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1. Introduction 

The traditional approach of nutritional assessment is to survey the amount of nutrients 

consumed by dietary assessment. Although this method can provide approximate intake, 

this approach often makes misreporting, and can’t determine nutritional status. Especially, 

to determine micronutrient intake by dietary assessment is difficult because of high 

variations in habitual micronutrient intake. A nutritional biomarker can be an indicator of 

nutritional status with respect to intake or metabolism of dietary constituents. The 

nutritional biomarkers can be designated into one or more of three categories, 1) a means of 

validation of dietary instruments, 2) surrogate indicators of dietary intakes, or 3) integrated 

measures of nutritional status for a nutrient (Potischman & Freudenheim, 2003). Recent 

validation studies have developed the urinary compounds as nutritional biomarkers to 

estimate nutrient intakes. For example, 24-hr urinary nitrogen has been established as a 

biomarker for protein intake (Bingham, 2003), same as urinary potassium and potassium 

intake (Tasevska et al., 2006), and urinary sugars for sugar intake (Tasevska et al., 2005). 

Water-soluble vitamins are absorbed from the digestive tract after ingestion, stored in the 
liver, delivered to peripheral, and then excreted to urine (Food and Nutrition Board, 
Institute of Medicie, 1998). Urinary water-soluble vitamins or their metabolites decrease 
markedly as vitamin status declines, and they are affected by recent dietary intake (Food 
and Nutrition Board, Institute of Medicie, 1998). Urinary excretion of water-soluble vitamins 
such as thiamin, riboflavin and niacin has been used for setting Dietary Reference Intakes 
(DRIs) in USA and Japan (Food and Nutrition Board, Institute of Medicie, 1998; The 
Ministry of Health, Labour, and Welfare, 2009). Although pharmacological dose of water-
soluble vitamin intake such as vitamin B2 (Zempleni et al., 1996), nicotinamide (Shibata & 
Matsuo, 1990) and biotin (Zempleni & Mock, 1999) dramatically increase urinary vitamin 
levels, a few study had studied about the relationship between several oral dose correspond 
to dietary intake and urinary excretion of vitamin C (Levine et al., 1996, 2001). Thus, little 
attention had been paid to assess the quantitative relationships between intakes and urinary 
excretion of water-soluble vitamins. However, only a single study had investigated urinary 
vitamin as a possible marker for intake until 2007. Individuals’ 30-day means of thiamin 
intake are highly correlated with their mean 24-hr urine thiamin levels under strictly 
controlled condition, showing 24-hr urinary thiamin as a useful marker for thiamin intake 
under strictly controlled conditions (Tasevska et al., 2007). 
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In the present review, recent findings from our intervention and cross-sectional studies are 
described to contribute to the establishment and effective use of urinary water-soluble 
vitamins as potential nutritional biomarkers. Furthermore, we propose the reference values 
for urinary water-soluble vitamins to show adequate nutritional status based on the 
findings. Our findings suggest that urinary water-soluble vitamins can be used as 
nutritional biomarkers to assess their mean intakes in groups. More accurate estimation of 
individuals’ water-soluble vitamin intakes based on urinary excretion requires additional, 
precise biological information such as the bioavailability, absorption rate, and turnover rate.  

2. Intervention studies 

2.1 Factors affecting the urinary excretion of water-soluble vitamins 

Urinary excretion of water-soluble vitamins varied among subjects more than blood levels 

did (Shibata et al., 2009). One possible explanation is that one or more of several factors such 

as nutrient requirements, energy expenditure, tissue turnover, intestinal absorption, kidney 

reabsorption, and physical characteristics differ between individuals. In fact, urinary 

excretion of vitamin B1 is varied with the urine volume (Ihara et al., 2008), and furosemide-

induced diuresis increases vitamin B1 excretion rate (Rieck et al., 1999). Physical 

characteristics also affect the amount of urinary compounds. For example, individuals 

excreting higher urinary nitrogen had greater weight and body mass index (BMI) than those 

excreting average or lower nitrogen (Bingham et al., 1995), and creatinine clearance is 

positively correlated with BMI (Gerchman, 2009). In this context, the physical characteristics 

and urine volume may affect urinary excretion of B-group vitamins. We measured urinary 

excretion of B-group vitamins in free-living, healthy human subjects, and determined the 

correlations between each of the urinary B-group vitamins and factors such as physical 

characteristics and urine volume (Fukuwatari, 2009). 

