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1. Introduction 

The phenomenon of crystallization following after pouring molten metal into the mould, 
determines the shape of the primary casting (ingot) structure, which significantly affects on 
its usable properties.  

The crystallization of metal in the mould may result in three major structural zones (Fig.1) 
(Barrett, 1952; Chalmers, 1963; Fraś, 2003; Ohno, 1976): 

- zone of chilled crystals (grains) formed by equiaxed grains with random 
crystallographic orientation, which are in the contact area between the metal and the 
mould, 

- zone of columnar crystals (grains) formed by elongated crystals, which are parallel to 
heat flow and are a result of directional solidification, which proceeds when thermal 
gradient on solidification front has a positive value, 

- zone of equiaxed crystals (grains) formed by equiaxed grains with random 
crystallographic orientation in the central part of the casting. The equiaxed crystals have 
larger size than chilled crystals and are result of volumetric solidification, which 
proceeds when thermal gradient has a negative value in liquid phase. 

Depending on the chemical composition, the intensity of convection of solidifying metal, the 

cooling rate i.e. geometry of casting, mould material and pouring temperature (Fig.2), in the 

casting may be three, two or only one structural zone. 

Due to the small width of chilled crystals zone, the usable properties of casting depend 

mainly on the width and length of the columnar crystals, the size of equiaxed crystals and 

content of theirs zone on section of ingot, as well as on interdendritic or interphase distance 

in grains such as eutectic or monotectic. For example, you can refer here to a well-known the 

Hall-Peth law describing the influence of grain size on yield strength (Fig.3) (Adamczyk, 

2004): 

 
-1

2
0y k dσ σ •= +  (1) 

where: 
σy – yield strength, MPa, 
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σo – approximate yield strength of monocrystal, for Al amount to 11,1 MPa, 
k – material constant characterizing the resistance of grain boundaries for the movement of 
dislocations in the initial stage of plastic deformation (strength of grain boundaries), for Al 

amount to 0,05 MN⋅m-3/2, 
d – grain size, mm. 

 

a)    b) 

Fig. 1. The primary structure of ingot: a – scheme, b – real macrostructure;  
1 – chilled crystals zone, 2 – columnar crystals zone, 3 – equiaxed crystals zone 

 

Fig. 2. The influence of pouring temperature on primary structure of ingot (Fraś, 2003) 

Because the Hall-Peth law concerns only metals and alloys with the structure of solid 

solutions, therefore the solidification of alloys with eutectic transformation for example from 

Al-Si group in describing the influence of refinement of structure on the value of yield 

strength should take into account the value of interphase distance in eutectic (Paul et al., 

1982; Tensi & Hörgerl, 1994; Treitler, 2005): 

www.intechopen.com



 
Structure of Pure Aluminum After Endogenous and Exogenous Inoculation 

 

533 

 

Fig. 3. The influence of grain size on yield strength of Fe, Zn and α brass (Adamczyk, 2004) 

 
- -1 1

2 2
0 1 2y k d kσ σ λ• •= + +  (2) 

where: 
σy – yield strength, MPa, 
σo – approximately yield strength of monocrystal, MPa 

k1 and k2 – material constants, MN⋅m-3/2, 
d – grain size, mm, 

λ – interphase distance in eutectic, mm. 

The primary structure of pure metals independently from the crystal lattice type creates 

practically only columnar crystals (Fig.4) (Fraś, 2003). According to presented data, this type 

of structure gives low mechanical properties of castings and mainly is unfavourable for the 

plastic forming of continuous and semi-continuous ingots, because causing forces extrusion 

rate reduction and during the ingot rolling delamination of external layers can occur 

(Szajnar & Wróbel, 2008a, 2008b).  

