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1. Introduction

The solar corona has a very complex and highly dynamic structure. It consists of a large
number of constantly evolving, loops and filaments, which interact with each other and
are closely associated with the local magnetic field. The non-stationary character of solar
plasma-magnetic structures manifests itself in various forms of the coronal magnetic loops
dynamics as rising motions, oscillations, meandering, twisting (Aschwanden et al., 1999;
Schrijver et al., 1999), as well as in formation, sudden activation and eruption of filaments
and prominences. Energetic phenomena, related to these types of magnetic activity, range
from tiny transient brightenings (micro-flares) and jets to large, active-region-sized flares
and coronal mass ejections (CMEs). They are naturally accompanied by different kinds
of electromagnetic (EM) emission, covering a wide frequency band from radio waves to
gamma-rays. Radiation, produced within a given plasma environment, carries an information
on physical and dynamic conditions in a radiating source. This causes an exceptional
importance of the EM radiation, as a diagnostic tool, for understanding the nature and physics
of various solar dynamic phenomena. As a relatively new, in that context, direction of study
in the traditional branch of the solar microwave radio astronomy appears the analysis of the
slow, long-periodic (e.g., > 1 s) fluctuations of the radiation intensity (Khodachenko et al.,
2005; Zaitsev et al., 2003).

Microwave radiation from the magnetic loops in solar active regions (e.g., during solar
flares) is usually interpreted as a gyro-synchrotron radiation, produced by fast electrons on
harmonics of the gyro-frequency νB in the magnetic field B of the loop. In the case of a
power-law distribution of electrons in energy as f (E) ∝ E−δ, the intensity of gyro-synchrotron
radiation Iν from an optically thin loop (Dulk, 1985; Dulk & Marsh, 1982) is

Iν ∝ B−0.22+0.9δ(sin θ)−0.43+0.65δ, (1)

where θ is the angle between magnetic field and the direction of electromagnetic wave
propagation. For the observed typical values of the electron energy spectrum index 2 ≤ δ ≤ 7
this implies the proportionality of intensity to a moderately high power of the background
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2 Will-be-set-by-IN-TECH

magnetic field and essential anisotropy of the radiation: Iν ∝ B1.58÷6.08( sin θ)0.87÷4.12.
Equation (1) is obtained within an assumption of an optically thin source, when the radiation
intensity is proportional to the emissivity ην (Dulk, 1985). According to the estimations in
Urpo et al. (1994), a coronal loop with diameter of about 4 × 108 cm is optically thin in the
considered frequency range for the gyro-synchrotron absorption if the density of fast electrons
is < 2 × 109 cm−3. The typical density of > 10 keV electrons in the microwave burst events is
usually 106 ÷ 107 cm−3 and therefore, it stays well within the above indicated limit.

It follows from the equation (1) that variations of the loop magnetic field, associated with
disturbances of the electric current in a radiating source, should modulate the intensity of
the microwave radiation of the loop (Khodachenko et al., 2005; Zaitsev et al., 2003). Another
origin for the modulation of intensity of the observed microwave radiation can be due to the
quasi-periodic motion (oscillation) of a coronal magnetic loop, containing the radiation source.
This mechanism is connected with the anisotropy of the gyro-synchrotron emission, as well as
with the variation of the magnetic field value during the oscillatory motion of the loop, which
both, according to the equation (1), can result in a quasi-periodic modulation of the received
signal (Khodachenko et al., 2006; 2011). Therefore, the analysis of slow modulations of solar
microwave radiation may be used for the diagnostics of oscillating electric currents in the
coronal loops, as well as for the investigation of large-scale motion of the loops (including loop
oscillations) in solar active regions. By this, it is natural to expect that structural complexity of
solar active regions will manifest itself in peculiarities of the emitted radiation.

The dynamic spectra of the long-periodic oscillations, modulating the intensity of microwave
radiation from solar active regions, have been found to contain quite often several spectral
tracks, demonstrating a specific temporal behaviour (Zaitsev et al., 1998; 2001a;b; 2003).
Khodachenko et al. (2005) considered these multi-track features as an indication that the
detected microwave radiation is produced within a system of a few closely located, magnetic
loops, having slightly different parameters and involved in a kind of common global
dynamic process. In several cases such slow modulations of solar microwave radiation
(with multi-track spectra) were interpreted as the signatures of oscillating electric currents,
running within the circuits of moving relative each other inductively connected coronal
magnetic loops (Khodachenko et al., 2006). The dynamics of these electric currents has been
described by means of the equivalent electric circuit (LCR-circuit) models of the coronal loops
(Khodachenko et al., 2003; Zaitsev et al., 1998) characterized by time-dependent inductance
L, capacitance C, resistance R, as well as mutual inductance coefficients Mj (Khodachenko et
al., 2003; 2009). The L, C, R and Mj parameters of electric circuit of a current-carrying loop
depend on shape, scale, position of the loop with respect to other loops, as well as on the
plasma parameters and value of the total longitudinal current in the magnetic tube. In that
respect it is worth to mention that the LCR-circuit model ignores the fact that changes of the
magnetic field and related electric current propagate in plasma at the Alfvén speed. It ignores
any short-time variations of plasma parameters, which appear to be averaged in course of
derivation of the LCR model equation (Khodachenko et al., 2009; Zaitsev et al., 2001a). The
LCR approach assumes instant changes of the electric current over the whole electric circuit
according to the varying potential and ignores all the "propagation effects" related to the
system MHD modes. The LCR equations correctly describe temporal evolution of electric
currents in a system of solar magnetic current-carrying loops only at a time scale longer
than the Alfvén wave propagation time. More generally, the equivalent electric circuit model
of a coronal loop tends to emphasize the global electric circuit, obscuring the effects of the
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Analysis of Long-Periodic Fluctuations of Solar Microwave Radiation, as a Way for Diagnostics of Coronal Magnetic Loops Dynamics 3

ambient plasma and details of the magnetic structure. The LCR model approach was applied
in particular for interpretation of the solar microwave burst long-periodic modulations with
drifting modulation frequencies ν(t) in the interval 0.03 ÷ 1 Hz. Based on the analysis of the
frequency drift of the modulations Zaitsev et al. (1998; 2001a; 2003) and Khodachenko et al.
(2005) estimated also the values of the electric current in flaring loops (108 ÷ 1011 A), which
appeared to be close to the values obtained by other methods (Hardy et al., 1998; Leka et al.,
1996; Moreton & Severny, 1968; Spangler, 2007; Tan et al., 2006).

