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1. Introduction  

Since the discovery in 1960 by Duwez (Klement et al., 1960), considerable effort has been 
devoted to form amorphous (or glassy) alloys either by rapid solidification techniques or by 
solid-state amorphization techniques (Inoue, 2000; Johnson, 1999; Suryanarayana & Inoue, 
2011; Wang et al., 2004). However, the geometry of the amorphous samples has long time 
been limited in the form of ribbons or wires. The first “bulk” amorphous alloys, arbitrarily 
defined as the amorphous alloys with a dimension no less than 1 mm in all directions, was 
discovered by Chen and Turnbull (Chen & Turnbull, 1969) in ternary Pd-Cu-Si alloys. These 
ternary bulk glass-forming alloys have a critical cooling rate of about 102 K s-1 and can be 
obtained in amorphous state with a thickness up to 1 mm and more. Since then, especially 
after the presence of new bulk metallic glasses (BMGs) in La55Al25Ni20 (Inoue et al., 1989) 
and Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Peker & Johnson, 1993), multicomponent BMGs, which could 
be prepared by direct casting from molten liquid at low cooling rates, have been drawing 
increasing attention in the scientific community. A great deal of effort has been devoted to 
developing and characterizing BMGs with a section thickness or diameter of a few 
millimetres to a few centimetres (Suryanarayana & Inoue, 2011). A large variety of 
multicomponent BMGs in a number of alloy systems, such as Pd-, Zr-, Mg-, Ln-, Ti-, Fe-, and 
Ni-based BMGs, have been developed via direct casting method with low cooling rates of 
the order of 1 – 102 K s-1 (Inoue, 2000; Johnson, 1999; Suryanarayana & Inoue, 2011; Wang, et 
al., 2004). In this method, the alloy compositions were carefully designed to have large glass-
forming ability (GFA) so that “bulk” amorphous alloys can be formed at a low cooling rate 
to frustrate crystallization from molted liquid state. A number of parameters/indicators 
have been proposed to evaluate the GFA of multicomponent alloy systems to search for 
BMGs with larger dimensions (Suryanarayana & Inoue, 2011). So far, the "record" size of the 
BMGs is 72 mm diameter for a Pd40Cu30Ni10P20 bulk metallic glass (Inoue et al., 1997). The 
discovery of amorphous alloys has attracted widespread research interests because of their 
technological promise for practical applications and scientific importance in understanding 
glass formation and glass phenomena.  

Arising from their disordered atomic structure and unique glass-to-supercooled liquid 

transition, amorphous alloys represent a new class of structural and functional materials 

with excellent properties (Eckert et al., 2007; Inoue, 2000; Johnson, 1999; Suryanarayana & 

Inoue, 2011; Wang, 2009; Xu et al., 2010), e.g. high strength about 2–3 times of their 

www.intechopen.com



 
Advances in Crystallization Processes 

 

186 

crystalline counterparts, large elastic limit about 2% which is very near to some polymer 

materials, including extreme strength at low temperature and high flexibility at high 

temperature, high corrosion resistance, high wear resistance, superior chemical and physical 

properties, etc. These properties, which can be rarely found in crystalline materials, are 

attractive for the practical applications as a new class of structural and functional materials. 

Fig. 1 summarizes the relationship between fracture strength and Young’s modulus for 

typical engineering materials in amorphous and crystalline states. There is a clear tendency 

for fracture strength to increase with increasing Young’s modulus, but the slope of the linear 

relation corresponding to elastic elongation is significantly different between the bulk 

amorphous and crystalline alloys and the elastic elongation of the amorphous alloys is ~3 

times larger than those for the crystalline alloys. The amorphous alloys also exhibit high 

strength which is ~3 times higher than those for crystalline alloys, when the comparison is 

made at the same Young’s modulus level. Currently, amoprhous alloys have a variety of 

uses for sports and luxury goods, microelectromechanical systems (MEMS), biomedicine 

and nanotechnology. 

 

Fig. 1. Relation between strength and Young’s modulus for bulk alloys in amorphous and 
crystalline states. Reprinted from (Inoue et al., 2004b), with permission from Elsevier. 

2. Crystallization mechanisms  

In general, the best practice way to describe a microstructure is in terms of its 
thermodynamic state before configurationally freezing set in (Turnbull, 1981). In this way, 
an amorphous alloy in configurationally frozen state as an undercooled liquid would be 
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considered metastable. By considering the local potential wells between which atoms must 
make diffusional jumps, even states which are thermodynamically unstable may be 
regarded as kinetically metastable. Such kinetic metastability can exist only where thermal 
activation of atomic jumps is required. Regardless of the processing route used for the 
formation of amorphous state, the amorphous alloys are in thermodynamically metastable 
state and are susceptible to transform into more stable states under appropriate 
circumstances. Crystallization is such a transformation during which an amorphous phase 
devitrified into one or more metastable or stable crystalline phases. The driving force for the 
crystallization is the Gibbs free energy difference between the amorphous and the 
crystalline states. Crystallization could happen when an amorphous solid is subject to heat 
treatment (Calin et al., 2007; Suryanarayana & Inoue, 2011; Zhang et al., 2002; Zhang et al., 
2003; Zhang & Xu, 2004; Zhang et al., 2005a; 2005b; Zhang et al., 2006a; Zhang et al., 2007a; 
Zhang et al., 2007b), mechanical deformation (Fornell et al., 2010; Lohwongwatana et al., 
2006; Setyawan et al., 2010), pressure (Jiang et al., 2000; Jiang et al., 2002; Jiang et al., 2003b; 
Yang et al., 2006; Ye & Lu, 1999), and/or irradiations (Azam et al., 1979). Amongst these 
processing techniques, conventionally thermal annealing is the most commonly used in the 
investigation on crystallization of amorphous alloys. The dimensions and morphologies of 
the crystallization products strongly depend on the transformation mechanism, which is 
closely related to the chemical composition of the amorphous phase and to the 
thermodynamic properties of the corresponding crystalline phase. The crystallization products 
could include crystalline solids (solid solution, intermetallics, and/or compounds) (Foley et al., 
1997; Kelton et al., 2003; Lu, 1996; Sahu et al., 2010; Zhang, et al., 2002; Zhang, et al., 2003) or 
quasicrystalline (Murty et al., 2000). As the crystallization process upon annealing of an 
amorphous phase is much slower than during solidification of liquids, it is relatively easier to 
fundamentally investigate crystallization in amorphous phases than in liquids on the 
processes of nucleation and growth, in particular of nucleation kinetics difficult to study 
quantitatively in the liquid state. The study of crystallization behaviors on amorphous alloys is 
of primary importance not only to characterize the thermal stability of amorphous alloys 
against crystallization but also to investigate the fundamental aspect of the processes of 
nucleation and growth, which are of relevance for the understanding glass formation. 

Three types of crystallization reactions that may occur during devitrification can be 

classified, depending on their chemical compositions (Köster & Herold, 1981; Lu, 1996): 

polymorphous, eutectic and primary crystallization. Fig. 2 shows a hypothetical free energy 

diagram to illustrate the crystallization reactions during crystallization. This schematic is 

essentially a representation of the variation of free energy with the chemical compositions of 

the amorphous phase and various crystalline phases (in this case, two crystalline phases, a 

solid solution ǂ and a compound ǃ, are included) at a chosen annealing temperature. 

2.1 Polymorphous crystallization 

In polymorphous crystallization, an amorphous solid crystallizes into a single crystalline 

phase with different structure but with same chemical composition as the amorphous phase. 

