∂t
|v̂|2 +

∂

∂x1
F2 +D2 = 0, (3.17)

where

D2 = |v̂x1 |
2 + |ξ|2|v̂|2 +

1

2
f ′′1 (φ)φx1 |v̂|

2,

F2 =
1

2
f ′1(φ)|v̂|

2 − Re( ¯̂vv̂x1 ).

We integrate (3.17) in x1 ∈ R+ to obtain

∂

∂t
|v̂|2L2 + 2D̂2 ≤ C|v̂|2L2 , (3.18)

where D̂2 = |v̂x1 |
2
L2 + |ξ|2|v̂|2

L2 and C is a positive constant. We multiply (3.18) by eκ|ξ|2t (κ > 0)
to get

∂

∂t
(eκ|ξ|2t|v̂|2L2 ) + eκ|ξ|2t(2D̂2 − κ|ξ|2|v̂|2L2 ) ≤ Ceκ|ξ|2t|v̂|2L2 . (3.19)

Then we choose κ > 0 such that κ < 2 and integrate (3.19) over [0, t]. This yields

eκ|ξ|2t|v̂(·, ξ, t)|2L2 +
∫ t

0
eκ|ξ|2τ D̂2(ξ, τ)dτ ≤ C|v̂0(·, ξ)|2L2 + C

∫ t

0
eκ|ξ|2τ |v̂(·, ξ, τ)|2L2 dτ.

Noting that v = zx1 and |v̂|L2 ≤ C|v̂|L2
w

, we apply (3.16) to the above inequality. Then we get

eκ|ξ|2t|v̂(·, ξ, t)|2L2 +
∫ t

0
eκ|ξ|2τ D̂2(ξ, τ)dτ ≤ C(|ẑ0(·, ξ)|2L2

w
+ |v̂0(·, ξ)|2L2 ). (3.20)

We shall show (3.6). Multiplying (3.3)1 by − ¯̂vx1x1 and taking the real part, then we have

1

2

∂

∂t
|v̂x1 |

2 +
∂

∂x1
F3 +D3 = 0, (3.21)

where

D3 = |v̂x1x1 |
2 + |ξ|2|v̂x1 |

2 +
3

2
f ′′1 (φ)φx1 |v̂x1 |

2

−
1

2

(

( f1 f ′′1 )
′ f1

)′
(φ)φx1 |v̂|

2 −
1

2
iξ( f1 f ′′∗ )

′(φ)φx1 |v̂|
2,

F3 =
1

2
f ′1(φ)|v̂x1 |

2 +
1

2
{( f1 f ′′1 )

′(φ) + iξ f ′′∗ (φ)}φx1 |v̂|
2

− Re(v̂t ¯̂vx1 )− (|ξ|2 + f ′′1 (φ)φx1 + iξ f ′∗(φ))Re(v̂ ¯̂vx1 ).
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Integrating (3.21) in x1 ∈ R+, we have

∂

∂t
|v̂x1 |

2
L2 + 2D̂3 ≤ C(|v̂|2H1 + |ξ||v̂|2L2 ), (3.22)

where D̂3 = |v̂x1x1 |
2
L2 + |ξ|2|v̂x1 |

2
L2 and C is a positive constant. We multiply (3.22) by eκ|ξ|2t

(κ > 0) to get

∂

∂t
(eκ|ξ|2t|v̂x1 |

2
L2 ) + eκ|ξ|2t(2D̂3 − κ|ξ|2|v̂x1 |

2
L2 ) ≤ Ceκ|ξ|2t(|v̂|2H1 + |ξ||v̂|2L2 ). (3.23)

Then we choose κ > 0 such that κ < 2 and integrate (3.23) over [0, t]. This yields

eκ|ξ|2t|v̂x1 (·, ξ, t)|2L2 +
∫ t

0
eκ|ξ|2τ D̂3(ξ, τ)dτ

≤ C|(v̂0)x1 (·, ξ)|2L2 + C
∫ t

0
eκ|ξ|2τ(|v̂(·, ξ, τ)|2H1 + |ξ|2|v̂(·, ξ, τ)|2L2 )dτ.