However, not all long-periodic modulations of solar microwave radiation demonstrate
frequency drift and occupy a similar frequency range. Khodachenko et al. (2009) pointed
out that the frequency of LCR-oscillations of the electric current, which depends on specific
parameters of a coronal loop, usually stays within the interval νLCR ≈ (0.03 ÷ 1) Hz.
Therefore, the modulations of the solar microwave radiation intensity with 0.03Hz< ν < 1Hz
are very likely to be due to the electric currents, oscillating in LCR-circuits of coronal loops.
At the same time, modulations caused by the oscillatory motions of loops that contain the
radiation sources, because of their direct connection with the large-scale dynamics of loops,
should have typical frequencies < 0.01 Hz and exhibit no drift. Thus, it has been proposed in
(Khodachenko et al., 2009) that one should distinguish, when speaking about different kinds
of long-periodic modulations of the solar microwave radiation, between the low-frequency (LF)
(≈ 0.03÷ 1 Hz) and very-low-frequency (VLF) (< 0.01 Hz) modulations, assuming the first to be
connected with the LCR-oscillations of electric currents in the coronal loops and the second to
be caused by large-scale motions of the radiation sources confined within the oscillating loops.
LF modulations (e.g., 0.03÷ 1 Hz) have been studied in details and interpreted in terms of the
equivalent electric circuit models of coronal loops in Khodachenko et al. (2005; 2006); Zaitsev
et al. (1998; 2001a;b; 2003). They are not considered in this chapter, whereas we addresses here
the VLF modulations (< 0.01 Hz) of solar microwave radiation and their possible relation to
the large-scale dynamics of coronal loops in solar active regions. Some preliminary results on
that subject were reported recently in a short publication Khodachenko et al. (2011), and the
present paper addresses this topic in more details.

Transverse oscillations of the coronal magnetic loops considered here are triggered by flares
and filament eruptions, i.e. by phenomena in which the significant Lorentz forces are likely
acting in association with the magnetic field adjustments. By this, all considered oscillating
loops have at least one footpoint in the immediate vicinity of a separatrix surface or of a
flare ribbon. Using the potential-field extrapolations Schrijver & Brown (2000) demonstrated
that the field lines close to a separatrix surface exhibit strongly amplified displacements in
response to small displacements in the photospheric "roots". This means that the magnetic
field lines in the proximity of separatrix are much more sensitive to changes in the field sources
than are the field lines that lie well within domains of connectivity. Speaking about a nature
of the observed transversal oscillations of coronal loops Schrijver et al. (2002) address two
models: (a) transverse waves in coronal loops that act as wave guides and (b) mentioned
above, strong sensitivity of the shape of magnetic field lines near separatrix to changes in the
bottom field sources. By this, the authors outline several observational features that favor the
model (b). Based on the extensive study of properties of transverse loop oscillations triggered
by flares, Aschwanden et al. (2002) also concluded that most of the loops do not fit the simple
model of a kink eigen-mode oscillation. Therefore, the present paper is not dedicated to
the study of MHD oscillations in solar coronal loops. Our goal consists in demonstration
of the fact that quasi-periodic transverse motions of a coronal magnetic loop, which contains
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a source of microwave emission, may be connected with a specific modulation of radiation
intensity received by a remote observer.

Speaking about other possible mechanisms (besides of the microwave radiation source
large-scale oscillatory motion), which may cause a quasi-periodic modulation of the
non-thermal electron gyro-synchrotron radiation, it is necessary to mention that a
quasi-periodically varying flow of the non-thermal electrons may also result in oscillations
of intensity of microwave radiation. Generation of energetic electrons usually is believed to
be associated with the processes of magnetic reconnection during solar flares (Miller et al.,
1997). There are also theories which suggest acceleration of particles by the inductive and
charge separation electric fields, build in course of the continuous motion of solar large-scale
coronal magnetic structures (Khodachenko et al., 2003; Zaitsev & Stepanov, 1992). Besides
of that, particle acceleration in a collapsing magnetic trap (Karlický & Kosugi, 2004), in the
MHD turbulence (LaRosa & Moore, 1993; Miller et al., 1996), and in shocks (Cargill et al.,
1988; Holman & Pesses, 1983) are addressed as secondary possible mechanisms for energetic
particle production. An extended review of particle acceleration processes in solar flares was
recently published by Aschwanden (2002). In most of these cases the typical periods are
shorter than those of the VLF transverse oscillations of coronal loops. On the other hand,
there are also models in which VLF large-scale oscillations of coronal loops control the process
of generation of energetic particles after the impulsive phase of a flare (Nakariakov et al.,
2006). This case, however, deserves a special study, which appears beyond the scope of the
present paper. Our analysis here is based on the traditional scenario, according to which the
non-thermal particles, produced during a flare in particle acceleration regions (e.g., sites of
magnetic reconnection or the area of separatrix currents), are injected into oscillating loops.

2. Peculiarities of VLF modulations of microwave radiation related to large-scale

transverse motions of the radiating sources in the oscillating coronal loops

Even taking into account the typical ranges of the modulation frequencies of microwave
radiation (mentioned above), it is usually difficult to identify the modulation mechanism
acting in each particular case. Indeed, having in mind only Equation (1) one cannot say for
sure if the observed modulation is due to a) the electric current oscillations in the radiation
source or b) the large-scale oscillatory motion of the loop. However, regarding the last
modulation mechanism, an attention should be paid to the fact that large-scale transverse
oscillatory motion of a coronal loop is accompanied by the periodic stress of magnetic field
created in the loop, especially near its footpoints, during each inclination, i.e. two times
per oscillation cycle. This means that the magnetic field strength fluctuates during the
oscillatory motion of the loop with a half-period Posc/2 of the loop oscillation. Therefore,
according to Equation (1), for a transverse oscillating loop, a properly located observer, in
addition to the modulation caused by the emission diagram motion at the main oscillation
frequency ν0 = 1/Posc, may see in some cases the modulation at the double frequency of the
loop oscillation 2ν0, as well as weak higher order harmonics caused by the non-linearity of
Equation (1). However, as it will be shown below the relative amplitude of the higher-order
harmonics, i.e., with numbers > 2 is rather low, and in the most cases only the first two
harmonic frequencies can be detected. The domination of the main and double-frequency
harmonics in the spectrum is caused by implicit presence of these frequencies in the signal,
according to the above described character of the radiation modulating factors. Therefore,
the presence of the "modulation pairs" in the low-frequency spectra, i.e., the lines which can
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Analysis of Long-Periodic Fluctuations of Solar Microwave Radiation, as a Way for Diagnostics of Coronal Magnetic Loops Dynamics 5

be associated with the main and double frequency of the loop oscillation (ν0 and 2ν0) may
indicate about a transverse oscillatory dynamics of the loop.

Formation of the "modulation pairs" and their higher-order harmonic companions in
multi-line dynamic spectrum of the VLF modulation of microwave radiation emitted from
a transverse oscillating coronal loop may be illustrated with a simple model. Let’s suppose
that the loop undergoes oscillations in the direction transverse to the loop plane as shown in
Figure 1. The loop inclination relative to the vertical direction varies as α(t) = α0 sin(2πν0t),
where α0 and ν0 are the angular amplitude and frequency of the loop oscillations, respectively.
Assuming that this loop, when oriented vertically, is seen by a remote observer at the angle Θ0,
we get that in course of the loop oscillation the viewing angle changes as Θ(t) = Θ0 − α(t).