This structure can be eliminated by controlling the heat removal rate from the casting, 

realizing inoculation, which consists in the introduction of additives to liquid metal and/or 

influence of external factors for example infra- and ultrasonic vibrations or electromagnetic 

field. 
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a)    b) 

Fig. 4. Macrostructure of ingot of Al with a purity of 99,7%: a – transverse section,  
b – longitudinal section 

2. Endogenous inoculation of pure aluminum structure 

In aim to obtain an equiaxed and fine-grained structure, which gives high mechanical 
properties of castings, can use inoculation, which occurs in introducing into metal bath of 
specified substances, called inoculants (Fraś, 2003). Inoculants increase grains density as 
result of creation of new particles in consequence of braking of grains growth velocity, 
decrease of surface tension on interphase boundary of liquid – nucleus, decrease of angle of 
contact between the nucleus and the base and increase of density of bases to heterogeneous 
nucleation (Fraś, 2003; Jura, 1968). The effectiveness of this type of inoculation depends 
significantly on crystallographic match between the base and the nucleus of inoculated 
metal. This crystallographic match is described by type of crystal lattice or additionally by 
index (Fraś, 2003): 

 
-

(1- ) 100%b n

n

x x

x
ξ •

 
=  
 

 (3) 

where: 

ξ - match index, 
xb, xn – parameter of crystal lattice in specified direction, suitable for base and nucleus. 

When the value of index (ξ) is closer to 100%, it the more effective is the base to 
heterogeneous nucleation of inoculated metal.  

Therefore active bases to heterogeneous nucleation for aluminum are particles which have 

high melting point i.e. TiC, TiN, TiB, TiB2, AlB2 i Al3Ti (Tab.1) (Easton & StJohn, 1999a, 
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1999b; Fjellstedt et al., 2001; Fraś, 2003; Guzowski et al., 1987; Hu & H. Li, 1998; Jura, 1968; 

Kashyap & Chandrashekar, 2001; H. Li et al., 1997; P. Li et al., 2005; McCartney, 1988; Murty 

et al., 2002; Naglič et al., 2008; Pietrowski, 2001; Sritharan & H. Li, 1996; Szajnar & Wróbel, 

2008a, 2008b; Whitehead, 2000; Wróbel, 2010; Zamkotowicz et al., 2003).  

 

Phase Melting point 

(circa) [°C] 

Type of crystal 
lattice 

Parameters of 
crystal lattice [nm] 

Al 660 Cubical A1 a = 0,404 

TiC 3200 Cubical B1 a = 0,431 

TiN 3255 Cubical B1 a = 0,424 

TiB 3000 Cubical B1 a = 0,421 

TiB2 2900 Hexagonal C32 a = 0,302 
c = 0,321 

AlB2 2700 Hexagonal C32 a = 0,300 
c = 0,325 

Al3Ti 1400 Tetragonal D022 a = 0,383 
c =0,857 

Table 1. Characteristic of bases to heterogeneous nucleation of aluminum (Donnay & Ondik, 
1973) 

Moreover the effectiveness of inoculants influence can be assessed on the basis of the 

hypothesis presented in the paper (Jura, 1968). This hypothesis was developed at the 

assumption that the fundamental physical factors affecting on the crystallization process are 

the amount of give up heat in the crystallization process on the interphase boundary of 

liquid - solid and the rate of give up heat of crystallization. After analyzing the results of 

own researches, the author proposed to determine the index (α), which characterizes the 

type of inoculant. 

 
( )
( )

k s

k p

E
W

E

Δ ν
α

Δ ν
•=  (4) 

where: 

ΔEk – heat of crystallization of 1 mol of inoculant or inoculated metal, J/mol,  

ν – characteristic frequency of atomic vibration calculated by the Lindemman formula, 1/s,  
s – symbol of inoculant, p – symbol of inoculated metal. 
W – parameter dependent on the atomic mass of inoculant and inoculated metal. 
On the basis of equation (4) additives can be divided into three groups: 
At α > 1 – additives which inhibit crystals growth by the deformation of the crystallization 
front, thus are effective inoculants. 
At α = 1 – additives do not affect on structure refinement. 
At α < 1 – additives which accelerate crystals growth, favoring consolidation of the primary 
structure of the metal, thus are deinoculants. 