This reaction can only occur in concentration ranges near to those of stable compounds (C1 

in Fig. 2) or pure elements (C2) and needs only single jumps of atoms across the 

crystallization front. The polymorphous crystallization reaction (reaction (1) or (2)) may 

produce a single compound phase (ǃ) or a supersaturated solid solution phase (ǂ), as shown 
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in Fig. 2. The crystallization mechanisms of Fe33Zr67 (Spassov & Koster, 1993), Ni33Zr67 (Lu et 

al., 1996), Co33Zr67 (Nicolaus et al., 1992) and Zr50Co50 (Köster & Meinhardt, 1994) 

amorphous alloys are the typical polymorphous crystallization. 

 

Fig. 2. Hypothetical free energy diagram to illustrate the crystallization of amorphous alloys. 
Reprinted from (Lu, 1996), with permission from Elsevier. 

2.2 Eutectic crystallization 

In case of eutectic crystallization, amorphous phase crystallizes into two crystalline phases 
simultaneously (e.g. reaction (3) in Fig. 2, ǂ + ǃ), during which two phases grow in a 
coupled fashion. This is similar to the eutectic crystallization of liquids. The reaction has the 
largest driving force and the overall composition of the two phases remains the same as that 
of the amorphous matrix. The eutectic crystallization can occur within a concentration range 
around the equilibrium eutectic composition rather than a specific eutectic composition as 
observed in conventional crystallization. A possible reason might be that the crystalline 
material contains a large amount of interface that may have higher energetic configurations 
and thus allows a relatively wide composition range (Lu, 1996). For example, e.g. in the Ni-P 
binary system eutectic crystallization occurs within 18.2–20.0 at.% P (i.e. amorphous  Ni + 
Ni3P), where the equilibrium eutectic composition is 19.0 at.% (Dong et al., 1994). 

2.3 Primary crystallization 

In primary crystallization, amorphous phase crystallizes into a phase with different 
composition (C4 in Fig. 2) in the first step (this can be either a supersaturated solid solution 
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or an intermetallic compound) embedded in an amorphous matrix (amorphous phase (C4) = 
ǂ + amorphous phase’ (C3)). During this reaction, a concentration gradient occurs at the 
interface between the precipitate and the matrix until the reaction reaches the metastable 
equilibrium. The residual amorphous phase (with the new concentration C3) crystallizes, in 
the second step, into crystalline phases through the mechanism of either the eutectic or 
polymorphous crystallization. The crystallization mechanisms of most of Al-based, e.g. 
Al88Ni4Y8 (Jiang et al., 1997), and Fe-based amorphous alloys, e.g. Fe73.5Si13.5B9Nb3Cu1 
(Finemet) (Hono et al., 1992), are typically primary crystallization (Foley, et al., 1997; Kelton, 
et al., 2003). The control of primary crystallization behaviors could lead to nanocrytalline–
amorphous composites with special mechanical or functional properties (see Section 5.1).  

3. Influences on crystallization of amorphous alloys 

The mechanisms and products of crystallization of amorphous alloys are influenced by both 
inherent (e.g. composition, oxygen) and extraneous (e.g. preparation method, pressure, etc) 
factors. 

3.1 Effect of chemical composition 

During the searching for strong glass-forming alloys, the effect of composition on the 

crystallization behavior has been extensively studied in a variety of amorphous alloys, 

despite of the preparation methods (Suryanarayana & Inoue, 2011). Two examples are listed 

in this section to show how the chemical compositions of amorphous alloys influence the 

crystallization mechanism and crystallization products. 

Zhang et al. (Zhang, et al., 2002) has investigated the addition of Al on the glass formation 

and crystalliztion in the ball-milled amorphous Ti50(Cu0.45Ni0.55)44-xAlxSi4B2 (x=0, 4, 8 and 12) 

alloys. Al additions were introduced to simultaneously replace part of the Cu and Ni in 

Ti50Cu20Ni24Si4B2 (Zhang & Xu, 2002) to further reduce the density of the resulting alloys and 

improve the thermal stability of the supercooled liquid. The Ti-based amorphous alloy 

powders prepared through this solid-state process exhibit a well-defined glass transition 

and a supercooled liquid region. Al addition has changed the crystallization mechanims and 

crystallizaiton products of the amoprhous Ti50Cu20Ni24Si4B2 alloy. Fig. 3 (a) displays the 

differential scanning calorimetry (DSC) scans for the as-milled samples with different Al 

contents. In all cases, an endothermic signal associated with the glass transition is evident. 

As see from Fig. 3 (a), the onset of glass transition temperature (Tg) is apparently insensitive 

to the change in the overall alloy composition. With increasing Al substitution, the 

exothermic reaction due to crystallization occurs at higher temperatures and the single-step 

crystallization event changes to a two-step process. X-ray diffraction (XRD) has been used to 

identify the structural changes associated with the exothermal events at several different 

temperatures, as marked by dots in the DSC traces in Fig. 3 (b). For x = 0, the XRD pattern at 

777 K crystallization peak and after the crystallization event (810 K) showed that the 

amorphous phase transformed into the cubic NiTi phase and an unknown phase. The same 

products were found for x = 4 after crystallization, as shown in the XRD pattern at 820 K. 

Such a transition can be regarded as a eutectic crystallization, by which the amorphous 

phase simultaneously transforms into more than two phases in one step (as stated in Section 

2.2). For x = 8 and x = 12, on the other hand, crystallization is completed in two steps. Fig. 3 
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(b) indicates that in addition to the NiTi phase precipitated in the first stage of the 

crystallization, the second crystallization peak in the DSC traces arises from the appearance 

of the Ti2Ni intermetallic compounds in the final crystallization products. 

 

Fig. 3. (a) DSC scans and (b) the corresponding XRD patterns measured at room 
temperature after heating to different temperatures in DSC at a heating rate of 40 K/min for 
the mechanically alloyed Ti50(Cu0.45Ni0.55)44-xAlxSi4B2 (x=0, 4, 8, 12) powders. Reprinted from 
(Zhang, et al., 2002), with permission from Cambridge University Press. 

The glass formation and crystallization behavior in multicomponent Zr-based alloys have 

been intensively investigated. In general, multicomponent Zr-based alloys can be used for 

the production of fully amorphous bulk samples with dimensions up to centimeter order, or 

for the formation of bulk nanostructured materials. However, the phase selection upon 

crystallization is strongly affected by the chemical composition of the amorphous phase. In 

order to obtain nanostructured materials from amorphous precursors (see Section 5.1), 

amorphous specimens are typically annealed at temperatures within the supercooled liquid 

region (the temperature region between onset glass transition temperature, Tg, and the onset 

of crystallization, Tx,) or close to Tx. Eckert et al (Eckert et al., 2001) has investigate the 

crystallization behaviors of Zr-based BMGs and produce bulk nanostructured alloys by 

partial crystallization of the Zr-based BMGs precursors. Fig. 4 (a) displays the DSC scans for 

as-cast Zr62-xTixCu20Al10Ni8 glassy alloys (x = 0, 3, 5, and 7.5). Zr62Cu20Al10Ni8 crystallizes via 

one sharp exothermic peak to form several intermetallic compounds. Upon Ti addition, the 

crystallization mode changes toward a double-step process. With increasing Ti content, the 

first DSC peak shifts to lower temperatures and the enthalpy related to the second 

exothermic peak decreases. The samples were isothermally annealed for different times 

below Tx for further study of the crystallization process. The crystallization products after 
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annealing were investigated by XRD (Fig. 4(b)). Zr62Cu20Al10Ni8 transforms into cubic NiZr2-

type and tetragonal CuZr2-type compounds. Annealing the alloy with x = 3 leads to 

primary precipitation of an icosahedral quasicrystalline (QC) phase with spherical 

morphology and a size of about 50 to 100 nm. For x = 5, the diffraction peaks are weaker in 

intensity and broader because the precipitates are as small as about 5 nm. For x = 7.5, the 

precipitates are about 3 nm in size. At first glance the XRD pattern (Fig. 4 (b)) after annealing 

displays no obvious reflections but only broad amorphous-like maxima. However, careful 

examinations of the annealed state by high intensity synchrotron radiation and/or by 

transmission electron microscopy (TEM) (Eckert, et al., 2001) clearly shows differences in 

scattering intensity compared to the as-cast state indicates the precipitation of a metastable 

cubic phase with a grain size of ~2 nm coexisting with a residual amorphous phase. 