Irrespectively of the nature of a coronal loop oscillation, the important feature of the
large-scale transverse motion of the loop, consists in an oscillating magnetic stress, created in
the loop during its quasi-periodic inclinations. Assuming the local transverse disturbance of
the magnetic field relative its initial vertical direction to be δB, we find that the total disturbed
magnetic field is δB/ cos α(t). For sufficiently small α(t) the following approximation can
be used: 1/(cos α(t)) ≈ 1/(1 − α(t)2)1/2 ≈ 1 + (1/2)α(t)2. This means that the disturbed
magnetic field in the loop varies in time as B(t) ≈ δB(1 + (1/2)α(t)2). Therefore, for the
assumed above sinusoidal character of α(t), we finally obtain that the local magnetic field in a
transverse oscillating magnetic loop may be approximated as B(t) ∝ (1 + 0.5α2

0 sin2(2πν0t)).
Substitution of the expressions for Θ(t) and B(t) into (1) enables to construct a modeling
signal for the varying intensity of microwave radiation emitted from a transverse oscillating
magnetic loop. The examples of dynamic spectra of this signal obtained with α0 = π/6 and
δ = 5 for different viewing angles Θ0 = π/2; π/3; π/4; π/6 are shown in Figure 2.

Dynamical spectra of the modeling signal in Figure 2 demonstrate several important features,
typical for the radiation emitted from a microwave source located in a transverse large-scale
oscillating magnetic loop, which may be observed in the solar microwave emission. In
particular, for the most of the viewing angles (except of Θ0 = π/2) the dynamic spectra
contain well pronounced "modulation pairs", e.g. the lines at the main ν0 and double 2ν0
frequency of the oscillation. Besides of that, sometimes also a weak third harmonic at 3ν0
may be observed, which appears due to essentially non-sinusoidal (non-harmonic) character
of the signal resulted from the joint action of two modulating factors: quasi-periodic magnetic
stress and emission diagram motion. In a special case of Θ0 = π/2, the absence of the main
frequency component is caused by a "symmetrizing" (in this case) of the varying angular part
of the emission intensity. This results in a situation when the diagram motion and magnetic
stress factors work synchronously.

As it can be seen in Figure 2, only the first two harmonics have high enough amplitudes. In
particular, the spectral amplitude of third harmonic in the cases with Θ0 = π/3; π/4; π/6,
never exceeds 25% of the main frequency component, whereas the second harmonic
constitutes usually about 65% of the last. Therefore, the detection of harmonics with numbers
higher than 2 in a natural signal, will be in the most cases difficult due to the noise
contamination. The presence of modulation pairs in the VLF spectra of solar microwave
radiation may be considered as an imprint of a transverse kink-type motion of a loop
containing the radiation source. This feature may be used for the indirect identification of
candidates for transverse oscillating coronal loops by finding specific modulation lines in the
VLF dynamic spectra of microwave radiation. However, the exact detection of transverse
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Fig. 1. Schematic view of an oscillating loop which contains a microwave radiation source.
Θ0 is the direction to a remote observer and α0 is the angular amplitude of the loop
oscillations.

motion of the radiating loops by the dynamical spectra of microwave emission (with the
exclusion of other mechanisms which may also generate higher spectral harmonics) requires
quantitative study of the measured radio signal and superimposing these results with the
precise calculation of the radiation from the loop, taking into account the loop position relative
observer.

Several real observational examples are considered below, for which VLF modulations of
microwave radiation could be associated with the observed in EUV post-flare oscillating
coronal loops.
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Analysis of Long-Periodic Fluctuations of Solar Microwave Radiation, as a Way for Diagnostics of Coronal Magnetic Loops Dynamics 7

Fig. 2. Dynamical spectra of the modeling signal with α0 = π/6 and δ = 5 demonstrating the
peculiarities of the microwave radiation VLF modulations produced due to large-scale
transverse oscillations of a coronal loop containing the radiating source. Different directions
to an observer Θ0 (viewing angles) are considered: (a) π/2; (b) π/3; (c) π/4; (d) π/6.

3. Data preparation and analysis methods

Differently to the idealized infinite in time analytical modelling signal considered in section 2,
the natural radio emission received from a solar active region with oscillating coronal loop(s)
is essentially time-dependent. It usually begins with an impulsive phase of a solar flare and
has duration of only several periods of decaying oscillations of the loop(s). Besides of that,
a signal from a particular oscillating loop is quite often strongly contaminated by interfering
signals from neighboring loops in the active region of interest, as well as by the radiations
emitted from other solar active regions. This complicates the task of detection and diagnostics
of coronal magnetic loop oscillations in microwaves and requires special data preparation
procedures with consequent application of high spectral and time resolution data analysis
techniques.

Since the analyzed data appear in a form of discrete counts of the signal intensity, it is
natural that digital methods are applied for their processing. A basic specifics of the digital
methods consists in certain limitation of dynamical range of the resulting spectra which
may lead to the loss of relatively weak and short-time, but important parts of the whole
spectra-temporal picture of the studied phenomenon. To avoid of that, the analyzed data
pass certain pre-processing preparation which (depending on particular case and task) may
include the following procedures: 1) Subtraction of a constant component of a signal, or the
signal average; 2) subtraction of a slow (as compared to the analyzed oscillations) major trend
of the signal; 3) slow polynomial approximation of the analyzed data with the consequent
subtraction of the approximating signal; 4) signal "normalization" (will be described below);
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and 5) digital filtration of contaminating components. Altogether, the "subtraction" methods
1-3 enhance visibility of weaker fluctuations of the radiation, enabling better analysis of their
spectral and temporal characteristics. Note, that the digital filtration (e.g., the method 5) with
an appropriate filter(s) may efficiently substitute all the "subtraction" methods. However, the
inertness of a filter results in some smoothing of the radio emission fluctuations of interest.
Besides of that, information about the intensity of the radiation fluctuations is lost during the
frequency filtration.

The filtration algorithm consists in the application of a Gaussian window to the analyzed
signal spectrum, obtained with the discrete Fourier transform (DFT), with the consequent
performance of the reverse DFT. The Gaussian window for the low frequency (LF), high
frequency (HF), band-pass (BP), and band-lock (BL) filters, respectively, is determined by the
following expressions:

WLF(k) = exp
{

− k2

2 ·
(

f1
fs
· d · N

)−2
}

, k = 0, ..., N/2;

WHF(k) = 1 − exp
{

− k2

2 ·
(

f1
fs
· d · N

)−2
}

, k = 0, ..., N/2;

WBP(k) = exp
{

− 1
2 ·

(

k
N −

f0
fs

)2
·
(

∆ f
fs

· d
)−2

}

, k = 0, ..., N/2;

WBL(k) = 1 − exp
{

− 1
2 ·

(

k
N −

f0
fs

)2
·
(

∆ f
fs

· d
)−2

}

, k = 0, ..., N/2.