Twenty four-hr urine samples were collected from 186 free-living Japanese females aged 19–
21 years, and 104 free-living Japanese elderly aged 70–84 years, and correlations were 
determined between urinary output of each B-group vitamin and body height, body weight, 
body mass index, body surface area, urine volume, and urinary creatinine. Only urinary 
excretion of vitamin B12 showed strong correlation with urine volume in both young female 
and elderly subjects (r = 0.683, p < 0.001 and r = 0.523, p < 0.001, respectively). All factors 
such as urine volume, urinary creatinine and physical characteristics such as body height, 
body weight, BMI and body surface area showed weak or no correlations with other 7 
urinary B-group vitamins including thiamin, riboflavin, pyridoxal metabolite 4-pyridoxic 
acid, sum of nicotinamide metabolites, pantothenic acid, folate and biotin. To determine 
how urinary vitamin B12 is affected by its intake and urine volume, healthy Japanese adults 
(10 men; mean age, 25.9 ± 1.0 years; 10 women; mean age, 23.5 ± 6.4 years) orally 
administrated 1.5 mg cyanocobalamin, which is 500-fold higher daily intake. The Twenty 
Japanese adults consumed similar foods for 3 days and took a 1.5-mg cyanocobalamin tablet 
after breakfast on day 2. The 24-hour urine sample was collected for 3 successive days, and 
Pearson correlation coefficients between urinary vitamin B12 and urine volume on each day 
were determined. 

Pharmacologic dose of cyanocobalamin increased Urinary vitamin B12 only 1.3-fold, and its 
concentration was not affected (Fig. 1A). Urinary vitamin B12 was always strongly correlated 
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with urine volume even on the day before, the day of, and the day after intake (Fig. 1B-D). 
These results clearly showed that urinary excretion of vitamin B12 was dependent uponurine 
volume, but not on intake of vitamin B12.Vitamin B12 is different from other B-group 
vitamins with respect to main excretion route, which is through the bile, and <10% of the 
total loss of vitamin B12 from the body is through urine (Shinton, 1972). These results 
suggest that the change in the level of urinary vitamin B12 is too small to evaluate intake of 
vitamin B12, and thus urinary vitamin B12 was unavailable to be used as biomarker for 
estimation of its intake. To excrete vitamin B12 into urine, vitamin B12 binds to carrier protein 
transcobalamin (TC) in serum (Allen, 1975), the TC–vitamin B12 complex is filtered in the 
glomeruli, and the proximal convoluted tubule reabsorbs this complex via a receptor- 
mediated system (Birn, 2006). Megalin is an essential receptor for reabsorption of the TC–
vitamin B12 complex in the proximal tubule (Birn et al., 2002), binds to the TC–vitamin B12 
complex with an estimated affinity (Kd) of ~183 nmol/L (Moestrup et al., 1996). This high 
affinity may explain why urinary loss of vitamin B12 is very low. However, little is known 
about how water regulation mediated by regulatory factors such as aquaporin, vasopressin 
and angiotensin is linked to reabsorption of vitamin B12. 

 

Fig. 1. Effect of administration of a pharmacologic dose of cyanocobalamin on urinary 
concentration of vitamin B12 (A) and the correlations between urinary vitamin B12 and urine 
volume on the day before cyanocobalamin intake (B), the day of intake (C) and the day after 
intake (D) (Fukuwatari et al., 2009). 
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2.2 Determination of urinary water-soluble vitamins as biomarkers for evaluating its 
intakes under strictly controlled conditions 

As mentioned above, it is well known that pharmacological dose of water-soluble vitamin 

intake dramatically increase urinary vitamin levels, but a few study had studied about the 

relationship between several oral dose correspond to dietary intake and urinary excretion of 

vitamin C (Levine et al., 1996, 2001). We also determined whether urinary levels of water-

soluble vitamins and their metabolites can be used as possible markers for estimating their 

intakes in the intervention study (Fukuwatari & Shibata, 2008). Six female Japanese college 

students participated to the intervention study, and their age, body weight, height and BMI 

(mean ± SD) were 21.0 ± 0.0 years old, 161.7 ± 1.7 cm, 51.2 ± 2.8 kg and 19.6 ± 1.2, 

respectively. They were given a standard Japanese diet in the first week, same diet with 

synthesized water-soluble vitamin mixture as the diet as approximately one-fold vitamin 

mixture based on DRIs for Japanese in the second week, with three-fold vitamin mixture in 

the third week, and six-fold mixture in the fourth week. The 24-hr urine was collected on 

each week, and the relationships were determined between oral dose and urinary vitamin 

levels. All urinary vitamin and their metabolites levels except vitamin B12 increased linearly 

in a dose-dependent manner, and highly correlated with vitamin intake (r = 0.959 for 

vitamin B1, r = 0.927 for vitamin B2, r = 0.965 for vitamin B6, r = 0.957 for niacin, r = 0.934 for 

pantothenic acid, r = 0.907 for folic acid, r = 0.962 for biotin, and r = 0.952 for vitamin C; Fig. 

2). These findings show that water-soluble vitamin and their metabolite levels in 24-hr urine 

reflect the vitamin intakes under strictly controlled conditions. 

Humans can synthesize the vitamin nicotinamide from tryptophan in the liver, and the 
resultant nicotinamide is distributed to non-hepatic tissues. The purpose of the synthetic 
pathway in the liver is not the supply of NAD+ but the supply of nicotinamide for non-
hepatic tissues. The conversion pathway of nicotinamide from tryptophan is affected by 
various nutrients (Shibata et al., 1995, 1997a, 1998; Kimura et al., 2005), hormones (Shibata, 
1995; Shibata & Toda, 1997), exercise (Fukuwatari et al., 2001) and drugs (Shibata et al., 1996, 
1997b, 2001; Fukuwatari et al., 2004), based on data concerning the urinary excretion of 
metabolic intermediates in the tryptophan–nicotinamide pathway. However, the 
intervention study showed that administration of nicotinamide did not affect de novo 
nicotinamide synthesis from tryptophan (Fukuwatari & Shibata, 2007). 