 

Fig. 4. (a) DSC scans and (b) corresponding XRD patterns after isothermal annealing for the 
Zr62-xTixCu20Al10Ni8 (x = 0, 3, 5, and 7.5) amorphous alloys: x = 0, annealed at 723 K for 30 
min; x = 3, annealed at 703 K for 5 min; x = 5, annealed at 683 K for 30 min and x = 7.5 
annealed at 688 K for 40 min. Reprinted from (Eckert, et al., 2001), with permission from 
Elsevier. 

3.2 Effect of oxygen 

Although Zr-based BMGs have shown high glass-forming ability, high thermal stability and 

excellent mechanical properties, the glass-forming ability of these BMGs appears to be 

significantly affected by the contamination of oxygen either from the raw materials or from 

the processing (Inoue et al., 1995a; Kubler et al., 1998; Lin et al., 1997). The investigation of 

the influence of oxygen on the crystallization behavior of Zr-based amorphous alloys 

www.intechopen.com



 
Advances in Crystallization Processes 

 

192 

(Altounian et al., 1987) showed that the oxygen induces the formation of metastable face-

centered cubic (fcc) NiZr2, thereby reducing the thermal stability of the Zr-Ni amorphous 

alloys. Extensive studies have proved that oxygen enhances the crystallization reaction in Zr-

based amorphous alloys. For example, Lin et al (Lin, et al., 1997) reported for undercooled Zr–

Ti–Cu–Ni–Al molten liquids that oxygen addition strongly affects crystal nucleation and can 

dramatically increase the necessary critical cooling rate for glass formation, thus limiting bulk 

glass formation and reducing the maximum attainable sample thickness. Over the range of 

oxygen content studied (300 – 5000 at. ppm), the time–temperature-transformation curves vary 

roughly by two orders of magnitude along the time axis. In other words, oxygen 

contamination ranging up to 0.5 at.% can increase the necessary cooling rate for glass 

formation by two orders of magnitude (Lin, et al., 1997). Köster et al. (Köster et al., 1996; Köster 

et al., 1997) reported the formation of an icosahedral phase during primary crystallization in 

Zr65Cu17.5Ni10Al7.5 amorphous alloys, whereas such a crystallization process was not reported 

in the same alloy composition by Zhang et al. (Zhang et al., 1991), indicating that the formation 

of quasicrystals is induced by the oxygen contamination in the alloy. Eckert and his co-

workers (Eckert et al., 1998; Gebert et al., 1998) also reported the strong influence of the oxygen 

contamination on the crystallization kinetics and products in Zr65Cu17.5Ni10Al7.5 amorphous 

alloy, where supercooled liquid region decreases with increasing oxygen content due to the 

change in crystallization sequence from a single- to a double-step process. It was also shown 

that an fcc NiZr2 phase is formed at a higher oxygen level in the Zr–Cu–Ni–Al system. 

Therefore, oxygen contamination is of primary importance for the glass formation and 

crystallization behavior of Zr-based amorphous alloys. 

 

Fig. 5. XRD patterns of the Zr65-xCu27.5Al7.5Ox bulk amorphous alloys with (a) x = 0.14 and  
(b) x = 0.82 after annealing at 673 K for different durations. Reprinted from  
(Murty, et al., 2000), with permission from Elsevier. 

Murty et al. (Murty, et al., 2000) investigated the influence of oxygen on the crystallization 
behavior of melt-spun amorphous Zr65-xCu27.5Al7.5Ox (x = 0.14, 0.43 and 0.82) ribbons. DSC 
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results showed that the Tg increases with the addition of oxygen. The base alloy containing 
the lowest amount of oxygen (x = 0.14) crystallizes in a single step. The addition of oxygen 
significantly decreases the width of supercooled liquid region (∆Tx) from 85 K for x = 0.14 to 
58 K for x = 0.82. The decrease in ∆Tx is partly due to the increase in Tg with increasing 
oxygen and also due to the appearance of a pre-crystallization peak in the oxygen-
containing alloys before the main crystallization event. The base alloy heated to 673 K (in 
supercooled liquid region) shows an amorphous nature. In the x = 0.82 alloy, precipitation 
of spherical icosahedral particles in nanocrystalline state was observed within 10 min 
annealing at 673 K. Then it crystallizes to Zr2(Cu,Al) when heated to 723 K. No other phase 
is present in the alloy heated up to 753 K. The x = 0.82 alloy heated to 673 K has a similar 
trend to that of the base alloy. However, the alloy heated near the pre-crystallization peak 
(708 K) led to the presence of an icosahedral phase along with a small amount of Zr2(Cu,Al). 
Only Zr2(Cu,Al) is present in the alloy heated to 723 and 753 K. The base alloy with x = 0.14 
remains amorphous for up to 10 min at 673 K, after which the formation of Zr2(Cu,Al) was 
observed. The XRD patterns in Fig. 5 (a) clearly indicate the formation of Zr2(Cu,Al) beyond 
10 min of annealing at 673 K. No other phase was identified even after a longer annealing 
for 60 min (Fig. 5 (a)). XRD patterns of the alloy heat treated at 673 K (Fig. 5 (b)) show that 
the icosahedral phase starts forming after 10 min and persists for up to 15 min, beyond 
which the icosahedral phase transforms to Zr2(Cu,Al). 

The mechanism of the oxygen-induced precipitation of metastable fcc Zr2(Cu,Al) and 
icosahedral quasicrystalline phases is rationalized by considering the effect of oxygen on the 
nucleation process. The high thermal stability of multicomponent Zr-based amorphous 
alloys is generally attributed to the difficulty of precipitation of crystalline compounds from 
the undercooled liquid. The combination of elements with significantly different atomic 
sizes and negative enthalpies of mixing leads to a homogeneously mixed dense random 
packed structure of the liquid resulting in a large liquid–solid interface energy (Inoue, 2000). 
If the nucleating phase has a different composition with respect to the homogeneous 
undercooled liquid, then the nucleation of the phase requires substantial atomic 
rearrangement (Eckert, et al., 1998). The driving force for the polymorphous crystallization 
is ∆Gtotal. However, if the icosahedral phase is stabilized by oxygen addition, the driving 
force for the primary crystallization of the icosahedral phase can be comparable to or higher 
than that for the polymorphous crystallization, ∆Gtotal. In such a case, icosahedral phase 
would initially precipitate from the amorphous matrix by the primary crystallization. The 
free energy reduction is accompanied with this crystallization and there is still a driving 
force to form Zr2(Cu,Al) from the icosahedral phase and/or the remaining amorphous 
phase in the second stage. The formation of the icosahedral phase would be preferable if the 
driving forces for the polymorphous crystallization and the primary crystallization are 
comparable, because it is believed that icosahedral clusters are present in the amorphous 
phase, and these would act as nuclei for the icosahedral phase primary crystals. If such 
icosahedral clusters are stabilized by the presence of oxygen, the oxygen-enriched alloy 
would be favour to form an icosahedral phase by primary crystallization. The differences in 
the sequence of the phase formation in these alloys with x = 0.14 and 0.82 are illustrated 
schematically in Fig. 6, in which the darkness of the gray scale corresponds to the 
concentration of Zr. In the base Zr–Cu–Al and Zr–Cu amorphous alloys, crystallization 
proceeds by polymorphous reaction without change in composition. On the other hand, in 
the oxygen-containing ternary alloys, the first stage of crystallization occurs by primary 
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crystallization of the icosahedral phase. The icosahedral phase is enriched in Zr and O and 
depleted in Cu and Al. When Zr2(Cu,Al) precipitates peritectically, the concentration of the 
Zr2(Cu,Al) particles becomes the same as the initial alloy composition. When this reaction is 
complete, only the grains of single-phase Zr2(Cu,Al) remain. 