(2)

Here N is the number of counts in the analyzed signal, fs is the frequency of discretization, d
is decimation coefficient (Marple, 1986), f1 is the cut-off frequency for the LF and HF filters,
f0 and ∆ f , are the central frequency and the band, respectively, for the BP and BL filters.

Let’s consider now the "normalization" method. It is based on a treatment of an analytical
signal z(n) (Marple, 1986):

z(n) = s(n) + isH(n) = M(n) exp(iΨ(n)), (3)

where s(n) and sH(n) are the analyzed digital signal and its Hilbert conjugate, respectively,
and n is the count number. The parameters M(n) and Ψ(n) are the module and phase of the
analytical signal, which are defined as the following:

M(n) =
√

s(n)2 + sH(n)2,
Ψ(n) = arctan

[

sH(n)
s(n)

]

.
(4)

The "normalization" procedure consists in division of the analytical signal z(n) on M(n). By
this, the amplitudes of all spectral components of the analyzed process s(n) become to be
equalized. Note, that due to the orthogonality of functions s(n) and sH(n), the value of
function M(n) never becomes zero. The "normalization" method is especially efficient for
the analysis of non-stationary modulation processes. It enables to detect and to follow the
variations of an "instantaneous" frequency of an oscillatory component of radiation.

An important role in the present work belongs also to the method, used for the detection
of quasi-periodic features in the time records of the solar microwave radiation intensity. It
consists in application of an original data analysis algorithm (Shkelev et al., 2002; Zaitsev et
al., 2001b) made as a combination of the "sliding window" Fourier (SWF) transform technique
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and the nonlinear Wigner-Ville (WV) method (Cohen, 1989; Ville, 1948; Wigner, 1932). Below
we outline the idea of this data analysis algorithm and its main features.

The classical Fourier transform enables the analysis of a given signal in terms of separate
spectral frequency components. It is applied for the study of relative distribution of energy
between the spectral components in the case of sufficiently long (ideally infinite) duration
of the analyzed signal. However such energetic spectrum does not provide an information
on a time when each particular spectral component appears. Possible improvement of the
classical Fourier transform method in that respect consists in its application within a certain
interval of time ∆t (so called "window") and in a consequent shift of this "window" along
the time axis. This approach became a standard method for the analysis of non-stationary
signals. Further generalization of SWF transform method leads to the wavelet analysis, where
effect of the "window" is produced by means of a certain mother-wavelet function. Wavelet
transform enables judging about energy distribution over the time and frequency of an
analyzed signal. Nowadays this method is also widely used for the analysis of non-stationary
and impulsive signals. Its efficiency is however strongly dependent on parameters of the
applied mother-wavelet function, which needs to be specially selected and adjusted to the
type of particular analyzed signal.

Recently one more spectral analysis method has been applied in astrophysics. This method is
based on the Wigner-Ville (WV) transform

P( f , t) =
∫ ∞

−∞
z
(

t +
τ

2

)

z∗
(

t −
τ

2

)

e−i2π f τdτ, (5)

where z(t) = s(t) + isH(t) is an analytic signal, made of the analyzed sample of real signal
s(t), and its Hilbert conjugate sH(t). Function P( f , t) gives distribution of the signal energy
over frequency f and time, and may be visualized in the form of a dynamical spectrum of the
signal. According to its definition (5), WV transform may be also interpreted as Fourier image
(relative the shifted time) of the local autocorrelation function for the analytical signal z(t).

Since the time t appears explicitly among the arguments of the WV spectrum P( f , t), this
method is most efficient for high-resolution spectra-temporal analysis of non-stationary
signals with varying spectra, such as quasi-harmonic signals with a changing frequency,
or varying impulsive signals. In these cases SWF transform and wavelet methods are less
efficient, because the averaging over the analysis window (or over the wavelet) results in
a decrease of spectral density of the signal components, varying within the corresponding
time intervals. At the same time, the non-linearity and non-locality of WV method cause
appearance of artificial inter-modulation spectral components at combination frequencies
(artifacts) and may result also in suppression of weak spectral components of the signal by its
more intense or noisy parts (Cohen, 1989; Shkelev et al., 2002). To compensate the drawbacks
of SWF and WV data analysis methods, when they are used separately, and to keep their
strong features, the methods were combined in a proper way in the SWF-WV algorithm,
which uses various types of signal processing and filtration (with variable shape and size
of the analysis windows) in order to eliminate possible artifacts and to provide high spectral
and temporal resolution (Kislyakov et al., 2011; Shkelev et al., 2002).

To avoid the appearance of spurious spectra caused by the signal edge effects in the case
of analysis of real finite in time signal samples, the so called "weighting" functions with
smoothed edges are used. In the present study, the SWF spectrum Sk of a discrete signal
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sn consisting of N counts is calculated by a discrete Fourier transform (DFT) (Allen & Mills,
2004; Marple, 1986):

Sk = ∑
N−1
n=0 wnd(n)sn exp

{

−i 2πnk
N

}

, k = 0, 1, ..., N − 1 (6)

with a sliding window wnd(n). The following window functions are used (see also Pollock
(1999)):

wnd1(n) =

{

1 , 0 ≤ n < N
0 , n ≥ N

– a rectangular window

wnd2(n) =

{

cos2 (π·n
2N

)

, 0 ≤ n < N/2
0 , n ≥ N/2

– Henning’s window

wnd3(n) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 6 ·
(

2·n
N

)2
+ 6 ·

(

2·n
N

)3
, 0 ≤ n < N/4

2 ·
(

1 − 2·n
N

)3
, N/4 ≤ n < N/2

0 , n ≥ N/2

– Parsen’s window.

(7)
The advantage of this method consists in its high performance speed, especially if the standard
algorithms of fast Fourier transform (FFT) are used in the calculations (Allen & Mills, 2004;
Marple, 1986). On the other hand, frequency resolution of SWF is reverse proportional to
the number of signal counts in the applied window. Therefore the size of window should be
sufficiently large. This in its turn decreases the temporal resolution of the method. In practice,
the choice of particular type and width of the window is determined by dynamical features of
the analyzed signal.

An algorithm of the discrete WV transform is determined by the following expression:

Pmk = P(m∆t, k∆ f ) = 2∆t
2N−1

∑
n=0

[

zm+nz∗m−n exp
{

−i
πnk

N

}]

, {m, k} = 0, 1, 2, ..., 2N, (8)

where zn and z∗n are discrete values of the analyzed complex analytical signal made, as
determined above, of the real discrete signal and its Hilbert conjugate; ∆t is a period of
discretization, and ∆ f = 1/(4N∆t) is the frequency step. Note, that WV transform results
in real values only in the case of continuous functions integrated in infinite limits (like in (5)).
The discrete WV transform (8) yields a complex function Pmk, which is called as "pseudo-WV
transform" (Cohen, 1989). In that respect in practice only a module of Pmk or its real part are
considered.