3. Cross-sectional studies: Determination of urinary water-soluble vitamins 
as biomarkers for evaluating its intakes in free-living subjects 

The intervention study showed that urinary water-soluble vitamin levels are correlated 
highly with their intake in a strictly controlled environment (Fukuwatari & Shibata, 2008). 
Performance of a study under a free-living environment without any interventions is the 
next step to confirm the applicability of methods using a biomarker. Thus, we conducted the 
Values are individual points of six subjects in each dose. 4-PIC signifies 4-pyridoxic acid, a 
catabolite of pyridoxal, and the Nam metabolites signify the total amount of nicotinamaide 
metabolites, N1-methylnicotinamide (MNA), N1-methyl-2-pyridone-5-carboxamide (2-Py) 
and N1-methyl-4-pyridone-3-carboxamide (4-Py). 

Cross-sectional studies, and free-living healthy subjects who were 216 university dietetics 
students aged 18-27 years, 114 Japanese elementary school children aged 10-12 years and 37 
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Fig. 2. Regression and 95% CI of oral dose and urinary excretion of vitamin B1 (A), vitamin 
B2 (B), vitamin B6 (C), niacin (D), pantothenic acid (E), folate (F), biotin (G) and vitamin C 
(H) (Fukuwatari et al., 2008). 

Japanese elderly females aged 70–84 years were participated (Tsuji et al., 2010a, 2010b, 2011). 

The subjects performed 4-day dietary assessment by recording all food consumed during 

the consecutive 4-day period with a weighed food record, and collected 24-hr urine samples 

on the fourth day. The results showed that the correlation between the urinary excretion and 

the dietary intake on the same day as urine collection was highest compared with the 

correlations on other days in each generation (Table 1-3). Moreover, the correlations 

between the urinary excretion and the mean dietary intakes during the recent 2–4 days 
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Vitamins 

24-h urinary 

excretion of 

vitamina 

Vitamin intake 

at Day 4 

Vitamin intake

at Day 3 

Vitamin intake 

at Day 2 

Vitamin intake 

at Day 1 

mean ± SD mean ± SD rb mean ± SD rb mean ± SD rb mean ± SD rb 

Vitamin B1 0.425 ± 0.286

(μmol/d) 

2.27 ± 0.92

(μmol/d) 

0.29§ 2.46 ± 1.06

(μmol/d)

0.35§ 2.46 ± 1.00

(μmol/d)

0.27§ 2.09 ± 0.84 

(μmol/d) 

0.12 

Vitamin B2 0.382 ± 0.321

(μmol/d) 

3.32 ± 1.09

(μmol/d) 

0.32§ 3.47 ± 1.35

(μmol/d)

0.28§ 3.43 ± 1.35

(μmol/d)

0.31§ 3.17 ± 1.46 

(μmol/d) 

0.11 

Vitamin B6 3.68 ± 1.31

(μmol/d ) 

5.30 ± 2.15

(μmol/d )

0.26‡ 5.62 ± 2.38

(μmol/d )

0.37§ 5.83 ± 2.14

(μmol/d )

0.21‡ 5.25 ± 2.37 

(μmol/d ) 

0.21‡ 

Vitamin B12 0.028 ± 0.018

(nmol/d) 

2.88 ± 3.42

(nmol/d) 

0.05 3.59 ± 3.86

(nmol/d)

0.01 3.49 ± 5.16

(nmol/d)

-0.06 3.05 ± 5.69 

(nmol/d) 

0.10 

Niacin --- 90.8 ± 39.4

(μmol/d) 

0.32§ 96.5 ± 45.7

(μmol/d)

0.26‡ 98.8 ± 39.5

(μmol/d)

0.17* 93.4 ± 49.0 

(μmol/d) 

0.22‡ 

Niacin 

equivalent 

84.5 ± 28.1

(μmol/d) 

184 ± 65

(μmol/d) 

0.29§ 191 ± 70

(μmol/d)

0.24‡ 196 ± 63

(μmol/d)

0.20* 184 ± 74 

(μmol/d) 

0.21* 

Pantothenic 

acid 

16.5 ± 5.2

(μmol/d) 

23.6 ± 8.2

(μmol/d) 

0.33§ 23.9 ± 8.5

(μmol/d)

0.44§ 24.3 ± 9.6

(μmol/d)

0.28§ 22.7 ± 11.2 

(μmol/d) 

0.10 

Folate 23.1 ± 8.8

(nmol/d) 

569 ± 338

(nmol/d) 

0.15 591 ± 321

(nmol/d)

0.24‡ 610 ± 423

(nmol/d)

0.19* 569 ± 515 

(nmol/d) 

