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1. Introduction

Cochlear implant is an instrument which can be implanted in the inner ear and can restore
partial hearing to profoundly deaf people (Loizou, 1999a) (see Fig. 1). Acoustic simulations
of cochlear implants are widely used in cochlear implant research. Basically, they are acoustic
signals which simulate what the profoundly deaf people could hear when they wear cochlear
implants. Useful conclusions can be deduced from the results of experiments performed
with acoustic simulations of cochlear implants. There are two typical applications in cochlear
implant research which use acoustic simulations of cochlear implants. In the first one, acoustic
simulations of cochlear implants are used to define how many independent channels are
needed in order to achieve high levels of speech understanding (Loizou et al., 1999). The
second application of acoustic simulations in cochlear implants research is for determining
the effect of electrode insertion depth on speech understanding (Baskent & Shannon, 2003;
Dorman et al., 1997b). In this chapter, we review briefly these conventional applications
of acoustic simulations in cochlear implants research and, on the other hand, introduce
novel applications of acoustic simulations of cochlear implants, both in cochlear implants
research and in other domains, such as automatic speech recognition (ASR) research. To
this end, we present quantitative analyses on the fundamental frequency (F0) of the cochlear
implant-like spectrally reduced speech (SRS) which are, essentially, acoustic simulations
of cochlear implants (Loizou, 1999a). These analyses support the report of (Zeng et al.,
2005), which was based on subjective tests, about the difficulty of cochlear implant users in
identifying speakers. Following the results of our analyses, the F0 distortion in state-of-the-art
cochlear implants is large when the SRS, which is acoustic simulation of cochlear implant,
is synthesized only from subband temporal envelopes (Do, Pastor & Goalic, 2010a). The
analyses revealed also a significant reduction of F0 distortion when the frequency modulation
is integrated in cochlear implant, as proposed by (Nie et al., 2005). Consequently, the results
of such quantitative analyses, performed on relevant acoustic traits, could be exploited to
conduct subjective studies in cochlear implant research. On the other hand, we investigate the
automatic recognition of the cochlear implant-like SRS. Actually, state-of-the-art ASR systems
rely on relevant spectral information, extracted from original speech signals, to recognize
input speech in a statistical pattern recognition framework. We show that from certain SRS
spectral resolution, it is possible to achieve (automatic) recognition performance as good as
that attained with the original clean speech even though the cochlear implant-like SRS is
synthesized only from subband temporal envelopes of the original clean speech (Do, Pastor
& Goalic, 2010b; Do, Pastor, Le Lan & Goalic, 2010). Basing on this result, a novel framework
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2 Will-be-set-by-IN-TECH

for noise robust ASR, using cochlear implant-like SRS, has been proposed in (Do et al.,
2012). In this novel framework, cochlear implant-like SRS is used in both the training and
testing conditions. Experiments show that the (automatic) recognition results are significantly
improved, compared to the baseline system which does not employ the SRS (Do et al., 2012).

Fig. 1. Cochlear implant is an instrument which can be implanted in the inner ear and can
restore partial hearing to profoundly deaf people (Loizou, 1999a) (image source: NIH
Medical Arts, USA).

2. Conventional applications of acoustic simulations of cochlear implants

2.1 Researching the number of independent channels needed to achieve high levels of

speech understanding

It has been known that the speech understanding does not require highly detailed spectral
information of speech signal since much of the information in the speech spectrum is
redundant (Dudley, 1939). On the other hand, the fine spectral cues, presented in naturally
produced utterances, are not required for speech recognition (Zeng et al., 2005). In general,
the signal processing in cochlear implant divides the speech spectrum into several spectral
subbands, from 4 to 12 depending on the device, and then transmits the energy in all the
subbands. However, knowing how many independent channels are needed in order to
achieve high levels of speech understanding is an important issue. In fact, it is difficult to
answer this question basing on the results of subjective tests performed by cochlear implant
users, since their performance might be affected by many cofounding factors (e.g. number
of surviving ganglion cells). For example, if a cochlear implant user obtains poor auditory
performance using 4 channels of stimulation, the rationale might be that 4 stimulating
channels are not enough but it could probably be blamed for the lack of surviving ganglion
cells near the stimulating electrodes (Loizou et al., 1999). Using acoustic simulations can help
in separating the rationale coming from the lack of surviving ganglion cells.

In (Shannon et al., 1995), the authors showed that high levels of speech understanding (e.g.
90% correct for sentences) could be achieved using a few as four spectral subbands. The
subband temporal envelopes of speech signal were extracted from a small number (1-4) of
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Acoustic Simulations of Cochlear Implants in Human and Machine Hearing Research 3

frequency subbands, and used to modulate noise of the same bandwidth. In their signal
processing strategy, the temporal cues within each subband are preserved but the fine spectral
cues within each subband are eliminated. In another study, (Dorman et al., 1997a) used
subband temporal envelopes to modulate sine waves rather than noise bands, and then,
summed these subband modulated signals. As in (Shannon et al., 1995), sentence recognition
using four channels was found to be 90% correct.