In case of inoculation of Al the index α = 2.35 for inoculant in form of Ti and 1.76 for 

inoculant in form of B. 
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In case of aluminum casting inoculants are introduced in form of master alloy AlTi5B1. This 

inoculant has Ti:B ratio equals 5:1. This Ti:B atomic ratio, which corresponds to the mass 

content of about 0.125% Ti to about 0.005% B, assures the greatest degree of structure 

refinement (Fig.5). For this titanium and boron ratio bases of type TiB2 and Al3Ti are created 

(Fig.6) (Easton & StJohn, 1999a, 1999b; Fjellstedt et al., 2001; Guzowski et al., 1987; Hu & H. 

Li, 1998; Kashyap & Chandrashekar, 2001; H. Li et al., 1997; P. Li et al., 2005; Murty et al., 

2002; Naglič et al., 2008; Pietrowski, 2001; Sritharan & H. Li, 1996; Szajnar & Wróbel, 2008a, 

2008b; Whitehead, 2000; Wróbel, 2010). Type and amount of bases to heterogeneous 

nucleation of aluminum depend on Ti:B ratio. For example given in paper (Zamkotowicz et 

al., 2003) the possibility of application of master alloy AlTi1.7B1.4, which has Ti:B ratio 

equals 1.2:1 is presented. This ratio allows to increase in amount of fine phases TiB2 and 

AlB2 along with the Al3Ti phase decrease. 

Moreover minimum quantities of carbon and nitrogen, which come from metallurgical 

process of aluminum, create with inoculant the bases in form of titanium carbide TiC and 

titanium nitride TiN (Fig.7) (Pietrowski, 2001; Szajnar & Wróbel, 2008a, 2008b).  

Additionally, because there is a possibility of creation the bases to heterogeneous nucleation 

of aluminum in form of TiC phase without presence of bases in form of borides, in the 

practice of casting the inoculation with master alloy AlTi3C0.15 is used (Naglič et al., 2008; 

Whitehead, 2000). However, on the basis of results of own researches was affirmed that 

assuming of introducing to Al with a purity of 99,5% the same quantity of Ti i.e. 25ppm, the 

result of structure refinement caused by master alloy AlTi3C0.15 is weaker than caused by 

master alloy AlTi5B1 (Fig.8). 

 

Fig. 5. Influence of Ti and B contents on the average size of Al ingots (H. Li et al., 1997) 
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a)   b) 

 
c) 

Fig. 6. Structure of thin foil from pure Al after inoculation with (Ti+B), a) TEM bright field 
mag. 30000x , b) diffraction pattern from the area as in Fig. a, c) analysis of the diffraction 
pattern from Fig. b 

 

Fig. 7. Result of X-ray diffraction of Al with a purity of 99,5% after inoculation with Ti 

www.intechopen.com



 
Advances in Crystallization Processes 

 

538 

   

a)   b)   c) 

Fig. 8. Macrostructure of ingot of Al with a purity of 99,5%: a – in as-cast condition,  
b – after inoculation with (Ti+B), c – after inoculation with (Ti+C) 

However, this undoubtedly effective method of inoculation of primary structure of ingot is 

limited for pure metals, because inoculants decrease the degree of purity specified in 

European Standards, and Ti with B introduced as modifying additives are then classify as 

impurities. Moreover, inoculants, mainly Ti which segregates on grain boundary of Al 

(Fig.9) influence negatively on physical properties i.e. electrical conductivity of pure 

aluminum (Fig.10) (Wróbel, 2010). 

 

Fig. 9. Segregation of Ti on grain boundaries of Al 
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Fig. 10. The influence of quantity of inoculants in form of Ti and B on electrical conductivity 
γ of Al with a purity of 99,5% 

Moreover the presence of the bases to heterogeneous nucleation in form of hard deformable 

phases for example titanium borides in structure in aluminum, generate possibility of point 

cracks formation (Fig. 11) and in result of this delamination of sheet (foil) during rolling 

(Keles & Dundar, 2007).  