0.07 

Vitamin C 139 ± 131

(μmol/d) 

425 ± 362

(μmol/d) 

0.29§ 476 ± 354

(μmol/d)

0.34§ 546 ± 435

(μmol/d)

0.16 388 ± 276 

(μmol/d) 

0.22‡ 

aUrinary excretion for each vitamin corresponds to thiamin for vitamin B1, riboflavin for vitamin B2, 4-
PIC for vitamin B6, the sum of nicotinamide, MNA, 2-Py and 4-Py for niacin equivalent, the sum of 
reduced and oxidized ascorbic acid and 2,3-diketogluconic acid for vitamin C. 
br means a correlation between urinary excretion and dietary intake of vitamin, for which values are 
denoted as *P<0.05, ‡P<0.01, §P<0.001 

Table 1. Measured values for 24-hr urinary excretion collected on Day 4 and daily vitamin 
intake for each water-soluble vitamin, and correlation between 24-hr urinary excretion and 
daily vitamin intake in young Japanese (n=148) (Tsuji et al., 2010a). 

showed higher correlations, except for vitamin B12, than those for daily intakes (Table 4-6). 

However, these correlations ranged from 0.27 to 0.59, and these modest correlations were 

not enough to use urinary vitamins as biomarkers to estimate their intakes in individuals. 

Several factors are known to affect water-soluble vitamin metabolism. For example, alcohol, 

carbohydrate and physical activity are expected to affect vitamin B1 metabolism (Hoyumpa 

et al., 1977; Manore, 2000; Elmadfa et al., 2001); bioavailability of pantothenic acid in food is 

half that of free pantothenic acid (Tarr et al., 1981); and the single nucleotide polymorphism 
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of methylenetetrahydrofolate reductase (MTHFR) gene affects folate metabolism (Bagley & 

Selhub, 1998). When estimated intake of water-soluble vitamins was calculated using mean 

recovery rate and urinary excretion values, estimated water-soluble vitamin intakes except 

vitamin B12 were correlated with 3-day mean intakes, and showed 91–107% of their 3-day 

mean intakes, except vitamin B12 (61-79%) (Table 2). These findings showed that urinary 

water-soluble vitamins reflected their dietary intake over the past few days, and could be 

used as biomarkers to assess their intakes in groups. 

Vitamins 

24-h urinary 

excretion of 

vitamina 

Vitamin intake 

at Day 4 

Vitamin intake

at Day 3 

Vitamin intake

at Day 2 

Vitamin intake 

at Day 1 

mean ± SD mean ± SD rb mean ± SD rb mean ± SD rb mean ± SD rb 

Vitamin B1 0.766 ± 0.383

(μmol/d)

3.13 ± 1.01

(μmol/d)

0.41§ 2.90 ± 0.85

(μmol/d)

0.25‡ 2.60 ± 0.74

(μmol/d)

0.22* 2.75 ± 0.92 

(μmol/d) 

0.07 

Vitamin B2 0.290 ± 0.209

(μmol/d)

3.47 ± 0.94

(μmol/d)

0.36§ 3.75 ± 1.13

(μmol/d)

0.36§ 3.59 ± 1.00

(μmol/d)

0.33§ 3.60 ± 1.17 

(μmol/d) 

0.23* 

Vitamin B6 2.36 ± 0.92

(μmol/d)

5.93 ± 1.86

(μmol/d)

0.42§ 5.96 ± 1.65

(μmol/d)

0.32§ 5.97 ± 1.69

(μmol/d)

0.36§ 6.00 ± 2.41 

(μmol/d) 

0.17 

Vitamin B12 0.026 ± 0.015

(nmol/d)

3.15 ± 1.97

(nmol/d)

0.18 4.85 ± 5.93

(nmol/d)

0.14 4.76 ± 4.29

(nmol/d)

-0.02 4.64 ± 3.37 

(nmol/d) 

0.11 

Niacin --- 97.0 ± 32.3

(μmol/d)

0.28§ 101.7 ± 38.2

(μmol/d)

0.11 105.3 ± 31.3

(μmol/d)

0.21* 101.4 ± 32.5 

(μmol/d) 

0.23* 

Niacin 

equivalent 

65.6 ± 27.6

(μmol/d)

214 ± 56

(μmol/d)

0.28‡ 218 ± 56

(μmol/d)

0.23‡ 218 ± 52

(μmol/d)

0.16 218 ± 56 

(μmol/d) 

0.25‡ 

Pantothenic 

acid 

11.6 ± 5.5

(μmol/d)

27.6 ± 6.9

(μmol/d)

0.23* 30.1 ± 7.4

(μmol/d)

0.20* 27.0 ± 6.3

(μmol/d)

0.31§ 28.7 ± 7.8 

(μmol/d) 

0.25‡ 

Folate 16.8 ± 6.6

(nmol/d)

575 ± 170

(nmol/d)

0.27‡ 615 ± 423

(nmol/d)

0.12 491 ± 123

(nmol/d)

0.18 532 ± 164 

(nmol/d) 

0.24* 

Vitamin C 161 ± 221

(μmol/d)