Typically, in the subjective tests for determining the necessary number of frequency subbands
needed for understanding speech, normal hearing listeners listened to stimulus consisting
of consonants, vowels, and simple sentences in each of the signal conditions (Faulkner
et al., 1997; Loizou et al., 1999; Shannon et al., 2004; 1995). In these tests, consonants and
vowels were presented in a random order to each listener. The listeners were instructed to
identify the presented stimulus by selecting it from the complete set of vowels or consonants
(Shannon et al., 1995). In the sentence recognition tests, sentences were presented once and
the listeners were asked to repeat as many words in the sentence as they could. Training
(i.e. practice) is a factor that needs to be taken into account when interpreting the speech
recognition results mentioned previously, since the normal hearing listeners cannot recognize
immediately the speech signals with spectro-temporal distortion. For example, in (Shannon
et al., 1995), the listeners were trained on sample conditions to familiarize them with the
testing environment; after about two or three sessions, for a total of 8 to 10 hours, when the
listeners’ performance stabilized, the training can be stopped. No feedback was provided in
any of the test conditions.

On the other hand, (Zeng et al., 2005) showed that although subband temporal envelopes (or
amplitude modulations - AMs) from a limited number of spectral subbands may be sufficient
for speech recognition in quiet, frequency modulations (FMs) significantly enhances speech
recognition in noise, as well as speaker and tone recognition. The result of (Zeng et al., 2005)
suggested that FM components provide complementary information which supports robust
speech recognition under realistic listening situations. A novel signal processing strategy,
named FAME (frequency amplitude modulation encoding), was proposed which integrates
not only AMs but also FMs into the cochlear implants (Nie et al., 2005; Zeng et al., 2005). More
details about the FAME strategy will be presented in section 3.1.

2.2 Simulating the effect of electrodes insertion depth on speech identification accuracy

The second application of acoustic simulations in cochlear implants research is for
determining the effect of electrode insertion depth on speech understanding. In cochlear
implantation, electrode arrays are inserted only partially to the cochlea, typically 22-30 mm,
depending on the state of the cochlea. Acoustic simulations of cochlear implants could
be used to simulate the effect of depth of electrode insertion on identification accuracy.
In this respect, normal hearing listeners performed identification tasks with an acoustic
simulation of cochlear implant whose electrodes are separated by 4 mm (Dorman et al.,
1997b). Insertion depth was simulated by outputting sine waves from each channel of
the processor at a frequency determined by the cochlear place of electrode inserted 22-25
mm into the cochlea, through the Greenwood’s frequency-to-place equation (Greenwood,
1990). The results indicated that simulated insertion depth had a significant effect on speech
identification performance (Dorman et al., 1997b).

The mapping of acoustic frequency information onto the appropriate cochlear place is a
natural biological function in normal acoustic hearing. However, in cochlear implant, this
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mapping is controlled by the speech processor. Indeed, the length and insertion depth of the
electrode arrays are important factors which determine the cochlear tonotopic range (Baskent
& Shannon, 2003). A 25 mm insertion depth of the electrode arrays is usually used in the
design of conventional cochlear implant. This design would place the electrodes in a cochlear
region corresponding to an acoustic frequency range of 500-6000 Hz. While this mapping
preserves the entire range of acoustic frequency information, it also results in a compression
of the tonotopic pattern of speech information delivered to the brain. The effects of such a
compression of frequency-to-place mapping on speech recognition are studied in (Baskent &
Shannon, 2003) using acoustic simulations of cochlear implants.

Fig. 2. Frequency-place mapping conditions for 4-channel processor at the simulated 25-mm
electrode insertion depth (Baskent & Shannon, 2003). In this condition, the noise carrier
bands are fixed (9-25 mm: 510-5800 Hz). The speech envelope was extracted from the
analysis subbands and used to modulate the noise carrier subbands. The three panels, in
top-down order, show the three mapping conditions, compression, matched and expansion,
respectively. In the top panel where there is a compression of +5 mm, the analysis subbands
are mapped onto narrower carrier subbands. The middle panel shows the 0 mm condition, in
which the analysis and carrier bands are matched. The lower panel shows the -5 mm
expansion condition, in which analysis subbands are mapped onto wider carrier subbands.

In (Baskent & Shannon, 2003), speech recognition was measured as a function of linear
frequency-place compression and expansion using phoneme and sentence stimulus. Cochlear
implant with different number of electrode channels and different electrode insertion depths
were simulated by noise-subband acoustic simulations and presented to normal hearing
listeners. Indeed, it was found that in the matched condition where a considerable amount
of acoustic information was eliminated, speech recognition was generally better than any
condition of frequency-place expansion and compression. This result demonstrates the
dependency of speech recognition on the mapping of acoustic frequency information onto
the appropriate cochlear place (Baskent & Shannon, 2003).
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3. Novel applications of acoustic simulations of cochlear implants

In this section, we introduce novel applications of acoustic simulations of cochlear implants,
henceforth abbreviated cochlear implant-like spectrally reduced speech (or simply SRS), both
in cochlear implant research and other domains, such as automatic speech recognition (ASR).
In this respect, section 3.1 presents our SRS synthesis algorithm, based on the frequency
amplitude modulation encoding (FAME) algorithm (Nie et al., 2005), that is use through
out the rest of this chapter. Section 3.2 introduces an analysis of the speech fundamental
frequency (F0) in the SRS and its application in cochlear implant research. In addition, another
application of the acoustic simulations of cochlear implants, in ASR, is introduced in section
3.3. Finally, section 4 concludes the chapter.