In course of the comparative study performed in Kislyakov et al. (2011); Shkelev et al. (2002)
it has been shown that WV data analysis technique enables higher spectral and temporal
resolution than that of the SWF. In Shkelev et al. (2002) the efficiency of WV and SWF
methods was checked with various test signals, made as combinations of impulsive and
quasi-harmonic processes. By this, along with the meaningful spectrum, WV transform
generated specific artificial spectral features (due to the non-linearity of the method). It has
been shown in that respect that superimposing of the higher resolution WV spectra with those
of lower resolution provided by SWF, may help to identify and to exclude these artificial
spectral features form the consideration. Altogether, combined with each other the described
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above SWF and WV methods provide an efficient data analysis algorithm characterized
by high sensitivity, high spectral and temporal resolution, and ability to detect complex
multi-signal modulations in the analyzed data records, enabling the dynamical spectra of
these modulations. For successful operation of the SWF-WV algorithm, the sampling cadence
of analyzed data series should provide sufficient number of the data points, e.g. ≥ 10, 000
points per realization. The length of the analyzed data series should be consistent with
the time scales of considered dynamic phenomena, i.e. the duration of an analyzed data
set should include at least several periods of the modulating oscillatory component. The
SWF-WV method appears the most efficient for the study of signals with non-stationary
complex modulations. In such cases the traditional Fourier transform and wavelet methods
are less efficient. This feature of the algorithm has been, in particular, used to distinguish
between the modulations, possibly caused by the large-scale transverse quasi-periodic motion
of the loops, which are the subject of the present study, and the modulations with frequency
drifts related with the electric current LCR-oscillations in the loops.

For the visualization of the whole variety of the detected modulations, so called averaged
spectral density plots are produced along with the dynamic spectra by the SWF-WV
algorithm. These plots are obtained by averaging of multiple instantaneous cuts of the
dynamic spectrum taken at given moments of time, so that short-living modulation features
also become clearly seen among the longer lasting modulation lines. These both types of
spectra (dynamic and averaged) enable the detection of the large-scale transverse oscillatory
dynamics of the radiating coronal magnetic loops.

The universality of SWF-WV algorithm resulted in its successful application in different
branches of space physics. The algorithm was used for the diagnostics of intrinsic physical and
dynamical conditions in the stellar and planetary systems, solar/stellar winds, as well as in
solar and planetary radiation sources and planetary environments (Khodachenko et al., 2006;
Kislyakov et al., 2006; Panchenko et al., 2009; Zaitsev et al., 2003; 2004). Nowadays, the link
to SWF-WV data analysis algorithm is available for the scientific community via the on-line
catalogue of models and data analysis tools (http://europlanet-jra3.oeaw.ac.at/catalogue/),
developed within the JRA3-EMDAF (European modelling and data analysis facilities) activity
(http://europlanet-jra3.oeaw.ac.at/) of the European FP7 research infrastructure project
Europlanet-RI.

4. Diagnostics of large-scale oscillations of coronal loops by the analysis of VLF

modulations of microwave radiation

5. Instrumentation and modulations detection capabilities

We analyze the VLF (< 0.01 Hz) modulations of solar microwave bursts recorded in
Metsähovi Radio Observatory (Finland) with the 14-m and 1.8 m radio telescope antenna at 37
GHz and 11.7 GHz, respectively. The key selection criterion for the analyzed microwave data
was their synchronism with the oscillating loops observed in extreme ultraviolet (EUV) by
TRACE (Aschwanden et al., 2002). The width of the antenna beam pattern of the Metsähovi
radio telescope at 37 GHz is 2.4’, the sensitivity of the receiver is about 0.1 sfu (10−23

W m−2 Hz−1), and time resolution, 0.05 ÷ 0.1 s. Therefore, at 37 GHz the spatial resolution of
the radio telescope is sufficient for identification of an active region that contains a radiating
source. This enables to analyze microwave radiation emitted directly from the region, imaged
in EUV (e.g., observed by TRACE), and to perform the comparison of the radiation features
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and dynamics of coronal loops. At 11.7 GHz the radiation is collected from the whole solar
disk and the position of the radiating source cannot be resolved. However, even in this
case, by comparison with observations in other wavelengths and timing of the events, it is
usually possible to identify the microwave radiation features related to the energy release and
dynamic phenomena in particular active regions.

Variations of the background magnetic field in a radiating source may cause not only the
amplitude modulation of microwave radio emission from solar active regions (according (1)),
but also could result in a certain frequency modulation (due to the dependence of electron
gyro-frequency νB on the magnetic field). The estimated width of the gyro-frequency variation
interval due to this effect is from several tens to several hundreds MHz. At the same time,
the bandwidth of the receiver at Metsähovi is much larger than this interval and a possible
frequency modulation of the microwave radio emission cannot be resolved. Thus, one can
detect only the effects of varying magnetic field, manifested in the intensity modulation of the
microwave signal, due to (1).

5.1 Observations and interpretation

In this subsection, we show how the analysis of long-periodic modulations of solar microwave
radiation accompanying the explosive events on the Sun may be used to obtain information on
the details of large-scale dynamics of the coronal loops associated with flares and the overall
structure of solar active regions. By this, the primary focus here is made on VLF modulations
of the radiation, emitted from active regions where TRACE observed in EUV at the same
time the large-scale oscillations of coronal loops. Careful check of the solar microwave radio
emission records available at Metsähovi revealed several events which coincide in time with
the EUV observations of oscillating coronal loops. Below these events are considered in
details.

Figure 3c shows the intensity profile and dynamic spectrum of VLF modulations of
microwave emission from the active region AR8910 on the limb (see Figure 3a,b) where a
group of oscillating loops (Figure 4a) was observed by TRACE after M2.0 flare on 2000-Mar-23,
at 11:30-12:00 UT (Aschwanden et al., 2002). These observations were performed at 37 GHz,
and the spatial resolution of the Metsähovi radio telescope was sufficient to resolve the
radiating source in the active region AR8910.