 

Fig. 6. Schematic diagrams showing the evolution of microstructure during crystallization of 
Zr65-xCu27.5Al7.5Ox amorphous with (a) x = 0.14 and (b) x = 0.82. Reprinted from (Murty, et 
al., 2000), with permission from Elsevier. 

3.3 Effect of sample preparation method 

In general, when the transformation temperatures (e.g. Tg and Tx, etc) of an amorphous alloy 
are measured by DSC, there is no appreciable difference between in the amorphous samples 
prepared by direct melt cooling from molten liquid (e.g. by melt spinning, casting, water 
quenching, etc). Table 1 summarizes the transformation temperatures determined from DSC 
for some typical amorphous alloys prepared by different routes. Furthermore, there is no 
difference in the transformation temperatures of the amorphous rods with different sizes. 
As seen from Table 1, same transformation temperatures are obtained in the 
Mg65Cu15Y10Ag10 amorphous rods in 6 mm diameter prepared by injection casting and in 10 
mm diameter prepared by squeeze casting. 
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Composition Synthesis route 
Tg 
(K) 

Tx 
(K) 

∆Tx 
(K) 

Reference 

Cu50Zr50 
Cu-mold casting 675 732 57 (Inoue et al., 2005) 

 Melt spinning 686 744 58 

Cu60Zr30Ti10 

Cu-mold casting 

(2.5 mm∅ rod) 
714 758 44 

(Jiang et al., 2003a) 

Melt spinning 711 754 43 

Pd40Ni40P20 (fluxed)†

Water quenching 

(7 mm∅ rod) 
576 678 102 (He et al., 1996) 

Melt spinning 590 671 91 (Inoue, et al., 1997) 

Pd81Si19 (fluxed)† 
Air cooling 638 696 58 

(Yao & Ruan, 2005) 
Melt spinning 633 675 42 

Mg65Cu15Y10Ag10 

Melt spinning 428 469 41 

(Kang et al., 2000) 

Injection casting 

(6 mm∅ rod) 
428 469 41 

Squeeze casting 

(10 mm∅ rod) 
428 469 41 

Pd40Cu30Ni10P20 
(fluxed) 

Melt spinning 572 670 98 

(Inoue, et al., 1997) 
Pd40Cu30Ni10P20 

(unfluxed) 
Melt spinning 572 663 91 

Zr65Al7.5Ni10Cu17.5 

Water quenching 

(16 mm∅ rod) 
625 750 125 

(Inoue et al., 1993b) 

Melt spinning 622 749 127 

Zr55Ni25Al20 

Planar flow casting 
(30 μm thick ribbon) 

805 820 15 

(Illeková et al., 1997) 
Water quenching 

(9 mm∅ rod) 
738 795 57 

La55Al25Ni10Cu10 

High-pressure die 

casting (9 mm∅ rod) 
460 527 67 

(Inoue et al., 1993a) 

Melt spinning 480 550 90 

Ti50Cu35Ni12Sn3 
Ball Milling 652 717 65 

(Zhang, et al., 2005a) 
Melt spinning 675 739 64 

Ti50Cu18Ni22Al4Sn6 
Ball Milling 705 771 66 

(Zhang, et al., 2005a) 
Melt spinning 721 789 68 

† heating rate is 0.33 K/s. 

Table 1. Comparison of the transformation temperatures determined from DSC at heating 
rate is at 0.67 K/s (if not indicated) for some typical amorphous alloys prepared by different 
methods. Tg: glass transition temperature; Tx: onset crystallization temperature; ∆Tx: the 
width of supercooled liquid region, which is equal to Tx – Tg. 

Fig. 7 compares the DSC curves for the [(Fe0.8Co0.2)0.75B0.2Si0.05]96Nb4 bulk amorphous alloy 
rods with different diameters up to 2.5 mm with the data for melt-spun ribbon of the same 
composition. No appreciable difference is recognized in the transformation temperatures or 
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crystallization process between the melt-spun ribbon and cast rod samples, in spite of an 
increase in Curie temperature (Tc) with the increase of diameter. All samples exhibit a 
distinct glass transition at 830 K, followed by crystallization at 880 K, resulting in a large 
supercooled liquid region of 50 K. Similar results have been obtained in a number of bulk 
glass-forming alloy systems (Suryanarayana & Inoue, 2011). 

 

Fig. 7. DSC curves at a heating of 0.67 K/s for [(Fe0.8Co0.2)0.75B0.2Si0.05]96Nb4 bulk amorphous 

alloy rods (1.5, 2 and 2.5 mm∅) as well as the melt-spun amorphous alloy ribbon of the 
same composition. Reprinted from (Inoue et al., 2004a) and (Suryanarayana & Inoue, 2011), 
with permission from Elsevier. 

Note that, although no appreciable difference in transformation temperatures has been 

observed in the amorphous alloys prepared by direct melt cooling from molten liquid, some 

alloys do have shown some differences in the transformation temperatures in the 

amorphous ribbon and rod samples, even though they have an identical chemical 

composition. As seen from Table 1, the Zr55Ni25Al20 glassy alloys prepared by two different 

solidification methods (one is planar flow casting with cooling rate of about 105 K s-1 and the 

other is water quenching with a solidification rate of about 102 K s-1) showed a significant 

difference in the transformation temperatures, i.e. 69 K difference in Tg and 15 K in Tx 

(Illeková, et al., 1997). By comparing the enthalpy of structural relaxation in DSC curves and 

the full width at half maximum (FWHM) of the first diffuse peak in XRD patterns, it is 

concluded that the samples produced from both methods represent the same amorphous 

state, but the amorphous ribbon sample contains a higher degree of short-range order (SRO) 

(Illeková, et al., 1997). 

A number of investigations have reported a distinct difference in the transformation 
temperatures between the amorphous alloys prepared by melt cooling and that formed by 
solid-state amorphization techniques (e.g. ball milling or mechanical alloying). Fig. 8 
compares the structural feature and transformation temperatures for Ti50Cu35Ni12Sn3 and 
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Ti50Cu18Ni22Al4Sn6 alloys prepard by ball-milling (BM) and melt-spinning (MS). The broad 
diffuse maximum for the amorphous phase formed by BM is determined to be 26.89 nm-1 for 
Ti50Cu35Ni12Sn3 and 26.64 nm-1 for Ti50Cu18Ni22Al4Sn6, respectively. They are well in 
agreement with the values of the amorphous alloys prepared using MS method, Qp = 26.81 
nm-1 for Ti50Cu35Ni12Sn3 and 26.67 nm-1 for Ti50Cu18Ni22Al4Sn6, respectively. It implies that 
for a given alloy, the amorphous phase obtained using the different preparation methods is 
very similar in the all cases. However, both Tg and Tx of the BM alloy shift towards a lower 
temperature, with respect to the MS alloys, by about 20 K for Ti50Cu35Ni12Sn3 and 16-18 K for 
Ti50Cu18Ni22Al4Sn6, respectively, even though a very close ∆Tx is obtained in the BM and MS 
amorphous alloys for each phases. Furthermore, the heat of crystallization in the BM 
amophous state is slightly lower than that in MS one for both alloys. The difference in the 
transformation temperaturees betwen the BM and MS amorphous phase is likely caused by 
the minor difference in the composition, oxygen content, and/or short-range order in the 
amorphous phases formed by different processing route. 