3.1 Cochlear implant-like SRS synthesis algorithm

A speech signal, s(t), is first decomposed into N subband signals si(t), i = 1, . . . , N, by using
an analysis filterbank consisting of N bandpass filters with N taking values in {4, 8, 16, 24, 32}.
The analysis filterbank is aimed at simulating the motion of the basilar membrane (Kubin &
Kleijn, 1999). In this respect, the filterbank consists of nonuniform bandwidth bandpass filters
that are linearly spaced on the Bark scale. In the literature, gammatone filters (Patterson et al.,
1992) or elliptic filters (Nie et al., 2005; Shannon et al., 1995) have been used to design such
a filterbank. In this chapter, each bandpass filter in the filterbank is a second-order elliptic
bandpass filter having a minimum stop-band attenuation of 50-dB and a 2-dB peak-to-peak
ripple in the pass-band. The lower, upper and central frequencies of the bandpass filters are
calculated as in (Gunawan & Ambikairajah, 2004). An example of the analysis filterbank is
given in Fig. 3.

Fig. 3. Frequency response of an analysis filterbank consisting of 16 second-order elliptic
bandpass filters used for speech signal decomposition. The speech signal is sampled at 8
kHz.

The subband signals, si(t), i = 1, . . . , N, are supposed to follow a model that contains both
amplitude and frequency modulations

si(t) = mi(t)cos

(
2π fcit + 2π

∫ t

0
gi(τ)dτ + θi

)
(1)

where mi(t) and gi(t) are the amplitude and frequency modulation components of the
i-th subband whereas fci and θi are the i-th subband central frequency and initial phase,
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Fig. 4. The SRS synthesis algorithm derived from the Frequency Amplitude Modulation
Encoding (FAME) strategy proposed in (Nie et al., 2005). The speech signal is decomposed
by a filterbank consisting of N bandpass filters. AM and FM components are extracted from
each subband signal. The AM components are used to modulate a fixed sinusoid, or a carrier
with or without rapidly varying FM components, then summed up to synthesize the
AM-only SRS, the FR AM+FM SRS, or the SV AM+FM SRS, respectively. The fc1, fc2, . . . , fcN

are the central frequencies of the bandpass filters in the analysis filterbank. The FR AM+FM
SRS synthesis is our proposition.

respectively. Each AM component mi of the subband signal si is extracted by full-wave
rectification and subsequently, lowpass filtering of the subband signal si with a 50- or 500-Hz
cutoff frequency. In the other way, the subband FM components, gi, is extracted by first
removing the central frequency, fci, from the subband signal si, thanks to a quadrature
oscillator consisting of a pair of orthogonal sinusoidal signals whose frequencies equal the
central frequency of the i-th subband (Nie et al., 2005). At the outputs of the quadrature
oscillator, two lowpass filters are subsequently used to limit the frequency modulation range.
The cutoff frequencies of these two lowpass filters equal 500 Hz or the bandwidth of the
bandpass filter used in the analysis stage, whenever the latter is less than 500 Hz. The full
rate (FR) FM signal, gi, is then band-limited and filtered by using a 400-Hz cutoff frequency
lowpass filter to derive the slowly varying (SV) band-limited FM signal, g̃i, as in (Nie et al.,
2005). In the synthesis stage, the subband AM signal, mi, is used to modulate a carrier
containing the subband FR FM signal, gi, or the subband SV FM signal, g̃i, to obtain the
subband modulated signals, ŝi, or s̃i, respectively. The sum of the subband modulated signals,
ŝi, i = 1, . . . , N, gives the SRS with FR FM components, called FR AM+FM SRS. Similarly,
SV AM+FM SRS is the SRS achieved when summing the subband modulated signals, s̃i, i =
1, . . . , N, which are obtained by modulating the subband SV FMs with the subband AMs.
All the lowpass filters used in the AM and FM extractions are fourth-order elliptic lowpass
filters having a minimum stop-band attenuation of 50-dB and a 2-dB peak-to-peak ripple in
the pass-band.

In the synthesis of the AM-based SRS, the subband modulated signal, s̄i, is obtained by
using the subband AM signal, mi, to modulate a sinusoid whose frequency equals the central
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frequency, fci, of the corresponding analysis bandpass filter of the i-th subband. The subband
modulated signal, s̄i, is then spectrally limited by the same bandpass filter used for the original
analysis subband to derive the spectrally limited subband modulated signal, s̆i (Shannon
et al., 1995). The AM-based SRS is the sum of all the spectrally limited subband modulated
signals, s̆i, i = 1, . . . , N. This type of SRS is called the AM-only SRS to indicate that the SRS is
synthesized by using only AM cues. This description is summarized by the schema of Fig. 4.

3.2 Normalized mean squared error (NMSE) analysis of F0 in the acoustic simulations of

cochlear implants

3.2.1 Motivation for the analysis

It is known that cochlear implant listeners do not have sufficient information about the voice
fundamental frequency (F0) for their speech recognition task. Meanwhile, F0 information is
useful for speaker discrimination and provides critical cues for the processing of prosodic
information. Most present-day cochlear implants extract the speech temporal envelope and
are not designed to specifically deliver speech F0 information to the listener. Cochlear
implant listeners have therefore difficulties to perform the tasks needing F0 information, such
as speaker recognition, gender recognition, tone recognition, or intonation recognition, etc
(Chatterjee & Peng, 2008; Nie et al., 2005).

