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Real-Time Petri Net Based Control System 
Design for Distributed Autonomous Robotic 

Manufacturing Systems 

Gen’ichi Yasuda 
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Japan 

1. Introduction  

Generally speaking, flexible manufacturing systems are made up of some flexible 
production machines with some local storage facilities for tools and parts, some handling 
devices such as robots and a versatile transportation system. It is expected that more and 
more robots will be introduced into manufacturing systems to automate various operations 
in the near future. However, it is quite obvious that a single robot cannot perform effective 
tasks in an industrial environment, unless it is provided with some additional equipment 
that allows the machine to grasp, handle and dispose correctly workpieces or mechanical 
parts onto which technological operations are to be performed. Therefore, in order to avoid 
the need of loading and unloading of parts to the robot manually, it is usually required to 
integrate the robot into the production line that also includes machine tools, conveyors, and 
other special purpose machines. Mainly to provide flexibility to robots, a lot of researches 
have been done to develop an effective programming method for robots. But not much 
research has been done to integrate a system which includes various machines (robots and 
other devices) that cooperate in the same task (Holding & Sagoo, 1992). A common 
programming language for tasks that involve more than one robot or machine should be 
provided (Holt & Rodd, 1994).  

Robot programs often must interact with people or machines, such as feeders, belt 
conveyors, machine tools, and other robots. These external processes are executing in 
parallel and asynchronously; therefore, it is not possible to predict exactly when events of 
interest to the robot program may occur. The programmable logic controllers (PLC) are 
widely used to the programming and control of flexible manufacturing systems. 
Implementation languages can be based on ladder diagrams or more recently state 
machines. However, when the local control is of greater complexity, the above kinds of 
languages may not be well adapted. It is important to have a formal tool powerful enough 
to develop validation procedures before implementation. Conventional specification 
languages such as ladder diagrams do not allow an analytical validation. Presently, the 
implementation of such control systems makes a large use of microcomputers. Real-time 
executives are available with complete sets of synchronization and communication 
primitives (Yasuda, 2000). However, coding the specifications is a hazardous work and 
debugging the implementation is particularly difficult when the concurrency is important. 
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The Petri net and its graphical representation is one of the effective means to describe 
control specifications for manufacturing systems. From the plant control perspective, the 
role and the presence of nets were considered in the scheduling, the coordination and the 
local control level (Silva, 1990). However, in the field of flexible manufacturing cells, the 
network model becomes complicated and it lacks the readability and comprehensibility. 
Therefore, the flexibility and expandability are not satisfactory in order to deal with the 
specification change of the control system. Despite the advantages offered by Petri nets, the 
synthesis, correction, updating, etc. of the system model and programming of the controllers 
are not simple tasks. The merging of Petri nets and knowledge based techniques seems to be 
very promising to deal with large complex discrete event dynamic systems such as flexible 
manufacturing systems (Gentina & Corbeel, 1987; Maletz, 1983; Wang & Sarides, 1990). 

The aim of this chapter is to introduce manufacturing engineering specialists to the basic 

system level issues brought up by the development of computer-controlled robotic 

manufacturing systems and how Petri nets are applied to resolve the above mentioned 

problems of control system design. After some terminology concerning basic Petri nets, the 

extensions of Petri nets for manufacturing system control are briefly reviewed. Based on the 

hierarchical and distributed structure of the manufacturing system, the net model of the 

system is decomposed into a set of interacting local nets and a system coordinator net to 

perform distributed autonomous multitasking control based on Petri nets. 

2. Modeling of discrete event manufacturing systems with Petri nets 

The Petri net is one of the effective means to represent discrete event manufacturing 

systems. Considering not only the modeling of the systems but also the well-defined control, 

the guarantee of safeness and the capabilities to represent input and output functions are 

required. Therefore the Petri net has been modified and extended. 

2.1 Modification of basic Petri nets 

A Petri net is a directed graph whose nodes are places shown by circles and transitions 
shown by bars. Directed arcs connect places to transitions and transitions to places. 

Formally, a Petri net is a bipartite graph represented by the 4-tuple { , , , }G P T I O  (Murata, 

1989) such that: 

1 2{ , ,..., }nP p p p is a finite, not empty, set of places; 

1 2{ , ,..., }mT t t t is a finite, not empty, set of transitions; 

P T   , i.e. the sets P  and T  are disjointed; 

:I T P  is the input function, a mapping from transitions to bags of places; 

:O T P  is the output function, a mapping from transitions to bags of places. 