  

a)    b) 

Fig. 11. Phase TiB2 in structure of pure Al (Fig. a) and produced in result from its present 
crack in sheet (foil) during rolling (Fig. b) (Keles & Dundar, 2007) 

Therefore important is the other method of inoculation, which consists of influence of 

electromagnetic field (Asai, 2000; Campanella et al., 2004; Doherty et al., 1984; Gillon, 2000; 

Griffiths & McCartney, 1997; Harada, 1998; Szajnar, 2004, 2009; Szajnar & Wróbel, 2008a, 

2008b, 2009; Vives & Ricou, 1985; Wróbel, 2010) or mechanical vibrations (Abu-Dheir et al., 

2005; Szajnar, 2009) on liquid metal in time of its solidification in mould. 
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3. Exogenous inoculation of pure aluminum structure 

First research works on the application of stirring of liquid metal at the time of its 
solidification in order to improve the castings quality were carried out by Russ Electroofen 
in 1939 and concerned the casting of non-ferrous metals and their alloys (Wróbel, 2010). In 
order to obtain the movement of the liquid metal in the crystallizer in the researches carried 
out at this period of time and also in the future, a physical factor in the form of a 
electromagnetic field defined as a system of two fields i.e. an electric and magnetic field was 
introduced. The mutual relationship between these fields are described by the Maxwell 
equations (Sikora, 1998). 

Generated by the induction coil powered by electric current intensity (I0) electromagnetic 
field affects the solidifying metal induces a local electromotive force (Em), whose value 
depends on the local velocity of the liquid metal (V) and magnetic induction (B) (Gillon, 
2000).: 

 mE V B= ×  (5) 

This is a consequence of the intersection of the magnetic field lines with the current guide in 
form of liquid metal. It also leads to inducing an eddy current of intensity (I) in liquid metal 
(Gillon, 2000; Vives & Ricou, 1985): 

 ( )I V Bσ= ×  (6) 

where:  

σ - electrical conductivity proper to the liquid metal. 

The influence of the induced current on the magnetic field results in establishing of the 
Lorenz (magnetohydrodynamic) force (F) (Gillon, 2000; Vives & Ricou, 1985): 

 F I B= ×  (7) 

that puts liquid metal in motion e.g. rotary motion in the direction consistent with the 
direction of rotation of the magnetic field. Strength (F) has a maximum value when the 
vector (V) and (B) are perpendicular (Fig.12). 

 

Fig. 12. Scheme of electromagnetic field influence on the liquid metal 
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In addition, as presented in the paper (Szajnar, 2009) the rotating velocity of the liquid metal 

(V) is inversely proportional to the density of the metal (ρ), because with some 
approximation we can say that (Fig.13): 

 V ≈
F B

or
ρ ρ

  (8) 

 

Fig. 13. Dependence of peripheral velocity of liquid metal (V) in a cylindrical mould of 
inside diameter 45mm on magnetic induction (B) for example metals (Szajnar, 2009) 

Forced liquid metal movement influences by diversified way on changes in structure of 
casting i.e. by changes of thermal and concentration conditions on crystallization front, 
which decrease or completely stops the velocity of columnar crystals growth (Szajnar, 2004, 
2009) and by (Campanella et al., 2004; Doherty et al., 1984; Fraś, 2003; Ohno, 1976; Szajnar, 
2004, 2009; Szajnar & Wróbel, 2008a, 2008b, 2009; Wróbel, 2010): 

- tear off of crystals from mould wall, which are transferred into metal bath, where they 
can convert in equiaxed crystals,  

- fragmentation of dendrites by coagulation and melting as result of influences of 
temperature fluctuation and breaking as a result of energy of liquid metal movement, 

- crystals transport from the free surface to inside the liquid metal, 
- crystals from over-cooled outside layer of the bath are transported into liquid metal. 