The modulation in speech, especially the frequency modulation, is expected to carry
speaker-specific information. In (Nie et al., 2005), the authors proposed a speech processing
strategy, FAME (for Frequency Amplitude Modulation Encoding), which encodes the speech
temporal fine structure by extracting slowly varying band-limited frequency modulations
(FMs) and incorporates these components in the cochlear implant. The acoustic simulations of
cochlear implant, called spectrally reduced speech (SRS), can be synthesized either by using
the FAME strategy or by using conventional AM-based SRS synthesis algorithm (Nie et al.,
2005). In (Zeng et al., 2005), the authors performed speaker recognition tests by using these
types of SRS. Experimentally, normal hearing listeners achieved significant better speaker
recognition scores when listening to the FAME-based SRS, compared to when listening to
the SRS synthesized from only AM components. Meanwhile, cochlear implant users could
only achieve an average recognition score of 23% when they performed the same speaker
recognition tests but listening to the original clean speech (Zeng et al., 2005). These results
showed that current cochlear implant users have difficulties in identifying speakers (Zeng
et al., 2005).

We thus want to quantitatively clarify the report of (Zeng et al., 2005) on the speaker
recognition tasks of cochlear implant users, by performing a comparative study on the
speech F0, extracted from the AM-based and FAME-based SRSs. The AM-based and the
FAME-based SRSs were synthesized from a set of original clean speech utterances selected
from the TI-digits, which is a multi-speaker speech database (Leonard, 1984). The selected
speech utterances contain a large number of speakers to take into account the intra-speaker F0
variation. Next, the Normalized Mean Square Errors (NMSEs) between the F0 extracted from
the original clean speech and from the SRS were calculated and analyzed.

3.2.2 Data for analysis

A set of 250 utterances was selected from the TI-digits clean speech database. TI-digits is
a large speech database of more than 25 thousand connected digits sequences, spoken by
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over 300 men, women, and children (Leonard, 1984). The data were collected in a quiet
environment and digitized at 20 kHz. In this study, the data are downsampled to 8 kHz.
These 250 utterances were selected so that they had been spoken by both adults (men, women)
and children (boy, girls) speakers. The lengths of the utterances in the set vary from the
minimum length (isolated digit sequence) to the maximum length (seven-digit sequence) of
the sequences in the TI-digits. The AM-only SRS, the FR AM+FM SRS, and the SV AM+FM
SRS were synthesized from these 250 utterances by using the algorithm described in section
3.1. We thus have 250 AM-only SRS, 250 FR AM+FM SRS, and 250 SV AM+FM SRS utterances.

3.2.3 F0 NMSE analysis

The F0 values are extracted from the voiced speech frames of the original clean speech and
the SRS utterances by using the Praat software. Praat is a computer program to analyse,
manipulate speech signal and compute acoustic features, developed by Boersma and Weenink
(Boersma & Weenink, 2009). The Praat F0 extraction algorithm, based on the autocorrelation
method, is standard and accurate. A detailed description of the Praat F0 extraction algorithm
can be found in (Boersma, 2004). Let X = [tX fX ] and Y = [tY fY ] be the vectors extracted from
the voiced speech frames (of length 10 ms) of a clean speech utterance and the corresponding

SRS utterance, respectively. The vectors tX = [tX(1), . . . , tX(L)]T and fX = [ fX(1), . . . , fX(L)]T

contain the time instants and the extracted F0 values, respectively, of the voiced speech

frames in the original clean speech utterance. Similarly, tY = [tY(1), . . . , tY(M)]T and fY =

[ fY(1), . . . , fY(M)]T contain the time instants and the extracted F0 values, respectively, of the
voiced speech frames in the corresponding SRS utterance. The Praat script for extracting the
vectors X and Y can be found at http://www.icp.inpg.fr/~loeven/ScriptsPraat.
html. The superscript T denotes the transpose whereas L and M are the lengths of the vectors
X and Y, respectively. In general, X and Y do not have the same lengths (L �= M) even though
the SRS utterance is synthesized from the same original clean speech utterance. The time
instant values in tX and tY are not identical, either. Without losing the generality, we suppose
that L < M. In order to correctly calculate the NMSE between the F0 vectors of an original

clean speech and a SRS utterance, we calculate the vector Ŷ =
[
t̂Y f̂Y

]
as follows

where t̂Y =
[
t̂Y(1), . . . , t̂Y(L)

]T
and f̂Y =

[
f̂Y(1), . . . , f̂Y(L)

]T
are the new time instants and

F0 values vectors of the SRS utterance. The purpose of algorithm 1 is to calculate Ŷ =
[
t̂Y f̂Y

]

from tX , tY and fY so that the temporal lags between the identical index elements of tX and t̂Y

are minimal. The NMSE is then calculated between the two vectors of F0 values, fX and f̂Y ,
now having the same length L.
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NMSE = 20 log10

⎛
⎝ 1

L

L

∑
i=1

∣∣∣∣∣
fX(i)− f̂Y(i)

fX(i)

∣∣∣∣∣

2
⎞
⎠ (2)

The temporal lag minimization performed by algorithm 1 makes it possible to achieve an
accurate NMSE calculation, following formula (2). The averages of the NMSEs on the selected
250 utterances were calculated and represented as a function of the SRS number of frequency
subbands in Fig. 5 and Fig. 6.

Fig. 5. Averages of the NMSEs (A-NMSEs) between the F0 vectors, extracted from the clean
speech utterances and those extracted from the AM-only SRS (A-NMSEAM-ONLY SRS), SV
AM+FM SRS (A-NMSESV AM+FM SRS), and FR AM+FM SRS (A-NMSEFR AM+FM SRS),
calculated on 250 utterances (section III.A). The AM used for the SRS synthesis were
extracted by using a 50-Hz cutoff frequency lowpass filter. Error bars indicate 95% of the
confidence interval (Cumming et al., 2007) around each A-NMSE.