477 ± 225

(μmol/d)

0.35§ 448 ± 313

(μmol/d)

0.23* 403 ± 289

(μmol/d)

0.26‡ 445 ± 328 

(μmol/d) 

0.18 

aUrinary excretion for each vitamin corresponds to thiamin for vitamin B1, riboflavin for vitamin B2,  
4-PIC for vitamin B6, the sum of nicotinamide, MNA, 2-Py and 4-Py for niacin equivalent, the sum of 
reduced and oxidized ascorbic acid and 2,3-diketogluconic acid for vitamin C. 
br means a correlation between urinary excretion and dietary intake of vitamin, for which values are 
denoted as *P<0.05, ‡P<0.01, §P<0.001 

Table 2. Measured values for 24-hr urinary excretion collected on Day 4 and daily vitamin 

intake for each water-soluble vitamin, and correlation between 24-hr urinary excretion and 

daily vitamin intake in Japanese school children (n=114) (Tsuji et al., 2010b). 
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Vitamins 

24-h urinary 
excretion of 

vitamina 

Vitamin intake
at Day 4 

Vitamin intake
at Day 3 

Vitamin intake
at Day 2 

Vitamin intake 
at Day 1 

mean ± SD mean ± SD rb mean ± SD rb mean ± SD rb mean ± SD rb 

Vitamin B1 0.459 ± 0.494

(μmol/d) 

2.51 ± 0.91
(μmol/d)

0.47‡ 2.50 ± 0.73
(μmol/d)

0.54§ 2.62 ± 0.85
(μmol/d)

0.28 2.37 ± 0.74 
(μmol/d) 

0.42* 

Vitamin B2 0.852 ± 0.828

(μmol/d) 

3.47 ± 1.22
(μmol/d)

0.49‡ 3.60 ± 1.08
(μmol/d)

0.46‡ 3.69 ± 1.12
(μmol/d)

0.52§ 3.54 ± 1.14 
(μmol/d) 

0.34* 

Vitamin B6 4.45 ± 2.26 

(μmol/d) 

7.06 ± 2.78
(μmol/d)

0.37* 7.04 ± 2.35
(μmol/d)

0.13 7.57 ± 2.71
(μmol/d)

0.34* 7.45 ± 2.41 
(μmol/d) 

0.16 

Vitamin B12 0.034 ± 0.035

(nmol/d) 

5.81 ± 4.91
(nmol/d)

0.15 5.89 ± 5.31
(nmol/d)

-0.07 4.95 ± 4.31
(nmol/d)

0.12 6.75 ± 8.43 
(nmol/d) 

-0.03 

Niacin --- 113 ± 49 

(μmol/d)

0.35* 127 ± 57 
(μmol/d)

0.38* 129 ± 65 
(μmol/d)

0.39* 121 ± 47 
(μmol/d) 

0.32 

Niacin 
equivalent 

89.7 ± 30.8 

(μmol/d) 

213 ± 72 
(μmol/d)

0.37* 232 ± 73 
(μmol/d)

0.45‡ 239 ± 94 
(μmol/d)

0.39* 223 ± 71 
(μmol/d) 

0.26 

Pantothenic 
acid 

15.1 ± 6.2 

(μmol/d) 

26.1 ± 8.9
(μmol/d)

0.59§ 25.5 ± 8.9
(μmol/d)

0.49‡ 25.6 ± 6.4
(μmol/d)

0.46‡ 24.5 ± 7.1 
(μmol/d) 

0.30 

Folate 36.6 ± 16.9 

(nmol/d) 

792 ± 305
(nmol/d)

0.55§ 845 ± 360
(nmol/d)

0.24 854 ± 301
(nmol/d)

0.48‡ 818 ± 366 
(nmol/d) 

0.28 

Vitamin C 214 ± 271 

(μmol/d) 

627 ± 310
(μmol/d)

0.46‡ 620 ± 407
(μmol/d)

0.43‡ 722 ± 423
(μmol/d)

0.39* 642 ± 356 
(μmol/d) 

0.53§ 

aUrinary excretion for each vitamin corresponds to thiamin for vitamin B1, riboflavin for vitamin B2,  
4-PIC for vitamin B6, the sum of nicotinamide, MNA, 2-Py and 4-Py for niacin equivalent, the sum of 
reduced and oxidized ascorbic acid and 2,3-diketogluconic acid for vitamin C. 
br means a correlation between urinary excretion and dietary intake of vitamin, for which values are 
denoted as *P<0.05, ‡P<0.01, §P<0.001 

 
 

Table 3. Measured values for 24-hr urinary excretion collected on Day 4 and daily vitamin 
intake for each water-soluble vitamin, and correlation between 24-hr urinary excretion and 
daily vitamin intake in elderly Japanese (n=35) (Tsuji et al., 2011). 
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Vitamins 

2 days mean 
vitamin 
intake  

(Days 3–4) 

3 days mean 
vitamin 
intake  

(Days 2–4) 

4 days mean 
vitamin 
intake  

(Days 1–4) 