A remarkable feature of the VLF modulation dynamic spectrum in Fig. 3c,d and the averaged
spectral density plot in Fig. 3d consists in the presence of several "modulation pairs". These
are the modulations (a) at 1.7 mHz (∼ 10 min) and 3.4 mHz (∼ 4.9 min); (b) at 6.0 mHz (∼ 2.8
min) and 12.0 mHz (∼ 1.4 min), as well as (c) at 7.8 mHz (∼ 2.1 min) and 15.6 mHz (∼ 64
s). According to the considerations in Section 2, these "modulation pairs" could indicate the
transverse oscillating loops with the periods, corresponding to the main frequencies of the
pairs, i.e. ∼ 10 min; ∼ 2.8 min, and ∼ 2.1 min for the cases (a), (b), and (c), respectively. By
this, the first "modulation pair" (case (a)) as a signature of the loop transverse oscillation with
a period ∼ 10, fits quite well the results of TRACE observations, which found the oscillating
loop with approximately the same period (615 s) (Aschwanden et al., 2002; Schrijver et al.,
2002). As it can be seen from the dynamical spectrum in Figure 3c, the spectral resolution of
the analysis performed in this particular case was about 0.3 mHz. By this, the frequency 1.62
mHz corresponding to the detected TRACE period of 615 s is definitely within the frequency
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Fig. 3. (a) SOHO/MDI Magnetogram of the Sun on 2000-Mar-23, white arrow points at the
active region AR8910; (b) The Sun image in 304 Å on 2000-Mar-23 from SOHO/EIT, white
arrow points at the active region AR8910; (c) Intensity profile and corresponding VLF
modulation dynamic spectrum of the microwave radiation, recorded from the active region
AR8910 on 2000-Mar-23, at 11:30-12:00; Color codes the dynamic spectral relative intensity
(arbitrary units), more dark features correspond to stronger (better pronounced)
modulations; (d) averaged spectral density of the VLF modulation.

interval 1.7 ± 0.3 mHz of the modulation feature revealed by the analysis of the microwave
radiation.
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Fig. 4. (a) Transverse oscillating coronal loops observed by TRACE in the active region
AR8910 after an M2.0 flare on 2000-Mar-23 at 11:30-12:00 UT (Aschwanden et al., 2002); (b)
Phase comparison of the ∼ 10 min modulation component of the microwave emission on
2000-Mar-23 and the amplitude of the corresponding 615 s oscillation of the TRACE loop.

A higher level of the second harmonic in the modulation pair 1.7 mHz (∼ 10 min) and
3.4 mHz (∼ 4.9 min) is very likely due to the fact that in this particular case two different
mechanisms, modulating the microwave emission of the loop, are by chance manifested
simultaneously. The first mechanism is that considered in this paper, which is connected
with a large-scale transverse oscillation of the loop. The second mechanism is due to
the parametric resonance between 5-min velocity oscillations in the solar photosphere and
acoustic oscillations of coronal magnetic loop modulating the microwave emission (Zaitsev
et al., 2008). The effect consists in simultaneous excitation in the loop, which occasionally
appeared to have a resonant frequency close to 10 min, of oscillations with periods ∼5 min,
∼10 min, and ∼3 min, which correspond to the 5-min pumping frequency of the photospheric
convection velocity oscillations, subharmonic, and the first upper frequency of the parametric
resonance, respectively (Zaitsev et al., 2008; Zaitsev & Kislyakov, 2006).

It makes no sense to search in TRACE data for the signatures of other oscillating loops
(cases (b) and (c)), indicated by the VLF modulations of the microwave radiation during
the 2000-Mar-23 event, since with the usual 40 s image sampling cadence of TRACE and
the 4-point resolution limit of the instrument (Aschwanden et al., 2002) the fastest detectable
by TRACE period is about 3 min. The remaining short-periodic "non-paired" modulation
feature at 8.4 mHz (∼ 1.9 min) may also be a part of a "modulation pair", of which the
second harmonic counterpart could not be resolved in the VLF spectrum due to the strong
contamination of the analyzed microwave signal. Such weak higher harmonic components
may be as well a signature of another oscillatory process, which is unrelated to the large-scale
transverse motion of loops, e.g., a sausage-type MHD wave excited in a loop. Detailed
analysis of this special case remains however beyond the scope of the present study.

An additional confirmation of the fact that ∼ 10 min modulation of the microwave radiation
emitted from the active region AR8910 on 2000-Mar-23, is connected with the transverse
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oscillatory motion of a coronal loop, shown in Fig. 4a, and that it is in very likely related to the
motion of the emission diagram pattern, comes from the graphs in Fig. 4b. This figure enables
phase comparison for the transverse motion of the loop (observed with TRACE Aschwanden
et al. (2002)) and the filtered 1.7 mHz (∼ 10 min) component of the radiation. The last
characterizes temporal behaviour of the radio emission received from the oscillating loop.
The shifted phase (∼ π) means that the maxima and minima of the radiation part controlled
by the loop motion correspond to the specific orientations of the loop and are connected with
a certain direction of the emission diagram relative to the observer.

The microwave burst on 2001-Sep-07 represents another example of manifestation of the
coronal loop transverse oscillations in modulation of solar radio emissions. The burst was
produced during M-flare activity at 15:30 UT in the active region AR9601, close to the solar
disc center (see Figure 5a,b), where TRACE observed a group of oscillating loops, immediately
after the flare (Aschwanden et al., 2002). The corresponding microwave radiation record was
made at 11.7 GHz with the Metsähovi radio telescope. At this frequency, the Metsähovi
antenna cannot resolve the position of a radiating source, and the emission from the whole
solar disk contributed to the analyzed microwave intensity profile. At the same time, as can
be seen in Fig. 5c, which presents the analyzed microwave radiation record with the burst
and its VLF modulation dynamic spectrum, the spectral features related to the processes in
the flaring active region AR9601 can easily be identified by timing of the event. In particular,
the dynamic spectrum of VLF modulations of the microwave radiation exhibits several lines,
which start simultaneously with the impulsive phase of the flare (at 15:30 UT). These may be
the signatures of different oscillating loops excited by the flare. By this, most of the oscillations
(e.g. the dynamic spectrum lines) decay at the time intervals > 20 min. Unfortunately for
this particular event it is impossible to determine exact duration of each of these decaying
modulations because the available microwave radiation record does not cover the end of the
event. As it can be seen in Fig. 5c, some of the dynamic spectrum lines continue beyond the
analyzed record time frame.

Three "modulation pairs" can be identified in the dynamic and averaged spectra in Fig. 5c,d:
(a) 1.8 mHz (∼ 9.2 min) and 3.6 mHz (∼ 4.6 min); (b) 2.7 mHz (∼ 6.2 min) and 5.4 mHz
(∼ 3.1 min); as well as (c) 4.3 mHz (∼ 3.8 min) and 8.6 mHz (∼ 1.9 min), which may be
the signatures of transverse oscillating loops with periods ∼ 9.2 min, ∼ 6.2 min, and ∼ 3.8
min, respectively. We note that the loop periods in the cases (a) and (b) are consistent with
the 6-10 min oscillating loops observed with TRACE (Aschwanden et al., 2002), whereas the
shorter period oscillation (case (c)) cannot be resolved by TRACE because of the relatively
long image sampling cadence. The modulation at 5.4 mHz (∼ 3.1 min) may also be a weak
third harmonic produced by the 9.2 min oscillating loop. If this is true, then the line at 2.7 mHz
(∼ 6.2 min) will have no a pair-companion, and one should exclude the possibility of the ∼ 6.2
min transverse oscillating loop. A "non-paired" weak modulation feature at 6.4 mHz (∼ 2.6
min) may be a signature of an oscillating loop with not resolved second harmonic. At the
same time, as for the 2000-Mar-23 event, weak short-period harmonics may be the signatures
of oscillatory processes that are unrelated to the transverse motion of a loop, but caused only
by a changing magnetic field in the radiating source.