The curves in Fig. 5 represent the averages of the NMSEs (A-NMSEs) calculated between
the original clean speech F0 vectors and those of the synthesized SRSs, which used 50-Hz
cutoff frequency for the AM extraction lowpass filter ( fcutAM = 50 Hz). Similarly, the
A-NMSEs calculated between the synthesized SRS, having fcutAM = 500 Hz, and the original
clean speech, are represented by the curves in Fig. 6. Henceforth, we use the terms
A-NMSEAM-ONLY SRS , A-NMSESV AM+FM SRS, and A-NMSEFR AM+FM SRS to designate the
A-NMSEs calculated between the F0 vectors of the original clean speech and those of the
AM-only SRS, SV AM+FM SRS, and FR AM+FM SRS, respectively. An one-way ANOVA
reveals that the overall difference between the A-NMSEs is significant [F(2, 12) = 14.5, p <

0.001] for fcutAM = 50 Hz. Similarly, when fcutAM = 500 Hz, the A-NMSEs overall
difference is also significant [F(2, 12) = 9.8, p < 0.005]. Further, the A-NMSEAM-ONLY SRS

is significantly greater than the A-NMSESV AM+FM SRS [F(1, 8) = 12.1, p < 0.01], and the
A-NMSEFR AM+FM SRS [F(1, 8) = 43.9, p < 0.0005], for fcutAM = 50 Hz. For fcutAM = 500
Hz, the same conclusion can be reported: the A-NMSEAM-ONLY SRS is significantly greater
than the A-NMSESV AM+FM SRS [F(1, 8) = 17.6, p < 0.005], and the A-NMSEFR AM+FM SRS

[F(1, 8) = 17.9, p < 0.005]. However, no significant difference is revealed between the
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Fig. 6. The A-NMSEAM-ONLY SRS (solid-line + circle), A-NMSESV AM+FM SRS (dashed-line +
triangular), and A-NMSEFR AM+FM SRS (solid-line + square), calculated on 250 utterances
(section III.A). The AM extraction lowpass filter cutoff frequency, fcutAM, equals 500 Hz. As
in Fig. 5, the error bars indicate 95% of the confidence interval around each A-NMSE.

A-NMSESV AM+FM SRS and the A-NMSEFR AM+FM SRS, both with fcutAM = 50 Hz [F(1, 8) =
1.8, p > 0.2], and fcutAM = 500 Hz [F(1, 8) = 0.8, p > 0.35].

In addition, for every number of SRS frequency subbands, we can remark that
A-NMSEAM-ONLY SRS is always the greatest amongst the three A-NMSEs. This gap
reflects that the distortion of F0 information in the state-of-the-art cochlear implant acoustic
simulation (AM-only SRS), is greater than the FAME-based SRS (SV AM+FM SRS and FR
AM+FM SRS). This is a quantitative evidence which supports the report of (Zeng et al., 2005),
about the low speaker recognition score (23%) of the cochlear implant users. This evidence
supports also the fact that the normal hearing listeners, listening to the FAME-based SV
AM+FM SRS, achieved significant better recognition scores, compared to when listening to the
AM-only SRS, in the same speaker recognition task (Zeng et al., 2005). Further, we can remark
that at low spectral resolution (4 and 8 subbands), the A-NMSESV AM+FM SRS (dashed-line +
triangular) is significantly greater than the A-NMSEFR AM+FM SRS (solid line + square), both
for fcutAM = 50 Hz [F(1, 2) = 15.2, p = 0.06] and for fcutAM = 500 Hz [F(1, 2) = 10.01, p =
0.087]. Even though the p-values in these two cases are slightly greater than 0.05, we can still
state the latter conclusion since the error bars, which indicate 95% of the confidence interval
around each A-NMSE, do not overlap (Cumming et al., 2007). This phenomenon suggests that
the presence of rapidly varying FM components (above 400 Hz) in the FR AM+FM SRS, help
in reducing the speech F0 distortion at low spectral resolution. However, at high SRS spectral
resolution (16 subbands and above), the difference between the A-NMSESV AM+FM SRS and
the A-NMSEFR AM+FM SRS is not significant ([F(1, 4) = 0.08, p > 0.75], fcutAM = 50 Hz, and
[F(1, 4) = 0.37, p > 0.55], fcutAM = 500 Hz). The presence of rapidly varying FM components
in the SRS is therefore not significant to reduce the F0 distortion.