Thus, employing (3.16) and (3.20) to the above inequality, we obtain

eκ|ξ|2t|v̂x1 (·, ξ, t)|2L2 +
∫ t

0
eκ|ξ|2τ D̂3(ξ, τ)dτ ≤ C(|ẑ0(·, ξ)|2L2

w
+ |v̂0(·, ξ)|2H1 ). (3.24)

Finally, we apply (3.10) to the estimates (3.16), (3.20) and (3.24). Then this gives the desired
estimates (3.4)–(3.6) with α = 0, 1. Hence the proof of Theorem 3.1 is completed.

Here, for later use, we derive the corresponding time weighted estimate. We multiply (3.15)
(or (3.19), (3.23)) with 0 < κ ≤ c1 (or 0 < κ < 2) by (1 + t)γ (γ ≥ 0) and integrate over [0, t].
Then this yields the desired estimate:

(1 + t)γeκ|ξ|2t|ẑ(·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂1(ξ, τ)dτ

≤ C|ẑ0(·, ξ)|2L2 + γC
∫ t

0
(1 + τ)γ−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2L2 dτ,

(3.25)

(1 + t)γeκ|ξ|2t|v̂(·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂2(ξ, τ)dτ

≤ C|v̂0(·, ξ)|2L2 + C
∫ t

0
(1 + τ)γeκ|ξ|2τ |v̂(·, ξ, τ)|2L2 dτ,

(3.26)

(1 + t)γeκ|ξ|2t|v̂x1 (·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂3(ξ, τ)dτ

≤ C|(v̂0)x1 (·, ξ)|2L2 + C
∫ t

0
(1 + τ)γeκ|ξ|2τ

(

|v̂(·, ξ, τ)|2H1 + |ξ|2|v̂(·, ξ, τ)|2L2

)

dτ,

(3.27)

where γ ≥ 0, and C is a positive constant. These will be used in the next subsection.
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Proof of Corollary 3.2. By virtue of the Plancherel theorem, we have (2.3). Substituting (3.4)
into (2.3), we obtain

‖∂k
x′z(t)‖2

L2
α
≤ C

∫

R
n−1
ξ

|ξ|2ke−κ|ξ|2t|ẑ0(·, ξ)|2L2
α
dξ

≤ C sup
ξ∈R

n−1
ξ

|ẑ0(·, ξ)|2L2
α

∫

R
n−1
ξ

|ξ|2ke−κ|ξ|2tdξ

≤ Ct−(n−1)/2−k‖z0‖
2
L2

α(L1),

where C is a positive constant. Here we used (2.2) and the simple inequality

∫

R
n−1
ξ

|ξ|2ke−κ|ξ|2tdξ ≤ Ct−(n−1)/2−k

with a constant C. By applying the same argument to the pointwise estimates (3.5) and (3.6) we
can derive the decay estimate (3.8) and (3.9), respectively. Thus this completes the proof.

3.2 Weighted energy method

In the last subsection, we restrict to the non-degenerate case f ′1(0) < 0 and apply the weighted
energy method to the problems (3.2) and (3.3). This yields sharp pointwise estimates of
solutions to (3.2). We use the weighted space L2

α(R+) (α ≥ 0) for x1 ∈ R+ in the normal

direction and this gives the additional decay (1 + t)−α/2. The result is stated as follows.