Recovery
ratec (%) 

Mean estimated 
vitamin intaked 

mean ± SD ra mean ± SD ra mean ± SD ra mean ± SD mean ± SD re 
% 
ra-
tiof 

Vitamin  
B1 

2.37 ± 0.79
(μmol/d) 

0.40§ 2.40 ± 0.73
(μmol/d)

0.42§ 2.32 ± 0.63
(μmol/d)

0.39§ 17.8 ± 11.4 2.38 ± 1.61 
(μmol/d) 

0.40§ 100
% 

Vitamin  
B2 

3.04 ± 0.87
(μmol/d) 

0.39§ 3.05 ± 0.83
(μmol/d)

0.43§ 3.00 ± 0.81
(μmol/d)

0.39§ 12.4 ± 10.0 3.08 ± 2.59 
(μmol/d) 

0.38§ 101
% 

Vitamin  
B6 

5.46 ± 1.85
(μmol/d) 

0.40§ 5.58 ± 1.62
(μmol/d )

0.40§ 5.50 ± 1.54
(μmol/d )

0.39§ 69.6 ± 28.6 5.29 ± 1.88 
(μmol/d) 

0.40§ 95% 

Vitamin B12 3.24 ± 2.62
(nmol/d) 

0.06 3.32 ± 2.60
(nmol/d)

0.02 3.23 ± 2.84
(nmol/d)

0.07 1.4 ± 1.5 2.04 ± 1.33 
(nmol/d) 

0.06 61% 

Niacin 93.6 ± 33.7
(μmol/d) 

0.35§ 95.4 ± 28.7
(μmol/d)

0.33§ 94.9 ± 28.7
(μmol/d)

0.33§ --- --- --- --- 

Niacin 
equivalent 

189 ± 54 
(μmol/d) 

0.33§ 192 ± 47 
(μmol/d)

0.32§ 190 ± 47 
(μmol/d)

0.32§ 45.8 ± 16.0 184 ± 61 
(μmol/d) 

0.33§ 96% 

Pantothenic 
acid 

23.7 ± 7.0 
(μmol/d) 

0.47§ 23.9 ± 6.7 
(μmol/d)

0.46§ 23.6 ± 7.0
(μmol/d)

0.41§ 71.6 ± 23.3 23.0 ± 7.3 
(μmol/d) 

0.47§ 96% 

Folate 583 ± 243 
(nmol/d) 

0.24‡ 593 ± 243 
(nmol/d)

0.27‡ 588 ± 273
(nmol/d)

0.24‡ 4.3 ± 1.9 540 ± 206 
(nmol/d) 

0.24‡ 91% 

Vitamin C 446 ± 285 
(μmol/d) 

0.44§ 478 ± 267 
(μmol/d)

0.42§ 455 ± 244
(μmol/d)

0.41§ 31.3 ± 29.6 446 ± 420 
(μmol/d) 

0.44§ 93% 

aMean dietary intake was calculated using daily dietary intake for each individual. 
br means a correlation between 24-h urinary excretion and mean dietary intake. 
cRecovery rate was derived from 24-h urinary excretion/3-Days mean intake. 
dMean estimated intake was calculated using 24-hr urinary excretion and recovery rate. 
er means a correlation between 3-day mean dietary intake and mean estimated intake. 
f% ratio means a ratio between 3-day mean intake and mean estimated intake.  
*P<0.05, ‡P<0.01, §P<0.001. 

 
Table 4. Correlations between 24-hr urinary excretion and mean vitamin intakes, recovery 
rates, and mean estimated intakes in young Japanese (n=148) (Tsuji et al., 2010a). 
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Vitamins 

2 days mean 
vitamin 
intake  

(Days 3–4) 

3 days mean 
vitamin 
intake  

(Days 2–4) 

4 days mean 
vitamin 
intake  

(Days 1–4) 

Recovery
ratec  
(%) 

Mean estimated 
vitamin intaked 

mean ± SD ra mean ± SD ra mean ± SD ra mean ± SD mean ± SD re 
%  
ra-
tiof 

Vitamin B1 3.02 ± 0.77
(μmol/d) 

0.42§ 2.88 ± 0.63
(μmol/d)

0.42§ 2.85 ± 0.58
(μmol/d)

0.35§27.6 ± 12.2 2.83 ± 1.42 
(μmol/d) 

0.37§ 10
0% 

Vitamin B2 3.61 ± 0.85
(μmol/d) 

0.41§ 3.60 ± 0.79
(μmol/d)

0.43§ 3.60 ± 0.78
(μmol/d)

0.42§ 7.9 ± 5.2 3.66 ± 2.63 
(μmol/d) 

0.26‡ 10
2% 

Vitamin B6 5.94 ± 1.41
(μmol/d) 

0.45§ 5.95 ± 1.29
(μmol/d)

0.49§ 5.96 ± 1.35
(μmol/d)

0.43§39.8 ± 14.0 5.90 ± 2.30 
(μmol/d) 

0.41§ 10
0% 

Vitamin B12 4.00 ± 3.14
(nmol/d) 