3.2.4 Examples

Fig. 7 and Fig. 8 show the spectrograms of a continuous speech utterance, original
clean speech and the corresponding SRSs ( fcutAM = 50 Hz), spoken by a female speaker,
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selected from the set of 250 utterances as mentioned in section III.A. The blue curves in the
spectrograms, estimated by using the Praat software (Boersma & Weenink, 2009), represent
the speech F0 vectors, fX , fY , extracted from the original clean speech and the synthesized
SRS utterances. The range of the F0 is labeled on the right-hand side vertical axis of each
spectrogram. Using the extracted F0 curve of the original clean speech as the reference, we
can qualitatively remark that the F0 values are not correctly estimated from the AM-only SRS,
whether we use 4 subbands [NMSE = -17.4 dB] or 16 subbands [NMSE = -13.1 dB]. Another
concern is related to the extracted F0 values in the AM+FM SRS. The F0 information is less well
estimated in the 4-subband SV AM+FM SRS (5(c)) [NMSE = -20 dB] than in the 4-subband FR
AM+FM SRS (5(d)) [NMSE = -35.3 dB]. This remark is consistent with the fact that the rapidly
varying FM components help in reducing the F0 distortion at low spectral resolution, as
mentioned previously. This phenomenon does not happen with the 16-subband SV AM+FM
SRS (6(c)) [NMSE = -72.6 dB] and the 16-subband FR AM+FM SRS (6(d)) [NMSE = -73.2

Fig. 7. Spectrograms of the original clean speech and the SRSs of the speech utterance “one
oh four six”, selected from the set of 250 utterances mentioned in section III.A, spoken by a
female speaker; (a) original clean speech, (b) 4-subband AM-only SRS, (c) 4-subband SV
AM+FM SRS, (d) 4-subband FR AM+FM SRS. The blue curves, estimated by Praat (Boersma
& Weenink, 2009), represent the speech F0 vectors. The fcutAM = 50 Hz and the F0 frequency
range is [75 Hz - 500 Hz] (see the right-hand side vertical axis).

dB] where the F0 estimation is sufficiently good. Again, the fact that the rapidly varying FM
components are not significant for reducing the F0 distortion at high SRS spectral resolution,
compared to the slowly varying FM components, is typically verified in this example.

3.2.5 Concluding remarks

We have quantitatively analyzed the speech fundamental frequency, F0, in the cochlear
implant-like spectrally reduced speech. The NMSE is calculated between the F0 values
extracted from the original clean speech and those of the SRSs using algorithm 1, proposed
in section III.B. NMSE analysis showed that amongst the three types of SRS studied in this
chapter, the AM-only SRS is the SRS in which the speech F0 distortion is the greatest. The
great distortion of F0 information in the state-of-the-art cochlear implant-like SRS, supports
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Fig. 8. Spectrograms of the original clean speech and the SRSs of the same utterance as in
Fig. 8; (a) original clean speech, (b) 16-subband AM-only SRS, (c) 16-subband SV AM+FM
SRS, (d) 16-subband FR AM+FM SRS. The fcutAM = 50 Hz and the F0 frequency range is [75
Hz - 500 Hz].

the report of (Zeng et al., 2005): “ [. . . ] current cochlear implant users can largely recognize
what is said, but they cannot identify who say it.” The FAME strategy (Nie et al., 2005),
which proposes to extract the slowly varying FM components and integrates them in the
cochlear implant, help in reducing the F0 distortion in the SV AM+FM SRS, compared to the
AM-only SRS. However, at low spectral resolution (4 and 8 subbands), the rapidly varying
FM components are beneficial to reduce the F0 distortion in the FR AM+FM SRS. At high SRS
spectral resolution (16 subbands and above), there is no significant difference between the
SV AM+FM SRS and the FR AM+FM SRS in terms of F0 distortion. The results obtained in
this chapter might help improve the FAME strategy (Nie et al., 2005) for better performance
in a speaker recognition task, by keeping the rapidly varying FM components when the SRS
spectral resolution is low. Even though rapidly varying FM components cannot be perceived
by cochlear implant listeners, their presence could improve speaker recognition performance
of cochlear implant listeners. Obviously, further subjective studies are needed to confirm this
suggestion. A similar remark can be found in a study of Chang, Bai and Zeng in which the
authors, by a subjective study, have shown that the low-frequency sound component below
300 Hz, “although unintelligible when presented alone, could improve the functional signal-to-noise
ratio by 10-15 dB for speech recognition in noise when presented in combination with a cochlear implant
simulation” (Chang et al., 2006).

The speech F0 NMSE analysis performed on the cochlear implant-like SRS is a quantitative
evidence supporting the speaker recognition subjective tests, performed in (Zeng et al.,
2005). On the other hand, quantitative studies on other speech acoustic features could also
be performed, in advance, on the acoustic simulation of cochlear implant (SRS) to orient
subjective tests. The results of such quantitative analysis could be exploited to conduct
subjective studies in cochlear implant research.
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3.3 Automatic recognition of acoustic simulations of cochlear implants

3.3.1 Relevant speech spectral information for ASR

It is important to reduce speech signal variability, due to speech production (accent and
dialect, speaking style, etc.) or environment (additive noise, microphone frequency response,
etc.), in order to guarantee stable ASR performance. Therefore, in an ASR system, the speech
analysis module is aimed at reducing the speech signal variability and extracting the ASR
relevant spectral information into speech acoustic features. However, despite the speech
variability reduction achieved by such standard speech signal analyses, ASR performance
is still adversely affected by noise and other sources of acoustic variability (Raj & Stern, 2005).
Since most standard speech processing analyses for ASR are performed in the spectral domain,
it is natural to seek the relevant spectral information that is sufficient for ASR, in the speech
signal.

In ASR based on Hidden Markov Models (HMMs) (Rabiner, 1989), one way to estimate the
ASR relevant speech spectral information is to evaluate the ASR performance on spectrally
reduced speech (SRS) signals when the acoustic models (the HMMs) are trained on a clean
speech (full spectrum) database. As usual, the tested signals must not belong to the training
database. Such an approach was first investigated by Barker and Cooke in (Barker & Cooke,
1997) where the authors “consider how acoustic models trained on original clean speech can be
adapted to cope with a particular form of spectral distortion, namely reduction of clean speech to
sin-wave replicas”. The ASR results were, however, not satisfactory in train-test unmatched
conditions. The cepstral coding techniques are, following the authors, “inappropriate for dealing
with drastic alterations to the shape of the spectral profile caused by spectral reduction” (Barker &
Cooke, 1997).