The strong modulation line at 0.6 mHz (∼ 27.7 min) should be considered separately from all
other modulations mentioned above. The dynamical spectrum in Fig. 5c, as well as a separate
study of VLF modulations of the microwave radiation recorded before the faring burst at 15:30
UT, reveal the presence of the ∼ 27.7 min component also before the flare. In view of the fact
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Fig. 5. (a) SOHO/MDI Magnetogram of the Sun on 2001-Sep-07, white arrow points at the
active region AR9601; (b) The Sun image in 304 Å on 2001-Sep-07 from SOHO/EIT, white
arrow points at the active region AR9601; (c) Intensity profile and corresponding VLF
modulation dynamic spectrum of the microwave burst on 2001-Sep-07, at 15:30-15:50
associated with an M-flare in the active region AR9601; Color codes the dynamic spectral
relative intensity (arbitrary units), more dark features correspond to stronger (better
pronounced) modulations; (d) averaged spectral density of the VLF modulation.

that the analyzed microwave emission (at 11.7 GHz) was received from the whole solar disk,
the ∼ 27.7 min modulated part of radiation very likely originates in another active region. It
may also be connected with a kind of global solar seismology process.
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The last example of possible manifestation of transverse oscillations of coronal loops in
microwaves which we present here, is the event on 2001-Sep-15, when TRACE observed
oscillating loops, associated with M flare at 11:23 UT in the active region AR9608, close to
the limb (see Figure 6a,b). Similar to the case of the microwave burst on 2001-Sep-07, the
event on 2001-Sep-15 was observed at 11.7 GHz, and the microwave radiation source in
AR9608 was not resolved by the Metsähovi antenna. Thus, the emission from the whole
solar disk contributed to the analyzed microwave intensity profile. However, as for the
burst on 2001-Sep-07, all the spectral features related to the flaring active region AR9608
can be identified by event timing. As it can be seen in Fig. 6c, the dynamic spectrum
of VLF modulations of the microwave radiation consists of several lines, most of which
begin simultaneously with the impulsive phase of the flare at 11:23 UT. These lines may be
associated with oscillatory processes in the active region loops triggered by the flare. All the
post-flare oscillations decay at the time intervals from ∼ 20 min up to ∼ 1 hour.

Fig. 6d shows the averaged spectral density of the VLF modulations of the microwave burst
on 2001-Sep-15. At least one "modulation pair": 1.3 mHz (∼ 12.8 min) and 2.6 mHz (∼ 6.4
min) can be identified among the detected modulation lines. It is very likely connected
with a transverse oscillating loop having the period ∼ 12.8 min. This result agrees with
the reported TRACE observations of the oscillating loop in the active region AR9608 with a
period ∼ 12 − 15 min. Other detected in the microwave record on 2001-Sep-15 (see Fig. 6c,d),
more short-periodic modulations at 3.8 mHz (∼ 4.4 min) and 5.2 mHz (∼ 3.2 min) could
be higher-order harmonics produced by the 12.8 min oscillating loop, or the modulations
associated with oscillatory processes not connected with the transverse motion of loops. They
may also be the signatures of oscillatory processes in small loops, which cannot be seen in
the TRACE EUV movies due to the limitations of the operated observing mode. Additionally
should be mentioned a relatively weak line at 0.7 mHz (∼ 23.8 min). Its possible second
harmonic could contribute to the broad line near 1.3 mHz, which is identified as a main
frequency line in another modulation pair. If that is the case, then this may be a signature of
another transverse oscillating loop with the period ∼ 23.8 min. Verwichte et al. (2010) reported
recently detection of such an oscillating loop related with the considered flaring event in the
the active region AR9608.

A special remark deserves also the long lasting ultra-low-frequency (ULF) modulation
at 0.3 mHz (∼ 56 min), clearly visible in both, the dynamic and averaged, spectra of
the long-periodic modulations of solar microwave radiation on 2001-Sep-15 in Figs. 6c,d.
Similarly to the 27 min line in the case of the 2001-Sep-07 burst, this ULF modulation appears
before the flaring burst and lasts much longer than all other modulation lines in the spectrum
(Fig. 6c). Therefore, it cannot be related to the flare in the active region AR9608 and consequent
post-flare dynamics of coronal loops. This modulation feature is probably connected with the
solar seismology processes, or a slow dynamics of another active region. As an additional
argument in support of the solar global i.e., helioseismic nature of the ULF (ν0 < 0.6 mHz,
i.e. τ > 30 min) modulations may be the fact that these modulations are usually detected
in the radiation records made at 11.7 GHz when the radio emission from the whole solar
disk contributes to the analyzed microwave intensity profile. The radiation emitted from
the spatially resolved separate active regions, for example, at 37 GHz with Metsähovi radio
telescope, does not exhibit any ULF modulation features. In more details the ULF modulations
of solar microwave radiation are considered in Kislyakova et al. (2011).
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Fig. 6. (a) SOHO/MDI Magnetogram of the Sun on 2001-Sep-15, white arrow points at the
active region AR9608; (b) The Sun image in 304 Å on 2001-Sep-15 from SOHO/EIT, white
arrow points at the active region AR9608; (c) Intensity profile and corresponding VLF
modulation dynamic spectrum of the microwave burst on 2001-Sep-15, at 11:23-12:15
associated with an M-flare in the active region AR9608; Color codes the dynamic spectral
relative intensity (arbitrary units), more dark features correspond to stronger (better
pronounced) modulations; (d) averaged spectral density of the VLF modulation.

5.2 On the magnetic field variations, estimated from VLF spectra

It is impossible, using the available data, to perform an exact calculation for the amplitude of
magnetic field variations. That is because the analyzed microwave signals were recorded
in relative units without calibration to the radiation intensity scale. At the same time,
taking into account known values of the maximal intensity measured during the radio
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bursts and the lower limit of sensitivity of the Metsähovi receiver, the intensity modulation
amplitude ∆Iν can be estimated roughly from the obtained VLF spectra, by their comparison
with the spectra of specially created modelling signals (Khodachenko et al., 2005). For the
considered in the paper events this estimation gives the value of the relative variation of
intensity ∆Iν/I 0

ν ∼ 10−2 ÷ 10−1. Assuming, as an upper rough limit, that this variation of
intensity is connected only with the varying magnetic field, we come to a relation ∆Iν/I 0

ν =
(B/B0)

γ − 1 = ((∆B/B0 + 1)γ − 1), where ∆B/B0 is the relative variation of magnetic field,
and γ = −0.22 + 0.9δ is the power index of magnetic field in the equation (1). For 2 < δ < 7
one gets that γ = 1.58 ÷ 6.08. For the case of small relative variations of the magnetic field we
finally obtain ∆Iν/I 0

ν ≈ γ∆B/B0 = 10−2 ÷ 10−1, which for B0 = 100G gives the amplitude
∆B = (0.16 ÷ 6.3) G.