 

Fig. 8. (a) XRD patterns and (b) DSC curves at a heating of 0.67 K/s for Ti50Cu35Ni12Sn3 and 
Ti50Cu18Ni22Al4Sn6 alloys prepard by ball-milling (BM) and melt-spinning (MS). Reprinted 
from (Zhang, et al., 2005a), with permission from Elsevier. 

3.4 Effect of pressure 

A few work has investigated the effect of high pressure on the crystallization of amorphous 

alloys, e.g. see the references (Jiang, et al., 2000; Jiang, et al., 2002; Jiang, et al., 2003b; Ye & 

Lu, 1999; Zhuang et al., 2000). In general, the crystallization temperature of an amorphous 

alloy increases with increasing pressure. However, the rate and the range of such 

temperature increase are closely related to the alloy systems. Fig. 9 shows the pressure 

dependence of the crystallization temperatures (i.e. Tx1 and Tx2) for the Al89La6Ni5 
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amorphous alloy. Both Tx1 and Tx2 firstly decrease with the increase in pressure in the range 

of 0–1 GPa and then increase with pressure increasing up to 4 GPa. Such changes in 

crystallization temperature with pressure is related to the competing process between the 

thermodynamic potential barrier and the diffusion activation energy under pressure 

(Zhuang, et al., 2000). 

 

Fig. 9. Pressure dependence of the crystallization temperatures for Al89La6Ni5 amorphous alloy. 
Reprinted from (Zhuang, et al., 2000), with permission from American Institute of Physics. 

Crystallization of an amorphous alloy is normally regarded as a process proceeding by 
nucleation and subsequent growth of crystals. During the initial stage of nucleation of 
crystals in the amorphous phase, the effect of pressure on the crystallization kinetics is 
associated with the atomic diffusion process and the volume change effect. The 
crystallization temperature(s) of an amorphous alloy may be governed by the 
thermodynamic potential barrier of nucleation and diffusion activation energy. According to 
crystallization kinetics theory, the nucleation rate I can be written as, 

 0exp *
nI I [ ( G Q ) / kT ]= − ∆ +   (1) 

where I0 is a constant, ∆G* is the free energy required to form a nucleus of the critical size, 

i.e., the thermodynamic potential barrier of nucleation, Qn is the activation energy for the 

transport of an atom across the interface of an embryo, and k is the Boltzmann’s constant. 

The sum ∆G* + Qn is called the nucleation work. 

In the Al89La6Ni5 alloy, ∆G* is much larger than Qn and the dominant factor at low pressures 

(0–1 GPa). Thus, the nucleation work decreases with increasing pressure, leading to an 

enhancement of nucleation rate I and a reduction of the crystallization temperature with 

increasing pressure, as shown in Fig. 9. With increasing pressure, ∆G* rapidly decreases 

while Qn increases, resulting in atomic diffusion a dominant factor in the nucleation process. 

Hence, the nucleation work ∆G* + Qn increases with increasing pressure. Consequently, 

nucleation rate I decreases with the increase in pressure and an enhancement of 
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crystallization temperature is expected, as observed for the Al89La6Ni5 amorphous alloy in 

the pressure range of 1–4 GPa in Fig. 9. 

In addition to the aforementioned factors, the crystallization temperature(s) of an 
amorphous phase significantly depend on the heating rate used in DSC measurement 
(Kissinger, 1957). In contrast, the heating rate has a slight influence on the glass transition 
temperature. All these transformation temperatures of amorphous alloys increase with 
increasing the heating rate that is used in DSC. Therefore, the heating rate is usually 
indicated when describing the transformation temperatures of an amorphous phase.  

4. Kinetics of crystallization  

The kinetics of crystallization of amorphous alloys has been extensively studied by using 
differential scanning calorimetry (DSC) or differential thermal analysis (DTA), as the 
structural change in a material upon heating or cooling is indicated by a defection or peak in 
the DSC/DTA curve. The kinetic behavior associated with a structural change leading to an 
alternative metastable state in an amorphous alloy above its glass transition is a key subject 
since it provides new opportunities for structural control by innovative design and 
processing strategies. Section 5 will show some application examples by controlling 
crystallization from amorphous precursors in order to tailor microstructure for excellent 
properties. Such crystallization control requires fundamental understanding of the specific 
mechanisms influencing structural transformations. 

In general, crystallization is a thermally activated reaction, either by isothermal or 
isochronal heating. The transformation rate during a reaction could be described as 

  ( ) ( )d / dt f k Tα α=  (2) 

where ǂ is the fraction transformed. The temperature dependent function is generally 
assumed to follow an Arrehnius type dependency 

  0expk k ( E / RT )= −  (3) 

where k0 is the reaction constant, R is the gas constant and E is the activation energy. In 
general, the reaction function f(ǂ) is unknown. From the above equations it follows that for 
transformation studies by performing studies at a constant temperature T, E can be obtained 
as below: 

  ( )f iln t E / RT c= +   (4) 

where tf is the time needed to reach a certain fraction transformed, and ci is a constant, 
which depends on the reaction stage and on the kinetic model. Thus, E can be obtained from 
two or more experiments at different T. For isothermal experiments k(T) is constant, the 
determination of f(ǂ) is relatively straightforward, and is independent of E. For non-
isothermal experiments, the reaction rate at all times depends on both f (ǂ) and k (T), and the 
determination of f(ǂ), k0 and E (the so-called kinetic triplet) is an interlinked problem. A 
deviation in the determination of any of the three parameters will cause a deviation in the 
other parameters of the triplet. Over the past decades a variety of non-isothermal methods 
have been proposed. Among them, the Kissinger method (Kissinger, 1957) is widely used in 
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the isochronal method for the calculation of the activation energy for the crystallization. A 
higher value of the activation energy is generally interpreted as a measure of the high 
stability and resistance of the amorphous phase towards crystallization. The activation 
energy for crystallization could be determined using 

  ( )2
p pln / T E / RT Cβ = − +   (5) 

where ǃ is the heat rates that used to heating amorphous samples in DSC, Tp is the 

temperature corresponding to the peak of the crystallization event (exothermic peak), R is 

the gas constant and C is a constant. Thus, by plotting ( )2
pln / Tβ   against 1/Tp, one could 

obtain a straight line whose slope is −E/R, from which the activation energy for the 

transformation, E, can be calculated. 