One of the hypotheses regarding the mechanism of dendrites fragmentation caused by the 
energy of the movement of liquid metal is presented in work (Doherty et al., 1984). It is 
based on the assumption of high plasticity of growing dendrites in the liquid metal, which 
in an initial state are a single crystal with specified crystallographic orientation (Fig.14a). 
The result of liquid metal movement is deformation (bending) of plastic dendrite (Fig.14b), 
which caused creation of crystallographic misorientation angle Θ (Fig.14c). Created high-

angle grain boundary (Θ > 20°) has the energy γGZ much greater than double interfacial 
energy of solid phase - liquid phase γS-L. In result of unbalancing and satisfying the 
dependence γGZ > 2 γS-L the grain boundary is replaced by a thin layer of liquid metal. This 
leads to dendrite shear by liquid metal along the former grain boundary (Fig.14d). Dendrite 
fragments of suitable size after moving into the metal bath can transform into equiaxed 
crystals. 
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a)   b) 

  

c)   d) 

Fig. 14. Schematic model of the grain boundary fragmentation mechanism: a – an 
undeformed dendrite, b – after bending, c – the reorganization of the lattice bending to give 
grain boundaries, d – for γGZ > 2 γS-L the grain boundaries have been “wetted” by the liquid 
phase (Doherty et al., 1984).  

The influence of electromagnetic field on liquid metal in aim of structure refinement 

(Fig.15), axial and zonal porosity elimination and obtaining larger homogeneity of structure, 

was applied in permanent mould casting (Griffiths & McCartney, 1997; Szajnar & Wróbel, 

2008a, 2008b, 2009; Wróbel, 2010) and mainly in technologies of continuous (Adamczyk, 

2004; Gillon, 2000; Harada, 1998; Miyazawa, 2001; Szajnar et al., 2010; Vives & Ricou, 1985) 

and semi-continuous casting (Guo et al., 2005).  

 

Fig. 15. Macrostructure of ingot of Al with a purity of 99,5% after cast with influence of 
rotating electromagnetic field 
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In case of continuous ingots of square and circular transverse section, rotating 
electromagnetic field induction coils are used. Rotating electromagnetic field forces 
rotational movement of liquid metal in perpendicular planes to ingot axis (Fig.16a). 
Whereas, mainly for flat ingots, longitudinal electromagnetic field induction coils are used, 
which forced oscillatory movement of liquid metal in parallel planes to ingot axis (Fig.16b) 
(Adamczyk, 2004; Miyazawa, 2001). 

  

a)   b) 

Fig. 16. Scheme of an electromagnetic stirrer (induction coil) forced rotational (a) and 
oscillatory movement of liquid metal (Adamczyk, 2004) 

Whereas the authors of paper (Szajnar & Wróbel, 2008a, 2008b) suggests the use of reversion 
in the direction of electromagnetic field rotation during permanent mould casting. The 
advantage of casting in rotating electromagnetic field with reversion compared to casting in 
rotating field, mainly based on the fact that the liquid metal located in the permanent mould 
and put in rotary-reversible motion practically does not create a concave meniscus, and thus 
is not poured out off the mould under the influence of centrifugal forces. Moreover, the 
influence of this type of field combines impact of high amplitude and low frequency 
vibration with action of rotating electromagnetic field. Also important is double-sided 
bending of growing crystals, causing the creation in the columnar crystals zone of ingot 
characteristic crystals so-called corrugated (Fig.17). 

 

Fig. 17. Macrostructure of ingot of Al with a purity of 99,5% after cast with influence of 
rotating electromagnetic field with reversion 
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However in papers (Szajnar, 2004, 2009; Szajnar & Wróbel, 2008a, 2008b, 2009) was shown 

that influence of forced movement of liquid metal by use of electromagnetic field to 

changes in structure of pure metals, which solidify with flat crystallization front is 

insufficient. The effective influence of this forced convection requires a suitable, minimal 

concentration of additives i.e. alloy additions, inoculants or impurities in casting. Suitable 

increase of additives concentration causes at specified thermal conditions of solidification, 

occurs in change of morphology of crystallization front according to the scheme shown in 

Figure 18. 