Theorem 3.3 (Pointwise estimate). Let f ′1(0) < 0 and let φ(x1) be a stationary solution with

φx1 > 0. Let α ≥ 0 and suppose that ẑ0(·, ξ) ∈ L2
α(R+) and (ẑ0)x1 (·, ξ) ∈ H1(R+) for each

ξ ∈ R
n−1
ξ . Then the solution to the problem (3.2) verifies the pointwise estimate

|ẑ(·, ξ, t)|L2 ≤ C(1 + t)−α/2e−κ|ξ|2t|ẑ0(·, ξ)|L2
α
, (3.28)

|ẑx1 (·, ξ, t)|L2 ≤ C(1 + t)−α/2e−κ|ξ|2t(|ẑ0(·, ξ)|L2
α
+ |(ẑ0)x1 (·, ξ)|L2

)

, (3.29)

|ẑx1x1 (·, ξ, t)|L2 ≤ C(1 + t)−α/2e−κ|ξ|2t
(

|ẑ0(·, ξ)|L2
α
+ |(ẑ0)x1 (·, ξ)|H1

)

(3.30)

for ξ ∈ R
n−1
ξ and t ≥ 0, where the norms | · |L2 , | · |H1 and | · |L2

α
are with respect to x1 ∈ R+, and C

and κ are positive constants.

As an easy consequence, we have the following decay estimate.

Corollary 3.4 (Decay estimate). Assume the same conditions of Theorem 3.3. Let z0 ∈ L2
α(L1) and

(z0)x1 ∈ H1(L1) for α ≥ 0. Then the solution to the problem (3.1), (2.6), (2.7) satisfies the decay
estimate

‖∂k
x′z(t)‖L2 ≤ C(1 + t)−α/2t−(n−1)/4−k/2‖z0‖L2

α(L1),

‖∂k
x′zx1 (t)‖L2 ≤ C(1 + t)−α/2t−(n−1)/4−k/2

(

‖z0‖L2
α(L1) + ‖(z0)x1‖L2(L1)

)

,

‖∂k
x′zx1x1 (t)‖L2 ≤ C(1 + t)−α/2t−(n−1)/4−k/2

(

‖z0‖L2
α(L1) + ‖(z0)x1‖H1(L1)

)
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for t > 0, where k ≥ 0 is an integer and C is a positive constant.

The proof of Corollary 3.4 is completely same as the proof of Corollary 3.2 and omitted here.

Proof of Theorem 3.3. We use the weighted energy method to the problems (3.2) and (3.3)
formulated in the partial Fourier space. Our computation is similar to the one used in [4, 10,
12, 14] and divide into four steps.

Step 1. First, we show the following space-time weighted energy inequality:

(1 + t)γeκ|ξ|2t|ẑ(·, ξ, t)|2
L2

β
+

∫ t

0
(1 + τ)γeκ|ξ|2τ

(

D̂β(ξ, τ) + β|ẑ(·, ξ, τ)|2
L2

β−1

)

dτ

≤ C|ẑ0(·, ξ)|2
L2

β
+ γC

∫ t

0
(1 + τ)γ−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2

L2
β
dτ

(3.31)

for γ ≥ 0 and 0 ≤ β ≤ α, where

D̂β = |ẑx1 |
2
L2

β
+ |ξ|2|ẑ|2

L2
β
+ |

√

φx1 ẑ|2
L2

β
,

and C and κ are positive constants. Notice that D̂0 coincides with D̂1 in (3.14).

To prove (3.31), we use the equality (3.11). Notice that, by virtue of (2.9)1 in Lemma 2.2, we
have

−F1 ≥ c2|ẑ|
2 − C|ẑx1 |

2 (3.32)

with positive constants c2 and C. Now we multiply (3.11) by (1 + x1)
β (0 ≤ β ≤ α) to get

1

2

∂

∂t

{

(1 + x1)
β|ẑ|2

}

+
{

(1 + x1)
βF1

}

x1

+ (1 + x1)
βD1 + β(1 + x1)

β−1(−F1) = 0.