On the other hand, kinetic data on first-order transformations are often obtained by 

isothermal analysis. The isothermal crystallization kinetics of the amorphous phase can be 

usually analyzed in terms of the generalized theory of the well-known Kolmogorov-

Johnson-Mehl-Avrami (JMA) equation (Christian, 2002) for a phase transition: 

 ( ) 1 exp n
cx t,T [ k(t ) ]τ= − − −  (6) 

or 

 ( )( )1 cln ln x t ,T n lnk n ln(t )τ − − = + −   (7) 

where xc(t,T) is the volume fraction of crystallized phases after annealing time t, Ǖ is the 
incubation period of transient nucleation, which is the time period that must elapse prior to 
formation of nuclei, k is a temperature-dependent kinetic parameter and n is the Avrami 
exponent, which is a significant parameter to describe the crystallization mechanism, such 

as nucleation and growth behavior, and varies from 1 to 4 (Doherty, 1996). For diffusion-
controlled growth, one may have the following cases: 1 < n < 1.5 indicates growth of 
particles with an appreciable initial volume; n = 1.5 indicates growth of particles with a 

nucleation rate close to zero; 1.5 < n < 2.5 reflects growth of particles with decreasing 
nucleation rate; n = 2.5 reflects growth of particles with constant nucleation rate, and n > 2.5 
pertains to the growth of small particles with an increasing nucleation rate (Doherty, 1996). 
A JMA plot of ln[-ln(1- xc(t,T))] vs. ln(t-τ) yields a straight line with slop n and intercept nlnk. 

Using a DSC, operated under isothermal mode, phase transformations can be distinguished 
unambiguously in terms of those occurring only by growth of existing nuclei or those 
occurring by nucleation and growth. For a transformation resulting in grain growth or 

structural relaxation results in a monotonically decreasing signal, a “bell-shape“ exothermic 
curve is the classical signature for a nucleation-and growth transformation (Chen & 
Spaepen, 1991). 

The transformed volume fraction, x, during the isothermal process at a particular 
temperature, T, can then be determined by measuring the area under the exothermic curve. 
It is assumed that the volume fraction transformed, x, up to any time, t, is proportional to 
the fractional area of the exothermic peak or the integrated enthalpy. Therefore, in the 
isothermal DSC scans, the transformed volume fraction, xc(t,T), up to any time t is 
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proportional to the fractional areas of the exothermic peak. Hence, the crystallized volume 
fraction during the isothermal annealing process can be accurately determined by 
measuring the area of the exothermic peak. The crystallized fractions xc(t,T) after time t at a 
certain temperature T for amorphous phase could be derived from the isothermal DSC 
curves by assuming that xc(t,T) is proportional to the integrated enthalpy 

 ( ) ( ) ( )
0 0

t

cx t ,T h t ,T dt / h t ,T dt
∞

=    (8) 

where h(t,T) is the enthalpy release. Using the JMA equation, the reaction rate as well as the 
parameters governing the nucleation rate and/or the growth morphology can be obtained. 
As shown before, it is inappropriate to describe the crystallization mechanism by using the 
average Avrami exponent derived from the non-linear JMA plot in the whole range of 
volume fraction. An alternative method of examining the isothermal DSC results is to 
evaluate the local value of the Avrami exponent, Nloc, which is defined as (Calka & 
Radlinski, 1988) 

 ( )( )1 lnloc cN ln ln x t ,T / (t )τ = ∂ − − ∂ −   (9) 

as a function of crystallized volume fraction xc(t,T). Such a differential Avrami plot can 
highlight changes in reaction kinetics during the progress of crystallization.  

The isothermal activation energy for the crystallization process can also be determined in 
terms of the incubation period Ǖ at different temperatures during isothermal annealing, 
using the Arrhenius equation for a thermally activated process (Luborsky, 1977): 

 0 iso( E / RT )τ τ= −  (10) 

where Ǖ0 is a constant and Eiso is the activation energy for crystallization. The plot of lnǕ vs. 
1/T yields a straight line. From the slope, the activation energy Eiso for crystallization of an 
amorphous phase is calculated. 

 

Samples 
Temperature 

range (K) 
n 

xc(t,T) 
range 

Eiso 
(kJ/mol) 

Ex 
(kJ/mol) 

Ti50Cu18Ni22Al4Sn6 735-755 2.5-3.3 0.05-0.60 399±55 392±17 
with 10 vol.% TiC 723-750 2.1-2.8 0.05-0.60a 384±10 382±22 

a 0.05-0.40 was used for the composite at 723 K. 

Table 2. Avrami exponent (n) and activation energy of crystallization (Exτ) in terms of 
incubation time during isothermal annealing and the activation energy of crystallization 
(Eiso) determined from a Kissinger plot for the ball-milled amorphous Ti50Cu18Ni22Al4Sn6 
alloy and its composite containing 10 vol.% TiC. Reprinted from (Zhang, et al., 2006a), with 
permission from American Institute of Physics. 

Table 2 compares the active energy of crstallization estimated by the aforementioned two 
methods for the ball-milled amorphous Ti50Cu18Ni22Al4Sn6 alloy and its composite 
containing 10 vol.% TiC (Zhang, et al., 2006a). As seen from Table 2, there are no essential 
differences in the activation energies between those evaluated using the Arrhenius equation 
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in isothermal annealing and those obtained by isochronal annealing as revealed by 
Kissinger analysis for the Ti-based amorphous alloy with and without TiC particles. The 
activation energy of crystallization determined from the Kissinger analysis and the 
Arrhenius equationfor both powders show that the composite has slightly lower activation 
energy. The addition of 10 vol.% TiC particles into the Ti-based amorphous alloy may 
slightly affect the crystallization kinetics of the amorphous phase and the TiC particles may 
act as potential heterogeneous nucleation sites. 

5. Crystallization control for applications 

5.1 Nanocrystalline alloy created from amorphous precursor via partial crystallization 

The subject of preparation of nanostructured alloys by nanocrystallization of amorphous 
solid precursors has been reviewed by Lu (Lu, 1996) and by McHenry et al. (McHenry et al., 
1999). The formation of nanocrystalline structures during crystallization of amorphous 
alloys is of a great interest from both the fundamental and the technical point of view. 
Fundamental studies of the mechanisms of crystal nucleation and growth as well as kinetics 
of transformation will to a certain degree aid in tailoring the structure for excellent physical 
(e.g. magnetic properties) and mechanical properties of nanostructured materials attractive 
for practical applications. In general, this method has extensively applied for those 
amorphous alloys where ductile solid solution phase(s) or functional phase(s) is formed 
through primary crystallization. Amorphous alloys of appropriate chemical compositions, 
crystallized at temperatures above their primary crystallization temperature but below the 
secondary crystallization temperature, can yield nanocrystalline grains dispersed in an 
amorphous matrix. Three important groups of nanocrystalline materials produced by 
primary crytallization from amorphous alloy precursors can be distinguished: 
constructional Al-based alloys (Kim et al., 1990; Latuch et al., 1997; Zhong et al., 1997), 
magnetically soft (Lachowicz & Slawskawaniewska, 1994; Makino et al., 1997; Suzuki et al., 
1990; Suzuki et al., 1993; Willard et al., 1998) and magnetically hard (Inoue et al., 1995b; 
Manaf et al., 1993; Takeuchi et al., 1997; Withanawasam et al., 1994) Fe-based alloys. 
Examples of the alloys compositions and main aspects of their structure are presented in 
Table 3. There are two basic parameters characterizing structure of these materials: 
crystallite diameter, D, and volume fraction, Vcr, of nanocrystals. The optimum amount of 
nanocrystalline phase differs from each group. In the case of magnetically hard 
nanocrystalline materials, full (Manaf, et al., 1993; Takeuchi, et al., 1997) or almost full 
(Inoue, et al., 1995b) crystallization is required. For constructional and magnetically soft 
nanocrystalline materials the optimum mechanical and magnetic properties, respectively, 
are obtained after partial crystallization of their amorphous precursors (Inoue et al., 1988), 
which means that they are dual-phase materials composed of nanocrystals and an 
amorphous matrix. To preserve ductility in Al-based nanocrystalline alloys, Vcr should not 
exceed 20% in ternary Al–Y–Ni (Inoue, et al., 1988) and 40% in quaternary Al–Y–Ni–Cu 
(Latuch, et al., 1997) alloys. Mechanical properties of these materials can be explained and 
predicted using mixture model based on the volume fractions of amorphous matrix and 
nanocrystals, proposed by Kim et al. (Kim et al., 1999). 