6. Discussion, conclusions and perspectives

The analysis of VLF modulations of solar microwave bursts presented in this work shows
good temporal coincidence of the modulations and their oscillatory parameters with the
observed decaying large-scale transverse oscillations of the coronal loops triggered by flares.
This indicates about a physical link between the oscillatory motion of the loops and variations
of the observed radio emission. As a working hypothesis to take this link into account, a loop
with the propagating beams of non-thermal particles which produce microwave emission
due to the electron gyro-synchrotron mechanism, has been considered. As pointed out by
Schrijver et al. (2002), who considered several cases of transverse oscillations of coronal loops
observed with TRACE (including the event on 2000-Mar-23 addressed in the present paper),
in almost all cases the oscillating loops lie at, or near, the large-scale separatrices, or near the
sites involved in reconnection. These regions may be the sources of non-thermal particles
injected into the loops and generating microwave emission there. Moreover, in the case on
2000-Mar-23 the loop oscillation happened in response to a flaring event located at the loop
base Schrijver et al. (2002). That could provide a direct input of energetic particles into the
loop.

In the most general case, thermal bremsstrahlung mechanism of the radiation should be also
considered, besides of the gyro-synchrotron, for the analyzed frequency range of the solar
microwave emission. If the last mechanism assumes that there are high energy electrons
passing through the magnetic loop, the first one is connected with the radiation of hot plasma
heated by the electron beams in the chromospheric footpoints of the loop. A comparative
study of contribution of the bremsstrahlung and gyro-synchrotron radiation to the microwave
emission of a flare, performed in Urpo et al. (1994), shows that thermal bremsstrahlung
is more important for the microwave events that have an intensity of the order of or less
than 100 SFU, with the exception of cases when the electron spectrum is sufficiently hard.
Therefore, correct interpretation of the microwave radiation source requires consideration
of both mechanisms, for example by involving of the hybrid thermal/nonthermal model
of the solar flare emission (Holman & Benka, 1992). However, looking at a possibility of
an oscillatory behaviour of the microwave radiation source which constitutes the primary
subject of the present study, we notice that in the case of the bremsstrahlung mechanism
it is possible only for a varying energy deposition into the system, i.e. a varying flow of
non-thermal particles heating the loop footpoints. In view of the unclearness of how the
post-flare transverse oscillating loop may modulate the source of accelerated electrons, we
built our analysis with the assumption that the non-thermal particle population remains
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more-or-less stable, and all the variations of the observed microwave radiation are connected
with the non-thermal gyro-synchrotron part of the radiation, modulated by the large-scale
oscillatory motion of the loop. The bremsstrahlung component, even being present in the
microwave radiation, does not contribute to the analyzed oscillating part of the emission
provided by the gyro-synchrotron mechanism.

Our analysis here is based on the assumption of an optically thin microwave source. In this
case the radiation intensity is proportional to emissivity ην, given by equation (Dulk, 1985)

ην ≈ 3.3 × 10−2410−0.52δ NB(sin θ)−0.43+0.65δ

(

ν

νB

)1.22−0.9δ

, (9)

where ν is radiation frequency, N is the number of electrons per cubic centimeter with energy
higher than 10 keV, B is magnetic field, νB = eB/(2πmec), is the electron-cyclotron frequency,
and δ is the electron energy spectrum index. This fact has been used for obtaining our basic
equation (1) in Section 1. In the opposite case of an optically thick source, the intensity of
microwave radiation is proportional to the effective temperature Te f f , i.e., to the ratio of
emissivity ην and absorption coefficient κν. For the last, Dulk (1985) provides the following
expression:

κν ≈ 1.4 × 10−910−0.22δ(N/B)(sin θ)−0.09+0.72δ

(

ν

νB

)−1.3−0.98δ

. (10)

Therefore, in the case of an optically thick source the dependence of radiation intensity on the
varying magnetic field B(t) and direction to the observer Θ(t) will be different than that given
by the equation (1). However, the character of this dependence, i.e. Iν ∝ (sin(Θ(t)))kB(t)l ,
where k and l are the numbers depending on the non-thermal electron spectral index δ, will
remain the same. Therefore, one may expect similar manifestation of the varying B(t) and
Θ(t) in the modulation of the received microwave emission also in the case of an optically
thick source.

Analysis of LF and VLF modulations of solar microwave radiation is a relatively new
direction in solar radio astronomy which appears nowadays a subject of a certain interest.
VLF variations of solar microwave radiation intensity may be related to slow variations of
magnetic field in a radiating source, as well as to large-scale motions of coronal structures
containing the radiating source. Joint action of two radiation modulating factors: (i) the
quasi-periodic fluctuation of magnetic field and (ii) motion of the radio emission diagram,
in the case of a transverse oscillating coronal loop results in essentially non-sinusoidal
(non-harmonic) character of the signal received by a remote observer, with strongly
pronounced two first harmonics (at the main and double frequency of the oscillation),
called here as "modulation pairs". Such specifics of the VLF spectrum has been used for
the identification of transverse oscillating loops triggered by flares. The analysis of solar
microwave records has been performed with an algorithm based on Sliding Window Fourier
transform and Wigner-Ville techniques. This high sensitive algorithm provides, significant
spectral and temporal resolution which enable clear detection of VLF "modulation pairs" in
the solar flaring microwave radiation (microwave bursts). Comparison of parameters of these
"modulation pairs" with the simultaneous TRACE observations in EUV of the corresponding
solar active regions enabled to associate some of the paired VLF modulation features with the
large-scale transverse oscillations of coronal loops. The "non-paired" features also detected
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in the VLF modulation dynamic spectra, may be either parts of "modulation pairs" in which
the second harmonic cannot be resolved because of the strong contamination of the analyzed
signal, or be the signatures of other oscillatory processes (MHD modes) in the loops, unrelated
to their large-scale transverse motion, e.g., sausage-type MHD waves.

The presence of "modulation pairs" in the VLF spectra of solar microwave radiation is
considered here as an indication of the transverse oscillating coronal loops. However, the
exact characterization of the transverse motion of radiating loops by the dynamical spectra
of microwave emission needs a quantitative analysis of the measured radio signal and
superimposing these results with a precise calculation of the radiation from the loop, taking
into account the loop position relative observer. This topic requires a dedicated study. It
outlines the general direction for further development of the ideas expressed in the paper.

Besides of that, of certain interest appear the long lasting ULF modulations of solar microwave
radiation detected at < 0.6 mHz (> 30 min) in the absence of bursts, i.e. during the periods
of quiet Sun. It is remarkable that these modulations are not visible in the emissions from
separate active regions, recorded in particular at 37 GHz with Metsähovi radio telescope. But
they appear in the integrated radiation received from the whole solar disk at 11.7 GHz. This
fact may be considered as an argument in support of the global helioseismic nature of these
ULF modulations, which also require further more detailed study.
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