The input function I  maps from a transition jt to a collection of places ( )jI t , known as 

input places of a transition.  The output function O  maps from a transition jt  to a collection 

of places ( )jO t , known as output places of a transition.  

Each place contains integer (positive or zero) marks or tokens. The number of tokens in each 

place is defined by the marked vector or marking 1 2( , ,..., )T
nM m m m . The number of 
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tokens in one place ip  is simply indicated by ( )iM p . The marking is shown by dots in the 

places. The marking at a certain moment defines the state of the net, or the state of the 

system described by the net. The evolution of the state therefore corresponds to an evolution 

of the marking, caused by the firing of transitions. The firing of an enabled transition will 

change the token distribution (marking) in a net according to the transition rule. In a basic 

Petri net, a transition jt is enabled if ( )i jp I t  , ( ) ( , )k i i jM p w p t , where the current 

marking is kM  and ( , )i jw p t  is the weight of the arc from ip  to jt .  

Because discrete event manufacturing systems are characterized by the occurrence of events 
and changing conditions, the Petri net type considered is the condition-event net, in which 
conditions can be modeled by places whilst events can be modeled by transitions. Events are 
actions occurring in a system. The occurrence of these events is controlled by system states. 
Because the condition-event system is essentially asynchronous, events always occur when 
their conditions are satisfied. Consequently, bumping occurs when despite the holding of a 
condition, the preceding event occurs. This can result in the multiple holding of that 
condition. From the viewpoint of discrete event process control, bumping phenomena 
should be excluded. So, the firing rule of the basic Petri net should be modified so that the 
system is free of this phenomenon. Thus the axioms of the modified Petri net are as follows: 

1. A transition jt is enabled if for each place ( )k jp I t , 1km   and for each place 

( )l jp O t , 0lm  ; 

2. When an enabled transition jt  is fired, the marking M  is changed to M , where for 

each place ( )k jp I t , 0km   and for each place ( )l jp O t , 1lm  ; 
3. In any initial marking, there must not exist more than one token in each place. 

The number of arcs terminated at or started from a place or a transition is unlimited, but at 
most one arc is allowed between a transition and a place. According to these axioms, the 
number of tokens in each place never exceeds one, thus, the modified Petri net is said to be a 
safe graph. The modified Petri net is a subclass of the Petri net, and it is transformed into the 
equivalent Petri net as shown in Fig. 1.  

 

 
(a) (b) 

Fig. 1. (a) A place in the modified Petri net and (b) its equivalent Petri net 

2.2 Extensions for real-time control  

The extended Petri net adopts the following elements as input and output interfaces which 
connect the net to its environment: gate arc and output signal arc. A gate arc connects a 
transition with a signal source, and depending on the signal, it either permits or inhibits the 
occurrence of the event which corresponds to the connected transition. Gate arcs are 
classified as permissive or inhibitive, and internal or external. When the signal is 1 (true), a 
permissive arc permits the occurrence of the event. On the other hand, an inhibitive arc 
inhibits the occurrence of the event when the signal is 1. An internal arc deduces the signal 
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from a place, and the signal is 1 when a token exists in the place, otherwise 0 (false). An 
external arc deduces the signal from an external machine. An output signal arc sends the 
signal from a place to an external machine. In addition to the axiom 1, a transition is enabled 
if it does not have any internal permissive arc signaling 0 nor any internal inhibitive arc 
signaling 1. An enabled transition is fired if it does not have any external permissive arc 
signaling 0 nor any external inhibitive arc signaling 1. Thus the enabling condition and the 
external gate condition are formally expressed as follows.  

 , , , ,
1 1 1 1

QM N R
I O IP II

j j m j n j q j r
m n q r

t p p g g
   

         (1) 

 , ,
1 1

U V
E EP EI
j j u j v

u v

g g g
 

    (2) 

where 

M  : set of input places of transition j   

,
I
j mp  : state of input place m  of transition j  

N  : set of output places of transition j   

,
O
j np  : state of output place n  of transition j  

Q  : set of internal permissive gate signals of transition j   

,
IP
j qg  : internal permissive gate signal variable q  of transition j  

R  : set of internal inhibitive gate signals of transition j   

,
II
j rg  : internal inhibitive gate signal variable r  of transition j   

U  : set of external permissive gate signals of transition j   

,
EP
j ug  : external permissive gate signal variable u  of transition j   

V  : set of external inhibitive gate signals of transition j   

,
EI
j vg  : external inhibitive gate signal variable v  of transition j   

All the variables are logical binary variables, and  ,   denote the logical product and the 

logical sum, respectively, and 1 2
1

...
m

i m
i

a a a a


    . The state (marking) change, that is, the 

addition or removal of a token of a place, is described as follows: 

 , , ( ) ( )I I E E
j m j m j j j jp p t g RST t g      (3) 

 , , ( ) ( )O O E E
j n j n j j j jp p t g SET t g      (4) 

where
 

()SET and
 

()RST denote the set and the reset function, respectively. 