The acoustic simulation of cochlear implant is a spectrally reduced transform of original
speech (Shannon et al., 1995). This type of SRS should be appropriate to evaluate the relevant
spectral information needed by an HMM-based ASR whose acoustic models are trained
on a given clean speech database and which uses the Mel frequency cepstral coefficients
(MFCCs) (Davis & Mermelstein, 1980) or the perceptual linear prediction (PLP) coefficients
(Hermansky, 1990) as acoustic features. The rationale is twofold. On the one hand, cochlear
implant-like SRS can be recognized by normal hearing listeners. The recognition scores
then depend on the spectral resolution (or the number of frequency subbands) of the SRS
(Shannon et al., 1995). Furthermore, human cochlear implant listeners relying on primarily
temporal cues can achieve a high level of speech recognition in quiet environment (Zeng et al.,
2005). The foregoing facts suggest that the cochlear implant-like SRS could contain sufficient
information for human speech recognition, even though such an SRS is synthesized from the
speech temporal envelopes only. On the other hand, in ASR, certain speech analyses, such as
the Bark or Mel-scale warping of the frequency axis or the spectral amplitude compression,
performed on the conventional speech acoustic features (MFCCs or PLP coefficients), derive
from the model of the human auditory system. Such auditory-like analyses, which mimic the
speech processing performed by the human auditory system, are basically aimed at reducing
speech signal variability and emphasizing the most relevant spectral information for ASR
(Morgan et al., 2004). As a result, the cochlear implant-like SRS should contain sufficient
spectral information for ASR based on conventional acoustic features, such as the MFCCs or
the PLP coefficients.
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3.3.2 Experimental data

In this section, the SRSs are synthesized from 250 original utterances (see 3.2.2) by using the
AM-only SRS synthesis algorithm described in section 3.1. With 5 values (4, 8, 16, 24 and 32)
of the number of frequency subbands and 4 values (16, 50, 160 and 500 Hz) for the bandwidth
of the subband temporal envelope (AM), we have thus 20 sets of synthesized AM-only SRS
signals, each set contains 250 utterances. These sets will be used for the spectral distortion
analyses and the ASR tests in the next sections.

3.3.3 Spectral distortion analysis

Given an original clean speech utterance xi and the corresponding SRS utterance x̂i which

is synthesized from xi, assume that f j and f̂ j are the spectra of two speech frames of xi and
x̂i, respectively. The spectral distortion between these two speech frames can be measured

on their spectra dxi ,x̂i
( f j, f̂ j). A good spectral distortion measure should have the following

properties (Nocerino et al., 1985):

1. dxi ,x̂i
( f j, f̂ j) ≥ 0, with equality when f j = f̂ j;

2. dxi ,x̂i
( f j, f̂ j) should have a reasonable perceptual interpretation;

3. dxi ,x̂i
( f j, f̂ j) should be numerically tractable and easy to compute.

Amongst the available spectral distortion measures (Nocerino et al., 1985), the weighted
slope metric (WSM) distortion measure (Klatt, 1982), which is a perceptually based distortion
measure, satisfies well these three properties. This spectral distortion measure reflects
the spectral slope difference near spectral peaks in a critical-band spectral representation
(Nocerino et al., 1985). It is also shown that the WSM distortion measure correlates well with
the perceptual data (Klatt, 1982). Further, the WSM distortion measure is one of the spectral
distortion measures that gave the highest recognition score with a standard dynamic time
warping (DTW) based, isolated word, speech recognizer (Nocerino et al., 1985). In this respect,
we use the WSM distortion measure to assess the spectral distortion between two speech
frames extracted from an original clean speech utterance and a synthesized SRS utterance,
respectively. The mathematical formula of the WSM distortion measure has the form (Klatt,
1982; Nocerino et al., 1985)

dxi ,x̂i
( f j, f̂ j) = kE

∣∣∣E f j
− E

f̂ j

∣∣∣+
Q

∑
q=1

ks(q)
(

s f j
(q)− s

f̂ j
(q)

)2
(3)

where Q is the number of frequency subbands, kE is a weighting coefficient on the absolute

energy difference,
∣∣∣E f j

− E
f̂ j

∣∣∣, between f j and f̂ j, ks(q) is a weighting coefficient for the

difference, s f j
(q)− s

f̂ j
(q), between the two critical band spectral slopes of f j and f̂ j (Nocerino

et al., 1985).