We integrate this equality over x1 ∈ R+ and use (3.12) and (3.32), obtaining

∂

∂t
|ẑ|2

L2
β,w

+ c1D̂β + 2βc2|ẑ|
2
L2

β−1
− (w f1)

′(ub)|ẑ(0, ξ, t)|2 ≤ βC|ẑx1 |
2
L2

β−1
(3.33)

for 0 ≤ β ≤ α, where we define

|v|L2
β,w

=
(

∫ ∞

0
(1 + x1)

βw
(

φ(x1)
)

|v(x1)|
2dx1

)1/2
,

and C is a positive constant. Here, by virtue of (2.9)1, the last term of the left-hand side of
(3.33) is positive. We now observe that

|a|2
L2

β−1
≤ ǫ|a|2

L2
β
+ Cǫ|a|

2
L2

for any ǫ > 0, where Cǫ is a constant depending on ǫ. We apply this inequality to the term on
the right-hand side of (3.33) by taking a = ẑx1 . Noting that D̂β ≥ |ẑx1 |

2
L2

β

, we choose ǫ > 0 so

small that αCǫ ≤ c1. This yields

∂

∂t
|ẑ|2

L2
β,w

+ c3D̂β + 2βc2|ẑ|
2
L2

β−1
≤ βC|ẑx1 |

2
L2 (3.34)
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for constants c3 and C. Multiplying (3.34) by eκ|ξ|2t (κ > 0), we obtain

∂

∂t

{

eκ|ξ|2t|ẑ|2
L2

β,w

}

+ eκ|ξ|2t
(

c3D̂β − κ|ξ|2|ẑ|2
L2

β

)

+ 2βc2eκ|ξ|2t|ẑ|2
L2

β−1
≤ βCeκ|ξ|2t|ẑx1 |

2
L2 .

As in (3.15), we choose κ > 0 such that κ ≤ c3. Then we multiply the resulting inequality by
(1 + t)γ (γ ≥ 0) and integrate over [0, t]. This yields

(1 + t)γeκ|ξ|2t|ẑ(·, ξ, t)|2
L2

β
+

∫ t

0
(1 + τ)γeκ|ξ|2τ

(

D̂β(ξ, τ) + β|ẑ(·, ξ, τ)|2
L2

β−1

)

dτ

≤ C|ẑ0(·, ξ)|2
L2

β
+ γC

∫ t

0
(1 + τ)γ−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2

L2
β
dτ

+ βC
∫ t

0
(1 + τ)γeκ|ξ|2τ |ẑx1 (·, ξ, τ)|2L2 dτ,

(3.35)

where C is a positive constant. Here the last term on the right-hand side of (3.35) is already
estimated in (3.25) because |ẑx1 |

2
L2 ≤ D̂0 = D̂1. Therefore the proof of (3.31) is complete.

Step 2. Next we show the following estimate for α ≥ 0:

(1 + t)leκ|ξ|2t|ẑ(·, ξ, t)|2
L2

α−l

+
∫ t

0
(1 + τ)leκ|ξ|2τ

(

D̂α−l(ξ, τ) + (α − l)|ẑ(·, ξ, τ)|2
L2

α−l−1

)

dτ ≤ C|ẑ0(·, ξ)|2L2
α

(3.36)

for each integer l with 0 ≤ l ≤ [α], where C and κ are positive constants. Note that if α ≥ 0 is
an integer, then (3.36) with l = α gives the desired estimate (3.28).

We prove (3.36) by induction with respect to the integer l with 0 ≤ l ≤ [α]. First we put γ = 0
and β = α in (3.31). This shows that (3.36) holds true for l = 0. Now, let 1 ≤ j ≤ [α] (for α ≥ 1)
and suppose that (3.36) holds true for l = j − 1. In particular, we suppose that

∫ t

0
(1 + τ)j−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2

L2
α−j

dτ ≤ C|ẑ0(·, ξ)|2L2
α
. (3.37)

Then we prove (3.36) for l = j. To this end, we put γ = j and β = α − j in (3.31). This gives

(1 + t)jeκ|ξ|2t|ẑ(·, ξ, t)|2
L2

α−j

+
∫ t

0
(1 + τ)jeκ|ξ|2τ

(

D̂α−j(ξ, τ) + (α − j)|ẑ(·, ξ, τ)|2
L2

α−j−1

)

dτ

≤ C|ẑ0(·, ξ)|2
L2

α−j
+ jC

∫ t

0
(1 + τ)j−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2

L2
α−j

dτ ≤ C|ẑ0(·, ξ)|2L2
α
,

where we used (3.37) in the last estimate. This shows that (3.36) holds true also for l = j and
therefore the proof of (3.36) is complete.