Fig. 2 shows an example of extended Petri net model of robotic task control by transition 
firing with permissive and inhibitive gate arcs. The robot starts the loading operation based 
on signals from the switches, sends the commands through output signal arcs, and receive 
the status signals from the sensors through permissive gate arcs. Fig. 3 shows an example 
detailed net model of the lowest level local control of a machining center. 
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 Robot 

Processing Unloading Loading 

Machine controller (PLC) 

S0 S1 S2 S3 

M0 

C1 C2 C3 

C1-C3: commands 
S0-S3, M0,M1: external sensors, switches

M1 

 : Permissive gate 

: Inhibitive gate 
 

Fig. 2. Extended Petri net representation of robotic task with output signal arcs and gate arcs. 

 

ProcessingLoading

S6

A1 A4: actuators (solenoid valves) 
S1 S7: external sensors

Forward Clamping
Un- 
clamping Backward

 
Unloading

  
Ready

Start S5

S1

S3

S2

S4

S7 

A2

A1

A3 

Machining unit
 

A4 

 

                            

 

A7: actuators (solenoid valves)

Processing

A5-
SPM: spindle motor 

Rapid Reverse

A5 A6

A7

SPM

Machining

S8

 

Fig. 3. Detailed net model of real-time control of manufacturing tool 
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3. Edition and simulation of net models 

When programming a specific task, the task is broken down into subtasks. These subtasks 
are represented by a place. The internal states of machines are also represented by a place. 
The relations between these places are explicitly represented by interconnections of the 
transitions, arcs and gates. The whole task is edited with a net edition and simulation 
system. In parallel a graphic robot motion simulator system is used to edit a subtask 
program for a robot. The basic edition and simulation procedure is shown in Fig. 4. 

 Start 

Draw/modify the net model

Yes 

Deadlock ? 
Yes Yes 

No 

Arbitrate conflict Add/modify transition parameters

Generate structural data tables 

Test enabling conditions

Test firability conditions 

Wait for
external signal ? 

Display firable transitions 

Fire and transfer tokens 

Continue ? 

End 

Add/modify gate arcs 

No No 

 

Fig. 4. Flow chart of net edition and simulation procedure 

The net simulator is a tool for the study of condition-event systems and used to model 
condition-event systems through its graphical representation. When the net modeling is 
finished, the net is transformed into a tabular form and several data tables corresponding to 
the connection structure of the net are automatically generated (Yasuda, 2008). These tables 
are the following ones: 

1. The table of the labels of the input and output places for each transition; 
2. The table of the transitions which are likely to be arbitrated for each conflict place; 
3. The table of the gate arcs which are internal or external, permissive or inhibitive, for 

each transition. 

Although a variety of software implementations of Petri nets is possible using multitask 

processing (Taubner, 1988), a simple implementation method is adopted, where just one 

process is provided for the management of all places and tokens. Through the simulation 

steps, the transition vector table is efficiently used to extract enabled or fired transitions. 
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The table of marking indicates the current marking for each place. Using these data tables, 

the flow of the net simulation consists in the following steps: 

1. Search enabled transitions using the axiom 1 or (1); 
2. Test the enabled transitions considering gate conditions (2); 
3. Arbitrate enabled transitions in conflict using some arbitration rule; 
4. Execute transition firing and output corresponding signals to external machines; 

5. Change the marking to the new marking using the axiom 2 or (3), (4) and update the 

system state.  

The flow chart of the enabling condition test is shown in Fig. 5. The simulation algorithm is 

based on the execution rules of the net. The simulator tests each transition as to whether its 

input and output places and its internal gate arcs satisfy the enabling condition. If there is 

no enabled transition, it means that the net is in a deadlock condition. The simulator warns 

and requires the operator to change the initial marking or structure of the net. If there are 

some enabled transitions, it tests each of them as to whether its external gate arcs satisfy the 

firability condition, as shown in Fig. 6. If there is no firable transition, the simulator stops 

and shows which transitions are waiting for the gate signals. 