0.19* 4.25 ± 2.55
(nmol/d)

0.10 4.35 ± 2.10
(nmol/d)

0.10 0.7 ± 0.6 3.72 ± 2.14 
(nmol/d) 

0.06 79
% 

Niacin 99 ± 26 
(μmol/d) 

0.24* 101 ± 21.7
(μmol/d)

0.29‡ 101 ± 20.4
(μmol/d)

0.32§ --- --- --- --- 

Niacin 
equivalent 

216 ± 48 
(μmol/d) 

0.29‡ 217 ± 43 
(μmol/d)

0.29‡ 217 ± 39 
(μmol/d)

0.32§30.7 ± 12.6 215 ± 91 
(μmol/d) 

0.20* 99
% 

Pantothenic 
acid 

28.8 ± 6.0 
(μmol/d) 

0.26‡ 28.2 ± 5.6
(μmol/d)

0.32§ 28.3 ± 5.7
(μmol/d)

0.32§41.4 ± 19.5 28.1 ± 13.3 
(μmol/d) 

0.27‡ 99
% 

Folate 595 ± 236 
(nmol/d) 

0.23* 560 ± 174
(nmol/d)

0.24* 553 ± 147
(nmol/d)

0.27‡ 3.1 ± 1.3 536 ± 211 
(nmol/d) 

0.09 97
% 

Vitamin C 462 ± 200 
(μmol/d) 

0.39§ 442 ± 183
(μmol/d)

0.39§ 443 ± 170
(μmol/d)

0.39§36.4 ± 50.3 447 ± 613 
(μmol/d) 

0.39§ 10
0% 

aMean dietary intake was calculated using daily dietary intake for each individual 
br means a correlation between 24-h urinary excretion and mean dietary intake. 
cRecovery rate was derived from 24-h urinary excretion/3-Days mean intake. 
dMean estimated intake was calculated using 24-hr urinary excretion and recovery rate. 
er means a correlation between 3-day mean dietary intake and mean estimated intake 
f% ratio means a ratio between 3-day mean intake and mean estimated intake.  
*P<0.05, ‡P<0.01, §P<0.001. 

 

Table 5. Correlations between 24-hr urinary excretion and mean vitamin intakes, recovery 
rates, and mean estimated intakes in Japanese school children (n=114) (Tsuji et al., 2010b). 
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Vitamins 

2 days mean 

vitamin 

intake  

(Days 3–4) 

3 days mean 

vitamin 

intake  

(Days 2–4) 

4 days mean 

vitamin 

intake  

(Days 1–4) 

Recovery

ratec (%)

Mean estimated 

vitamin intaked 

mean ± SD ra mean ± SD ra mean ± SD ra mean ± SD mean ± SD re 

% 

ra-

tiof 

Vitamin B1 2.51 ± 0.66

(μmol/d) 

0.62§ 2.55 ± 0.62

(μmol/d)

0.58§ 2.50 ± 0.59

(μmol/d)

0.59§ 16.9 ± 17.7 2.71 ± 2.92 

(μmol/d) 

0.58§ 107

% 

Vitamin B2 3.53 ± 1.03

(μmol/d) 

0.53§ 3.59 ± 0.99

(μmol/d)

0.57§ 3.57 ± 0.95

(μmol/d)

0.55§ 23.1 ± 22.9 3.69 ± 3.58 

(μmol/d) 

0.52§ 103

% 

Vitamin B6 7.05 ± 2.17

(μmol/d) 

0.30 7.22 ± 2.01

(μmol/d)

0.35* 7.58 ± 1.95

(μmol/d)

0.33 64.2 ± 31.7 6.93 ± 3.5 

(μmol/d)2 

0.35* 96 

% 

Vitamin 

B12 

5.85 ± 3.55

(nmol/d) 

-0.01 5.55 ± 3.16

(nmol/d)

0.01 5.85 ± 3.16

(nmol/d)

-0.03 0.9 ± 1.6 3.62 ± 3.73 

(nmol/d) 

0.12 65 

% 

Niacin 120 ± 42

(μmol/d) 

0.46‡ 123 ± 37

(μmol/d)

0.54§ 122 ± 36

(μmol/d)

0.52§ --- --- --- --- 

Niacin 

 equivalent 

222 ± 58

(μmol/d) 

0.50‡ 228 ± 56

(μmol/d)

0.54§ 227 ± 55

(μmol/d)

0.49‡ 40.1 ± 12.3 224 ± 77 

(μmol/d) 

0.54§ 98 

% 

Pantothenic 

acid 

25.8 ± 8.1

(μmol/d) 

0.58§ 25.8 ± 7.1

(μmol/d)

0.57§ 25.4 ± 6.5

(μmol/d)

0.56§ 59.6 ± 24.2 25.3 ± 10.4 

(μmol/d) 

0.46‡ 98 

% 

Folate 819 ± 279

(nmol/d) 

0.42* 831 ± 257

(nmol/d)

0.47‡ 828 ± 266

(nmol/d)

0.43‡ 4.5 ± 2.0 805 ± 372 

(nmol/d) 