 

Fig. 18. Scheme of relationship between thermal and concentration conditions and type of 
crystallization; C0 – concentration of additives, GT – thermal gradient on crystallization 
front, V – velocity of crystallization (Fraś, 2003) 

However it should be noted that, based on the latest results of author researches was 

affirmed that in some cases it is possible to obtain a sufficient refinement degree of pure 

aluminum structure in result of inoculation carried out only with the use of an 

electromagnetic field. Because it shows a possibility of increasing the force, which creates 

movement of liquid metal and in result of this the velocity of its rotation in mould, not 

only by increasing the value of magnetic induction according to the dependences (7) and 

(8), but also by increasing the frequency of the current supplied to the induction coil 

(Fig.19). 

The effect of refinement of structure of Al with a purity of 99,5% caused by the rotating 

electromagnetic field produced by the induction coil supplied by current with frequency 

different from the network i.e. 50Hz is presented in Table 2. On the basis of macroscopic 

metallographic researches, which lead to the calculation of the equiaxed crystals zone 

content on transverse section of ingot (SKR) and average area of macro-grain in this zone 

(PKR) was affirmed, that application of frequency of supply current f ≤ 50Hz does not 

guarantee favourable transformation of pure aluminum structure (Fig.20 and 21). Whereas 

induction coil supplied with frequency of current larger than power network, mainly 100Hz 

generates rotating electromagnetic field, which guarantees favourable refinement of 

structure, also in comparison to obtained after inoculation with small, acceptable by 

European Standards amount of Ti and B i.e. 25 and 5ppm (Tab.2).  
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Fig. 19. The influence of magnetic induction (B) and frequency (f) of the current supplied to 
the induction coil on force value (F), which creates movement of liquid metal 
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Fig. 20. The influence of current frequency (f) supplied to the induction coil on equiaxed 
crystals zone content (SKR) on transverse section of pure Al ingot  
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Fig. 21. The influence of current frequency (f) supplied to the induction coil on average area 
of equiaxed crystal (PKR) of pure Al ingot  

No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

1 - - - 19,94 0,64 

 

 
 

2 - - 25+5 80,30 0,42 
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No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

3 

60 

5 

- 

21,01 0,44 

 
 
 

 
 

4 10 21,36 0,35 

 

 
 

5 15 20,66 0,33 

 
 

6 60 20 - 22,63 0,37 
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No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

7 25 18,90 0,33 

 

 
 
 

8 30 21,42 0,33 

 

 
 

9 35 21,44 0,19 

 

 
 

10 40 21,68 0,21 
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No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

11 

60 

45 

- 

21,46 0,13 

 

 
 

12 50 21,21 0,15 

 

 
 

13 55 22,87 0,10 

 

 
 
 

14 60 27,22 0,12 
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No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

15 65 37,05 0,09 

 

 
 
 

16 

60 

70 

- 

42,53 0,07 

 

 
 

17 75 54,63 0,04 

 

 
 

18 80 58,56 0,03 
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No. 

Cast parameters 
Refinement 
parameters Macrostructure of 

ingot B 
[mT] 

f 
[Hz] 

(Ti+B) 
[ppm] 

SKR 
[%] 

PKR 
[mm2] 

-1- -2- -3- -4- -5- -6- -7- 

19 85 64,70 0,01 

 
 

20 90 78,67 0,01 

 

 
 

21 

60 

95 

- 

81,78 0,01 

 

 

22 100 83,36 0,01 

 

 
 
 

Table 2. The influence of rotating electromagnetic field on structure of Al with a  
purity of 99,5% 
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4. The influence of exogenous inoculation on the result of endogenous 
inoculation in pure aluminum 

In the practice of casting is also a problem of connection of endogenous inoculation i.e. 

realized by use of additives, for example Ti and B with exogenous inoculation i.e. realized 

by use of electromagnetic field. However as presented in papers (Szajnar & Wróbel, 2008a, 

2008b, Wróbel, 2010) occurs that the phenomenon of convection transport (rejection) of 

impurities for example Cu and inoculants for example Ti from crystallization front into 

metal bath volume in result of intensive, forced by electromagnetic field the movement of 

liquid metal. This leads to an increase in density of bases to heterogeneous nucleation of 

aluminum and in consequence to increase in density of grains in the central area of ingot. 