Inoue and Kimura (Inoue & Kimura, 2000) have summarized the microstructure and 
mechanical properties of aluminum based alloys produced by controlling the crystallization 
of amorphous alloy precursors, as shown in Fig. 10. A high mechanical strength exceeding 
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1000 MPa is achieved by the formation of an amorphous phase. The bulk nanocrystalline 
alloys, which contain a mixed structure of intermetallic compounds embedded fcc-Al matrix 
by the crystallization of Al-based amorphous phase, exhibit high mechanical strength of 
700–1000 MPa and have been commercialized as a commercial name of GIGAS. By 
controlling the crystallization of Al-based amorphous alloys, the tensile strength of the Al-
based amorphous alloys increases to 1560 MPa by the homogeneous precipitation of 
nanoscale fcc-Al particles into an amorphous phase, which is higher than the strength of 
1260 MPa by the formation of an amorphous single phase. 

 

Nanocrystalline 
materials 

Magnetically soft 
(Fe-based) 

Constructional 
(Al-based) 

Magnetically hard 
(Fe-based) 

Alloys Finemet® 
(Fe73.5Cu1Nb3Si13.5B9) 

Al–RE–TM (RE=Y, Ce, Nd, 
Sm; TM=Ni, Co, Fe, Cu) 

Fe–RE–B 

 Nanoperm® 
(Fe84Zr3.5Nb3.5B8Cu1) 

 e.g. Fe82.3Nd11.8B5.9 
Fe88Nb2Pr5B5 

 Hitperm 
(Fe44Co44Zr7B4Cu1) 

GIGAS®  

Structure Nanocrystals (bcc-Fe) 
+ Amorphous matrix 

Amorphous matrix + 
Nanocrystals (fcc-Al) 

Nanocrystals 
Fe14Nd2B (+Fe3B, 
bcc-Fe, Am) 

Sructural 
parameters 

   

Vcr 70–75%  λs ≈ 0 ≤ 40%  ductility  ≤ 100% 
D ≤ 15 nm  <K> ≈ 0 Vcr ↑, D ↓  ǔf ↑ < 25 nm 

Properties High permeability, 
low magnetic losses 

High specific strength at 
high temperatures 

High coercivity, 
high remanence 

Table 3. General characteristics of the three main groups of nanocrystalline materials 
produced by devitrification of amorphous alloys (Vcr – volume fraction of crystalline phase,  
D – diameter of nanocrystals, λs – saturation magnetostriction constant, <K> – averaged 
magnetocrystalline anisotropy, ǔf – fracture strength). Reprinted from (Kulik, 2001), with 
permission from Elsevier. 

5.2 Net-shape (micro-)forming in supercooled liquid region  

Although amorphous alloys have exhibited unique properties compared the conventional 

polycrystalline materials, the metastable nature of amorphous phase has imposed a barrier 

to broad commercial adoption, particularly where the processing requirements of these 

alloys conflict with conventional metal processing methods. In general, amorphous alloys 

are super-strong with compressive yield strengths of approximately 2 GPa and even up to 5 

GPa for some exotic bulk glass-forming alloys, as has already shown in Fig. 1. However, 

amorphous alloys suffer from a strong tendency toward shear localization upon yielding, 

which results in macroscopically brittle failure at ambient temperatures. Therefore, 

processing of amorphous alloys at ambient temperatures is extremely hard. When an 

amorphous solid is continuously heated in the supercooled liquid region the viscosity 

decreases dramatically as the alloy relaxes into the metastable equilibrium state of the 

supercooled liquid and the large viscous flowability is obtained (Bakke et al., 1995; Volkert 
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& Spaepen, 1989). Larger values of ΔTx (Tx – Tg) indicate higher metastability of the liquid 

with respect to crystallization. The considerable softening of an amorphous alloy (viscous 

flowability) in its supercooled liquid region can be used for net-shape micro-forming of bulk 

amorphous alloy components and creation of bulk amorphous alloy samples via powder 

processing of amorphous powder precursors (see Section 5.3). In order to maintain their 

unique properties, processing of an amorphous alloy requires special attention. The main 

challenge is to avoid crystallization during the processing of amorphous alloy. By utilizing 

the low viscosity and large viscous flowability, bulk amorphous alloys could be deformed 

(Inoue & Takeuchi, 2002; Nishiyama & Inoue, 1999) to various complicated shapes in the 

maintenance of good mechanical properties. For example, from a bulk amorphous 

Pd40Cu30Ni10P20 alloy rod in 6 mm diameter, the die-forging into a three-stage die with pitch 

circle diameters of 4, 5 and 6 mm and a module of 0.3 was made for 120 s at 610 K under a 

compressive stress of 10 kPa and a three-stage gear was formed. The shape and dimension  

 

Fig. 10. Summary of the microstructure and mechanical properties of aluminum based 
alloys produced from amorphous alloy precursors. Reprinted from (Inoue & Kimura, 2000), 
with permission from Elsevier. 
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of the gear agree with the inner size of the die within a scattering of ±1% (Nishiyama & 

Inoue, 1999). The utilization of viscous flow of supercooled liquid is useful for secondary 

working of the bulk amorphous alloys which can produce a final product with near-net 

shape. In addition, in the supercooled liquid region, successful joining of the Pd40Ni40P20 

bulk amorphous components has been achieved by the friction-welding method utilizing 

the viscous flowability of the supercooled liquid (Kawamura & Ohno, 2001). 

Recently, Schroers and his co-workers (Kumar et al., 2009; Schroers et al., 2007; Schroers, 
2008; 2010; Schroers et al., 2011) have used a developed novel thermoplastic forming (TPF)-
based processing to fabricate complex amorphous components. The process of TPF is also 
known as hot forming, hot pressing, super plastic forming, viscous flow working, and 
viscous flow forming. TPF takes advantage of the drastic softening of amorphous alloys upon 
heating above glass transition temperature and its thermal stability of supercooled liquid, 
which is quantified by the width of the supercooled liquid region. During TPF, the amorphous  

 

Fig. 11. Through TPF-based blow molding Blow molding with bulk metallic glasses (BMGs) 
permits hollow, thin, seamless shapes, which can include undercuts. These shapes were 
previously unachievable with any other metal processing method (A–C). The surface can be 
patterned, e.g., to reveal a hologram (D), joints can be created such as threads (F,H), and a 
second material can be joined to the BMG (E) in the same processing step than the blow 
molding. Reprinted from (Schroers, 2010), with permission from John Wiley and Sons. 
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solid is reheated into the supercooled liquid region, where it relaxes into a supercooled and 
metastable liquid before it eventually crystallizes. For a variety of BMG formers, a large 
processing window exists, which permits access to temperatures in this region on a practical 
experimental time scale in order to avoid crystallization. In general, at low temperatures a 
long processing time is available accompanied by a high viscosity. In contrast, at high 
temperatures, the viscosity is significantly reduced but, at the same time, the processing 
time is shortened. Currently, for a wide range of alloys, viscosities of 106 Pa s and lower can 
be accessed in the supercooled liquid region on a practical time scale (Schroers, 2010). For 
the highest formability of the BMG former in supercooled liquid region, optimum 
processing such as low viscosity and long processing time are required. The formability is a 
material property that reflects the maximum strain a metastable material can undergo before 
crystallization under given geometry and processing parameters. 