Step 3. Next, when α > 0 is not an integer, we show that

(1 + t)γeκ|ξ|2t|ẑ(·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂1(ξ, τ)dτ

≤ C(1 + t)γ−α|ẑ0(·, ξ)|2L2
α

(3.38)
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for γ > α, where D̂1 is defined in (3.12), and C and κ are positive constants. Notice that (3.38)
gives the desired estimate (3.28) even if α > 0 is not an integer.

To prove (3.38), we recall the inequality (3.25) which is the same as (3.31) with β = 0. We need
to estimate the second term on the right-hand side of (3.25). This can be done by applying the
technique due to Nishikawa in [10]. When α > 0 is not an integer, we have from (3.36) with
l = [α] that

(1 + t)[α]eκ|ξ|2t|ẑ(·, ξ, t)|2
L2

α−[α]
≤ C|ẑ0(·, ξ)|2L2

α
,

∫ t

0
(1 + τ)[α]eκ|ξ|2τ |ẑ(·, ξ, τ)|2

L2
α−[α]−1

≤ C|ẑ0(·, ξ)|2L2
α
,

(3.39)

where C is a positive constant. Now, using a simple interpolation inequality |a|L2 ≤

|a|θ
L2

θ−1

|a|1−θ
L2

θ

(0 ≤ θ ≤ 1) and the Hölder inequality, we see that

∫ t

0
(1 + τ)λ|a(τ)|2L2 dτ

≤
(

∫ t

0
(1 + τ)μ|a(τ)|2

L2
θ−1

dτ
)θ( ∫ t

0
(1 + τ)ν|a(τ)|2

L2
θ
dτ

)1−θ
,

(3.40)

provided that λ = μθ + ν(1 − θ) with 0 ≤ θ ≤ 1. We use (3.40) for a = eκ|ξ|2t/2 ẑ(x1, ξ, t),
θ = α − [α], λ = γ − 1, μ = [α] and the corresponding ν determined by λ = μθ + ν(1 − θ).
Then, using (3.39), we arrive at the estimate

∫ t

0
(1 + τ)γ−1eκ|ξ|2τ |ẑ(·, ξ, τ)|2L2 dτ

≤ C|ẑ0(·, ξ)|2L2
α

(

∫ t

0
(1 + τ)ν−[α]dτ

)1−θ
≤ C(1 + t)γ−α|ẑ0(·, ξ)|2L2

α
,

where we have used the fact that (ν − [α] + 1)(1 − θ) = γ − α. Substituting this estimate into
(3.25), we get the desired estimate (3.38).

Step 4. Finally, we prove (3.29) and (3.30). Employing (3.38), we can estimate the last term
of the right-hand side of (3.26). Namely, we obtain

(1 + t)γeκ|ξ|2t|v̂(·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂2(ξ, τ)dτ

≤ C|v̂0(·, ξ)|2L2 + C(1 + t)γ−α|ẑ0(·, ξ)|2L2
α
≤ C(1 + t)γ−α(|ẑ0(·, ξ)|2L2

α
+ |v̂0(·, ξ)|2L2 )

(3.41)

for γ > α. Thus this yields (3.29).

On the other hand, by applying (3.38) and (3.41) to (3.27), we get

(1 + t)γeκ|ξ|2t|v̂x1 (·, ξ, t)|2L2 +
∫ t

0
(1 + τ)γeκ|ξ|2τ D̂3(ξ, τ)dτ

≤ C(1 + t)γ−α(|ẑ0(·, ξ)|2L2
α
+ |v̂0(·, ξ)|2H1 )

for γ > α. This means that (3.30). Hence this completes the proof of Theorem 3.3.
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