For an example net as shown in Fig, 7, the enabling condition and the firability condition are 

written as (5), (6), respectively. The simulator tests each transition in the specified order of 

(5), (6). Fired transitions are memorized, and through their output places the output 

transitions of each place are searched. The enabling condition test is performed only for 

these transitions in order to shorten computation time. In Fig. 7, the enabling condition of 

only the transition t1 is evaluated, since the transition t5 is fired previously. 

 

 Start 

Empty input place exist? 

Marked output place exist?

Internal permissive gate signal = 0? 

Internal inhibitive gate signal = 1? 

This transition is enabledThis transition is disabled 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

To next transition
 

Fig. 5. Flow chart of enabling condition test 
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External permissive gate signal = 0?

External inhibitive gate signal = 1?

This transition is firable This transition is unfirable 

No 

No 

Yes 

Yes 

To next enabled transition 

Enabled transition 

 

Fig. 6. Flow chart of firability condition test 

 

t1 t2 t3 

t4 

t5 

p5 

p4 

p1 

p2 

p3 
g11 

g12 

g21 

g22 

g3 

g4 

g5 

p6 

 

Fig. 7. Example of net representation with parallel activities. 

1 6 1t p p   

2 1 2 3t p p p    

3 2 4t p p   

4 3 5t p p   

5 4 5 6t p p p    

(5) 

 

6 1 11 12( )p RST t g g    

1 1 11 12( )p SET t g g    

1 2 21 22( )p RST t g g  
 

2 2 21 22( )p SET t g g  
 

3 2 21 22( )p SET t g g    

2 3 3( )p RST t g   

4 3 3( )p SET t g   

3 4 4( )p RST t g   

5 4 4( )p SET t g   

4 5 5( )p RST t g   

5 5 5( )p RST t g   

6 5 5( )p SET t g   

(6) 

If the transitions connected to a conflict place may happen to be in conflict, according to the 

rules of the net, only one of them is chosen to fire arbitrarily and the others become 

unfirable. The arbiter assigns the right of the order of firing among the transitions connected 

to a conflict place. But the right vanishes when the specified transition is not firable. The 

arbiter has a pointer to memorize the transition to be assigned the right next. The procedure 

of the arbitration is shown in Fig. 8. After the arbitration, all the firable transitions are 

displayed and fired. The simulator moves the tokens; it remove tokens in all the input places 
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of the fired transitions and put a token in each output place of the transitions. If some error 

is found or the simulation result does not satisfy the specification, it can be easily amended 

by reediting the net and by simulating it again. The edition and simulation are performed in 

an interactive form on a graphic display. The software written in Visual C# under OS 

Windows XP allows net models be modified on-line and simulation immediately restarted. 

 Start 

Firable transition exist among
conflicting transitions? 

Is pointed transition firable? 

Other conflicting transitions are unfirable

Yes 

No 

To next conflict place 

Increment pointer

Increment pointer

Yes 

No 

 

Fig. 8. Flow chart of arbitration procedure 

In the basic Petri net, the firing of a transition is indivisible; the firing of a transition has 
duration of zero. The real-time performance of systems can be studied by adding time to the 
basic Petri net. An approach known as the timed Petri net associates a time parameter T 
with a transition, such that once the transition is enabled, it will fire after the period T. If the 
enabling condition is not satisfied before the schedule time comes, then the transition can 
not be fired and the passage of time is cancelled. Time values may be associated with places 
in order to maintain the instantaneous firing rule for transitions. A place with capacitance 
CN, such as buffers in manufacturing systems, can be represented as a cascade connection of 
ordinary places with capacitance 1. The internal gate signal from the place is 1 when the 
number of tokens in the place is CN, and 0 when the number is 0. These extensions are 
illustrated in Fig. 9(a) and (b). 