As a novel technique with integration of shaping, joining, and finishing into one processing 

step, TPF-based blow molding allows one to net shape complex geometries in an economical 

and precise manner, including shapes, which can not be produced with any other metal 

processing method. In particular when pre-shaped parisons are used, BMGs can be blow 

molded into shapes that were previously not achievable with any metal processing method. 

Examples of such shapes are given in Fig. 11. They include hollow seamless shapes, which 

can comprise of complex undercuts, and very large thin sections. Due to the low forming 

pressure, together with the ability to replicate smallest features, as shown in Fig. 11D, the 

dimensional accuracy that can be achieved with this process is even superior over other 

TPF-based processes. In addition, this method is capable to combine the three processing 

steps typically required for metal processing—shaping, joining, and finishing—into one step 

(Schroers, 2010). For example potential joints such as threads, as shown in Fig. 11E–H can be 

formed in the BMG during the expansion process. Surface finishes that can be achieved with 

blow molding of BMGs include mirror finish. The superior properties of BMGs relative to 

plastics and typical structural metals, combined with the ease, economy, and precision of 

blow molding, have the potential to impact society in a manner similar to the development 

of synthetic plastics and their associated processing methods. 

5.3 Bulk amorphous alloy consolidated from amorphous powder precursor  

Synthesis of three-dimensional bulk amorphous materials has been an attractive object for 
several decades, not only for its significance in basic studies of the intrinsic properties of 
bulk amorphous materials (instead of the form of powders, fibers, or ribbons), but also for 
technological applications of these advanced materials with many novel properties. In 
principle, there are two approaches to obtain bulk amorphous samples. The first one is 
direct casting of alloy melts into bulk form in amorphous state (Suryanarayana & Inoue, 
2011). An alternative approach that can potentially lead to bulk amorphous alloys is to 
exploit the viscous flow resulting from the significant decrease of the viscosity in 
supercooled liquid region. This is an especially attractive route to bulk amorphous alloys, 
especially to obtain bulk samples for the alloy systems with insufficient or limited glass-
forming ability. A number of amorphous alloys with a sizable supercooled liquid region 
have been reported (Inoue, 2000; Johnson, 1999). This opens up the possibility of preparing 
truly bulk samples through powder consolidation in supercooled liquid region. In the Zr-, 
Cu-, Fe- and Ni-based alloy systems, some successful consolidation of amorphous powders 
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with wide supercooled liquid region has been achieved by warm extrusion, spark plasma 
sintering and equal channel angular pressing (ECAP) (Choi et al., 2007; Ishihará et al., 2002; 
Itoi et al., 2001; Karaman et al., 2004; Kawamura et al., 1997; Kim et al., 2004; Kim et al., 2009; 
Lee et al., 2003; Mear et al., 2009; Robertson et al., 2003; Senkov et al., 2004; Senkov et al., 
2005; Sordelet et al., 2002; Zhang et al., 2006b; Zhang, et al., 2007a). The consolidated 
samples show almost the same thermal properties, mechanical properties, and/or soft 
magnetic properties as those of the BMGs prepared by direct melt casting from molted  

 

Fig. 12. (a) A representative DSC curve to determine the holding time (Ǖ) up to the initial 
crystallization, and (b) TTT diagram for the onset of crystallization of the amorphous 
Ti50Cu18Ni22Al4Sn6 powders heated to set temperatures at heating rate of 0.33 or 0.67 K s-1. 
The data of the onset temperature of crystallization (Tx) and the glass transition temperature 
(Tg) at the heating rate of 0.67 K s-1 are also shown. Reprinted from (Zhang, et al., 2006b), 
with permission from Elsevier. 
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liquid. Among the aforementioned consolidation methods, it has recently been shown that 
ECAP is a particular effective and novel approach used for the consolidation of amorphous 
powders. ECAP is a method for subjecting a volume fraction of materials to severe shear 
deformation by forcing them around a mold corner (Karaman, et al., 2004; Robertson, et al., 
2003; Zhang, et al., 2006b). The advantages of ECAP have allowed to fabricate bulk materials 
with large cross-sections. 

In order to utilize the viscous flow of amorphous phase, the crystallization of an 
amorphous alloys must be well controlled. Therefore, the temperature–time–
transformation (TTT) diagram should be determined for the selected amorphous powders 
by measuring the onset time of the exothermic reaction due to crystallization on the DSC 
curves during isothermal annealing (e.g. see Fig. 12 (a)), where the sample was heated to 
the selected annealing temperature(s) in the supercooled liquid region, and the time that 
the sample began to crystallize (the onset of an exothermic reaction) was recorded. Fig. 12 
(b) shows an example of the TTT diagram for the amorphous Ti50Cu18Ni22Al4Sn6 powders, 
which provides a window for processing in supercooled liquid state. The temperature and 
the time before crystallization (or the time to remain in the fully amorphous state at a 
certain temperature) exhibits approximately a linear relationship. At a given heating rate, 
the lower the temperature is, the longer the time is for the supercooled liquid to remain 
stable without crystallization. For the same temperature, the time window is longer at a 
faster heating rate. Therefore, for the ECAP processing at a given length of the can, it is 
necessary to select a suitable extrusion temperature (Te) and extrusion rate (ve). Two 
extrusion temperatures (700 and 705 K) near the calorimetric glass transition temperature 
(Tg) were used in when with extrusion rate of 0.40 mm s-1 (Zhang, et al., 2006b). By using 
ECAP with these processing parameters, bulk nanocrystal-amorphous composites with a 
relative density about 97% have been achieved from the amorphous Ti50Cu18Ni22Al4Sn6 
powders. Full densification was not reached, mainly owing to that the powders 
experienced insufficient shear deformation and that partial crystallization occurred 
during ECAP processing (Zhang, et al., 2006b). 

Karaman et al (Karaman, et al., 2004) has optimized the ECAP process to consolidate the 

gas-atomized Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3) powder in supercooled liquid 

region at different strain rates and temperatures. The microstructure of all consolidates 

shows significant particle deformation. The increase in aspect ratio of particles due to 

shear strain is correlated with the extrusion temperature. Extrusions processed close to 

glass transition temepraure showed significant porosity. There is an increase in the 

consolidate hardness, depending on the extrusion temperature. Compression experiments 

on the consolidated V106a shows that good consolidate samples have strength levels of 

1500 – 1700 MPa, which are comparable to that of cast V106 (Zr57Nb5Al10Cu15.4Ni12.6). In 

spite of some nanocrystallization and short-range order formation upon processing, most 

of the fracture surfaces of the consolidates show shear banding and well-developed vein 

patterns, typical fracture characteristics of amorphous alloys with good ductility. 

6. Conclusions 

The amorphous alloys have attracted widespread research interests because of their 

technological promise for practical applications due to execellent properties and scientific 
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importance in understanding glass formation and glass phenomena. Due to the nature of 

metastability, amorphous phase tends to crystalize to more stable crystalline state through 

polymorphous, eutectic and/or primary crystallization mechanisms. The crystallization 

mechanisms and crystallization products are influenced by both inherent (e.g. chemical 

composition of amorphous phase, oxygen) and extraneous (e.g. preparation method, 

pressure, etc.) factors. The study of kinetic behavior associated with a structural change in 

amorphous alloys above glass transition temperature could provide opportunities for 

structure control by innovative design and processing strategies. By controlling the 

crystallization of amorphous alloys, bulk nanocrystalline alloys and/or nanocrystalline-

amorphous composites with excellent properties could be achieved from amorphous alloys 

precursors. By utilizing the viscous flowability of amorphous alloys in supercooled liquid 

region, net-shaped microforming could be realized for bulk amorphous alloys and bulk 

amorphous components with “true” bulk size might be produced from amorphous powder 

precursors. 
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