0.48‡ 97 

% 

Vitamin C 624 ± 337

(μmol/d) 

0.50‡ 657 ± 339

(μmol/d)

0.50‡ 653 ± 334

(μmol/d)

0.53§ 32.0 ± 39.3 682 ± 847 

(μmol/d) 

0.51‡ 101

% 

aMean dietary intake was calculated using daily dietary intake for each individual. 
br means a correlation between 24-h urinary excretion and mean dietary intake. 
cRecovery rate was derived from 24-h urinary excretion/3-Days mean intake. 
dMean estimated intake was calculated using 24-hr urinary excretion and recovery rate. 
er means a correlation between 3-day mean dietary intake and mean estimated intake. 
f% ratio means a ratio between 3-day mean intake and mean estimated intake.  
*P<0.05, ‡P<0.01, §P<0.001. 

Table 6. Correlations between 24-hr urinary excretion and mean vitamin intakes, recovery 
rates, and mean estimated intakes in elderly Japanese (n=35) (Tsuji et al., 2011). 

Relatively low correlations were found between urinary folate and dietary intake in the 

cross-sectional studies, whereas a high correlation was found in the intervention study 

(Fukuwatari & Shibata, 2008). The relatively low correlation of folate in free-living subjects 

may be explained by several reasons. Urinary folate excretion responds slowly to change in 

dietary folate intake, and is reduced significantly in people who consume a low-folate diet 

(Kim & Lim, 2008). Some Japanese subjects consumed Japanese green tea and liver well, and 

these foods contain 16 μg/100 g and 1000 μg/100 g folate, respectively, in the Japanese Food 

Composition Table (The Ministry of Education, Culture, Sports, Science and Technology, 

2007). The composition of Japanese tea may vary depending on whether the extract of tea 

was made personally or whether it was a bottled tea beverage, because the present Japanese 

Food Composition Table cannot differentiate such products. Similarly, since the Food 
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Composition Table only describes the composition of raw liver, an error exists between the 

quantity of vitamin intake obtained from the Food Composition Table and the actual intake 

from cooked liver. Nutrient intakes were calculated using this Food Composition Table 

which did not take account of cooking loss for the above foods, and thus this might cause 

potential low level of accuracy. There might be also a technical issue. Urinary intact folates 

were measured by a microbiological assay in the cross-sectional studies. However, folates 

are catabolized into p-aminobenzoylglutamate and the acetylated form, p-

acetamidobenzoylglutamate, which are excreted into the urine (Wolfe et al., 2003). 

4. Reference values for urinary water-soluble vitamins 

Urinary water-soluble vitamins can be used as potential biomarker not only for estimation 

of its intake but also evaluation for its nutritional status. The intervention study 

comprehensively investigated urinary water-soluble vitamin values in subjects consuming 

semi-purified diet with vitamin mixture for 7 days (Shibata et al., 2005). The study revealed 

the mean values and ranges for each water-soluble vitamin except vitamin B12 in the subjects 

with vitamin mixture based on DRIs for Japanese. Based on these results, we propose the 

reference values for urinary water-soluble vitamins to show adequate nutritional status in 

Table 7. When urinary excretion of some vitamins is lower than the lower reference value, 

subject may not intake its vitamin enough for DRIs. When urinary vitamin is higher than the 

upper value, subject may intake its vitamin supplement. These reference values may be 

useful for first screening to check one’s vitamin nutritional status and vitamin supplement 

intake. 

Vitaminsa Reference values 

Vitamin B1 300-2400 (nmol/d) 
Vitamin B2 200-1800 (nmol/d) 
Vitamin B6 3.0-16.0 (μmol/d) 
Vitamin B12 --- 

Niacin 50-300 (μmol/d) 
Pantothenic acid 10-60 (μmol/d) 

Folate 15-80 (nmol/d) 
Biotin 50-300 (nmol/d) 

Vitamin C 150-2400 (μmol/d) 

aUrinary excretion for each vitamin corresponds to thiamin for vitamin B1, riboflavin for vitamin B2,  
4-PIC for vitamin B6, the sum of nicotinamide, MNA, 2-Py and 4-Py for niacin equivalent, the sum of 
reduced and oxidized ascorbic acid and 2,3-diketogluconic acid for vitamin C. 

Table 7. Proposed reference values for urinary water-soluble vitamins in adults.  

5. Conclusion 

Recent studies have induced great advances for urinary water-soluble vitamins as 

biomarkers for its intakes. Measuring urinary water-soluble vitamin levels can be the good 

approach for assessing dietary vitamin intake in groups, and for simply evaluation of its 

nutritional status in individuals. However, there is limitation for its use; urinary vitamins 

have not been suitable biomarker to estimate its intake in individuals yet. More accurate 
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estimation of the dietary intake of water-soluble vitamins based on urinary excretion 

requires additional, precise biological information such as the bioavailability, absorption 

rate, and turnover rate. Next step in this type of study will be to determine whether vitamin 

contents in spot urine sample is used to assess water-soluble vitamin intakes in groups. 
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