 T

    

CN

 
           (a)          (b) 

Fig. 9. Example of representation of (a) timed transition (b) place with capacitance N 

4. Net models of multitasking control 

Manufacturing tasks are a combination of several processes. These processes represent 
subtasks that are composed of task units. Tasks that include cooperative subtasks of different 
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machines are typical examples of concurrent processes. A system with one process is the 
degenerate case of a system of concurrent processes, which is obtained by combining nets 
representing several processes. Every sequential program can be represented by a flow chart. 
A flow chart is composed of nodes and arcs between them. It represents the flow of control in 
a program and can be represented by a Petri net, by replacing the nodes with places and the 
arcs with transitions as shown in Fig. 10. Each arc of the flow chart is represented by exactly 
one transition in the corresponding net. Petri net models of sequential constructs are shown in 
Fig. 11. A token residing in a place means that the program counter is positioned ready to 
execute the next instruction. Places for motion and computational actions have a unique 
output transition. Decision actions introduce conflict into the net. The choice can either be 
made nondeterministically or may be controlled by some external signal.  

computation 

 (or motion) 

a 

b 

a b

 
(a) 

 

decision 

a 

b 

a 

b 

c c 

T 
T 

F 

F 

 
(b) 

Fig. 10. Translation from nodes in a flow chart to places in a Petri net: (a) computation or 
motion, (b) decision 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 11. Net representations of sequential constructs; (a) sequence, (b) decision, (c) iteration 
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In the case of two concurrent processes, where each process can be represented by a net 
model of a sequential process, the composite net which is simply the union of such nets can 
represent the concurrent execution of two processes. Parallelism is usefully introduced into 
a system only if the component processes can cooperate in the system. Such cooperation 
requires the sharing of information and resources between the processes. This sharing must 
be controlled to ensure correct operation of the overall system. One of the most popular 
synchronization mechanisms has been the P and V operations on semaphores. The WAIT 
and SIGNAL statements are used in a program written in a high level robot language and 
provides a variation of the P and V operations as a basic inter-process communication 
mechanism. Fig. 12 shows the net representation of an example of synchronization 
mechanism. 

signal 

wait 

wait 

signal 
 

Fig. 12. Net representation of synchronization mechanism using asynchronous 
communication 

Fig. 13 shows the net representation of cooperative operation using synchronization 
mechanism, where shared transitions require mutual synchronization between two robots. 
In contrast to decentralized implementation, synchronization can be also implemented by 
centralized coordination (Yasuda, 2010). 

 

Waiting 

Waiting 

Grasp and move
to passing point Release

Move to passing 
point 

Grasp

Robot 1
(Right arm) 

Robot 2
(Left arm) 

  

Fig. 13. Net representation of operation that passes a part from right arm to left arm 

The main flow of execution control of robotic action using output signal arc and permissive 
gate arc is described as the following steps: 

1. When a token is placed in a place which represents an action, the net based controller 
initiates the execution of the action (subtask) attached to the fired transition by sending 
the “start” signal through the output signal arc to the machine controller. 
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2. Then the machine controller interprets the request and runs the execution routine by 
sending the commands through serial interface to the robot or other external machine. 

3. When the action is completed, the machine controller informs the system controller to 
proceed with the next activations by sending the “end” signal through external 
permissive gate arc. 

When a token is placed in a place which is “ready” state in the net model, the controller 
sends the “ready” signal. If the machine receives the signal, it runs the processing routine 
which performs the initializations and other preliminary processing for the next execution 
routines. When the processing routine is completed, it sends the “ack” (acknowledgement) 
signal to the system controller. The “end” and “ack” signals work as gate signals for the 
system controller. 

5. Implementation of real-time control system for robotic cells 

To implement the Petri net based modeling and control method, the net based task editor 
and simulator, and the real-time controller based on tasks represented as net models were 
developed (Yasuda, 2008). The subtasks and sets of point data needed to execute the whole 
task are initially identified. Then they are edited and tested with the net based edition and 
simulation system. Initially, the proposed method is used to execute a simple example of 
pick-and-place task by a single robot. The experimental set up includes the following 
equipment: a small industrial robot with an arm (Mitsubishi Electric, Movemaster II 
RM501), two belt conveyors with their sequence control circuits, a NC machine tool and a 
general PC. All the software is written in Microsoft Visual C# on Windows XP. The task 
specification is represented as the flow of a workpiece and written as the following steps: 

1. A workpiece arrives at point E1. 
2. Conveyor CV1 carries the workpiece to point E2. 
3. Robot R1 transfers the workpiece to point E3. 
4. Machining operation M1 is done. 
5. Robot R1 transfers the workpiece to point E4. 
6. Conveyor CV2 carries the workpiece to point E5. 