Results of determination of Cu and Ti concentration in near-surface and central areas of 

investigated ingots with use of emission optical spectrometry is a proof of such reasoning. 

On their basis was affirmed, that in ingot of Al with a purity of 99,5% which was cast under 

the influence of electromagnetic field and with (Ti + B) inoculation, the Cu and Ti 

concentration in central area increase was observed (Fig.22a). Whereas in Al, which was cast 

only with (Ti + B) inoculation, the Cu and Ti concentrations in the near-surface and central 

areas of ingot are similar (Fig.22b).  

The second proof of convection transport (rejection) of Cu and Ti from crystallization front 

into liquid metal volume is the analysis of macrostructure of investigated ingots and 

counting of all macro-grains in equiaxed crystals zone. Macrostructure of ingot of Al with a 

purity of 99,5%, which was cast with the combined effect of the electromagnetic field and 

with (Ti+B) inoculation has smaller equiaxed crystals zone than the ingot which was cast 

only with the influence of endogenous inoculation, but the first ingot has a smaller size of 

macro-grain in its equiaxed crystals zone than the ingot which was cast only with (Ti+B) 

inoculation (Fig.23).  

 

  

 

a)     b) 

Fig. 22. Concentration of Cu and Ti in near-surface and central areas of Al with a purity of 
99,5%ingots: a – after common exogenous (electromagnetic field) and endogenous (Ti + B) 
inoculation, b – only after endogenous (Ti + B) inoculation 
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a)    b) 

Fig. 23. Macrostructure of ingot of Al with a purity of 99,5%: a – after common exogenous 
(electromagnetic field) and endogenous (Ti + B) inoculation, b – only after endogenous  
(Ti + B) inoculation 

Based on conducted calculations of number of macro-grains in equiaxed crystals zone 
following formula was formulated:  

 ex en ex enn n n+ > +  (9) 

where: 

nex+en – number of macro-grains in equiaxed crystals zone of ingot which was cast with 
common influence of exogenous (electromagnetic field) and endogenous (Ti + B) 
inoculation,  

nex – number of macro-grains in equiaxed crystals zone of ingot which was cast only with 
influence of exogenous (electromagnetic field) inoculation,  

nen – number of macro-grains in equiaxed crystals zone of ingot which was cast only with 
influence of endogenous (Ti + B) inoculation.  

Summarize, was affirmed that application of common exogenous (electromagnetic field) 
and endogenous (Ti + B) inoculation strengthens effect of structure refinement in 
comparison with application of one type of inoculation, only if is used skinning of ingot 
surface i.e. machining in aim of columnar crystals zone elimination. 

5. Conclusions 

In conclusion can say, that even endogenous inoculation with small amount of (Ti + B) 
strongly increase on refinement in pure aluminum structure. It results from reactions, which 
proceed between inoculating elements and inoculated metal or charge impurities. These 
reactions lead to formation of active bases to heterogeneous nucleation of aluminum as high 
melting small particles of type TiB, TiB2, AlB2, Al3Ti and TiC or TiN, which have analogy in 
crystal lattice with Al. 

However on the basis of conducted analysis of the literature and results of authors 
researches it was affirmed, that the rotating electromagnetic field generated by induction 
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coil supplied by current with frequency larger than power network, influences liquid metal 
in time of its solidification in mould, guarantees refinement of structure of pure Al without 
necessity of application of inoculants sort Ti and B.  

This method of exogenous inoculation is important, because Ti and B decrease the degree of 
purity and electrical conductivity of pure aluminum. Moreover Ti and B are reason of point 
cracks formation during rolling of ingots.  

Presented method of inoculation by use of electromagnetic field is possible to apply in 
conditions of continuous casting because it allows producing of ingots from aluminum of 
approx. 99,5% purity with structure without columnar crystals, which are unfavourable 
from point of view of usable properties.  
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