Synchronous cooperation is required to perform the loading and unloading operations 

between the robot and the conveyor or machining center. The cooperation can be 

implemented by a system coordinator which coordinates the machine controllers such that 

associated transitions of the local net models fire simultaneously. For high efficiency, it is 

desirable that the system accepts as many workpieces as possible, but it must not be in a 

deadlock condition. Generally, if there are some paths between two transitions, the largest 

number of tokens in each path is the smallest number of places of the paths. The task 

specification is shown as follows. Using the place of capacity control, the net representation 

of the task program written under these requirements is shown in Fig. 14. 

Another example is a cooperative task by two arm robots which must synchronize their 
actions with each other. The task specification is summarized as the following steps: 

1. A workpiece arrives at point E1. 
2. Robot R1 transfers the workpiece to the exchange area, and at the same time Robot R2 

moves to the exchange area. 
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 Capacity control 

Robot R1 

Hold Transfer Wait 

Conveyor CV1 

Processing Hold Transfer 

Machine M1 

Release Release 

Conveyor CV2 

Output 

 

Fig. 14. Net representation of pick-and-place operation with a single robot 

3. The workpiece is exchanged from robot R1 to robot R2. 
4. Robot R2 changes the workpiece orientation. 
5. Robot R2 transfers the workpiece to the exchange area. Robot R1 moves to the exchange 

area. 
6. The workpiece is exchanged from robot R2 to robot R1. 
7. Robot R1 transfers the workpiece to point E2. 

Following the same procedure of the former example, the subtasks and sets of point data 

needed to execute the whole task are initially identified. Then they are edited and tested 

with the net based edition and simulation system. The net representation is written using 

shared transitions for system coordination as shown in Fig. 15. An experimental view of the 

cooperative task, passing and exchanging a workpiece, by two robots is shown in Fig. 16. 

The detailed procedure of the implemented real-time control based on tasks represented as 

net models is described as follows. If there is a token in a place corresponding to subtasks, 

the net based controller sends a message to the respective hardware controllers such as arm, 

hand, sensor, etc. to execute the defined subtask with certain point data. These parameters 

(hardware controller code, subtask file code, point data file code) are defined during the net 

edition procedure. The net based controller was developed with all functions of the edition 

and simulation to permit correction or modification of the net model on-line. This 

characteristic is important to facilitate the debugging work. By executing the net model, the  

 

Capacity control 

Robot R1 

Robot R2 

Hold Transfer Wait Open 

Approach Close Wait Wait Wait 

Wait Transfer Close 

Approach Open 

Release 

Return 
Change 
orientation 

 

Fig. 15. Detailed net model of cooperative task by two arm robots 
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Fig. 16. Experiments of cooperative task by two arm robots 

developed control system activates the arm, hand, and sensor, etc. and coordinates each 
individual controller. In making these experiments, it was verified that the implemented 
system can be used as an effective tool for introducing robots into the manufacturing system. 
The system can be used to verify and correct control algorithms including robot movements 
and to evaluate the effectiveness of a robot and other machines in the planning stage. 

A multi-computer control architecture composed a system computer and several control 
computers has been adopted as shown in Fig. 17. The computer control architecture was  

 

 

Fig. 17. Multi-computer control architecture composed a system computer and several 
control computers with dual port memory 
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developed for the use of distributed autonomous control of independent actuators or 
machines in compact factory automation systems (Yasuda & Tachibana, 1987). The system 
controller controls communication between the system controller and control computers 
through the bus controller based on the master-slave mode. The system computer installs 
the conceptual net model for system coordination and installs local net models in the control 
controllers through the common bus. The control computers are equipped with interface 
circuits to actuators and external sensors for direct machine control and monitoring. Then, 
in the real-time control, the system computer communicates with each control computer 
through dual port memory with respect to firing of shared transitions and gate arc signals 
(Yasuda, 2011). The presented control flow of the net model is successfully executed using 
output signal arc and permissive gate arc. The net model in the system controller is 
conceptual for system coordination and not so large. The computation speed of 50 MHz of 
the general microprocessor is satisfactorily high in comparison with those of controlled 
devices such as robotic arms, conveyors, machine tools and external sensors. 

6. Conclusions 

A Petri net based specification and real-time control method for large complex robotic 
manufacturing systems was introduced as an effective prototyping tool to realize 
distributed autonomous control systems corresponding to the hardware structure of robotic 
manufacturing systems. From the design point of view, the use of nets has many advantages 
in modeling, qualitative analysis, performance evaluation and code generation. The Petri net 
appears as a key formalism to describe, analyze and implement the distributed autonomous 
control system for manufacturing systems in future.  
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