Henceforth, dxi ,x̂i
( f j, f̂ j) designates the WSM distortion measure. The length of the speech

frames for the WSM distortion measure is 10 ms and the number of frequency subband Q =
24. The Matlab programs for calculating the WSM spectral distortion can be found at (Loizou,
1999b). The spectral distortion ηxi ,x̂i

between two speech utterances xi and x̂i can be defined

as the mean of the WSM spectral distortion measures between the speech frames dxi ,x̂i
( f j, f̂ j):
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ηxi ,x̂i
=

1

M

M

∑
j=1

dxi ,x̂i
( f j, f̂ j) (4)

where M is the number of speech frames in the speech utterances xi and x̂i. We define the
overall spectral distortion η̄ as the average of the ηxi ,x̂i

calculated for all the N = 250 utterances
in each set of SRS signals:

η̄ =
1

N

N

∑
i=1

ηxi ,x̂i
=

1

N

1

M

N

∑
i=1

M

∑
j=1

dxi ,x̂i
( f j, f̂ j) (5)

We then calculate the overall spectral distortion η̄ for all 20 sets of SRS utterances (see section
3.3.2). The values of η̄ are illustrated in Fig. 9. The error bars in Fig. 9 represent the standard
deviations of ηxi ,x̂i

. An ANOVA revealed no significant difference between the overall spectral
distortion η̄ when the bandwidth of the subband temporal envelopes are changed from 16 Hz
to 500 Hz [F(3,16) = 0.64, p > 0.5]. Generally, the overall spectral distortion η̄ decreases when
the number of frequency subbands of the SRS increases. Since the WSM distortion measure
is perceptually based and is correlated with the perceptual data (Klatt, 1982), we can deduce
that the value of η̄ reflects more or less the level of perceptual distortion that the listeners have
to deal with when listening to the SRS signals. In addition, we can remark that ηxi ,x̂i

varies
intensively when the number of frequency subbands of the SRS is small (4- and 8-subband
SRS), since the standard deviations of ηxi ,x̂i

are large at low spectral resolutions of the SRS (4
and 8 subbands).

Fig. 9. Overall spectral distortion η̄, which is defined as the average of the spectral distortion
ηxi ,x̂i

, are calculated on all the 250 utterances of each set of SRS signals. There would be no
overall spectral distortion if η̄ = 0. Error bars indicate standard deviations.

3.3.4 Automatic speech recognition results

We used the HTK speech recognition toolkit (Young et al., 2006) to train a speaker-independent
HMM-based ASR system on the TI-digits speech database (Leonard, 1984). TI-digits is a large
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speech database of more than 25 thousand connected digits sequences spoken by over 300
men, women, and children. This speech database is widely used in the literature to assess ASR
algorithms on small-vocabulary tasks (Barker et al., 2005; Cooke et al., 2001; Smit & Barnard,
2009). The data were collected in a quiet environment and digitized at 20 kHz. In this study,
the data were downsampled to 8 kHz. The ASR system used a bigram language model and the
acoustic models were the context-dependent three-state left-to-right triphone HMMs. These
models were trained by using both MFCCs and PLP coefficients. The output observation
distributions were modelled by Gaussian mixture models (GMMs) (Rabiner, 1989). In each
state, the number of mixture components was 16. The feature vectors consist of 13 MFCCs
or 13 PLP coefficients. For the MFCCs and the PLP coefficients calculation, the standard
filterbank consisting of 26 filters was used (Young et al., 2006). The MFCCs and the PLPs
coefficients were calculated from every Hamming windowed speech frame of 25 ms length
and with an overlap of 15 ms between two adjacent frames. The first (delta) and second
(acceleration) difference coefficients were appended to the static MFCCs and PLP coefficients
to provide 39-dimensional feature vectors. This configuration for the feature vectors was used
in both training and testing conditions. Next, the ASR tests were taken on the 20 sets of
synthesized SRS signals. The recognition results with the MFCCs and PLP coefficients are
shown in Table 1 and Table 2, respectively.

Number of frequency subbands
AM bandwidth 4 8 16 24 32

16 Hz 35.44 68.33 96.22 96.22 96.29

50 Hz 35.57 84.23 99.82 99.70 99.57

160 Hz 37.76 95.86 99.63 99.70 99.63

500 Hz 39.34 97.56 99.57 99.70 99.63

Table 1. ASR word accuracies (in %) computed on the 250 SRSs synthesized from 5 values
for the number of frequency subbands and 4 values for the bandwidth of the subband
temporal envelopes (AM). The ASR system was trained on the TI-digits clean speech training
database. The speech feature vectors were MFCC-based. The ASR word accuracy computed
on the 250 original clean speech utterances is 99.76%.

Number of frequency subbands
AM bandwidth 4 8 16 24 32

16 Hz 35.32 87.27 97.99 98.66 98.48

50 Hz 35.57 98.36 99.57 99.57 99.57

160 Hz 35.69 98.96 99.57 99.63 99.70

500 Hz 41.17 99.15 99.57 99.63 99.57

Table 2. ASR word accuracies (in %) computed on the 250 SRSs synthesized from 5 values
for the number of frequency subbands and 4 values for the bandwidth of the subband
temporal envelopes (AM). The ASR system was trained on the TI-digits clean speech training
database. The speech feature vectors were PLP-based. The ASR word accuracy computed on
the 250 original clean speech utterances is 99.70%.

For the ASR results with MFCC-based speech feature vectors, an ANOVA performed on the
lines of Table I revealed that changing the bandwidth of the subband temporal envelopes
had no significant effect in terms of ASR word accuracy [F(3,16) = 0.11, p > 0.95]. However,
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another ANOVA performed on the columns of Table I indicated that changing the number of
frequency subbands had a significant effect across all tests [F(4,15) = 73.9, p < 0.001]. Protected
t-tests (or Least Significant Difference (LSD) tests) (Keren & Lewis, 1993) were thus performed
and showed that the 8-subband SRS yielded significant better ASR word accuracies compared
to the 4-subband SRS [tobs(4,8) = 11.23 > tcrit(15) = 4.07, α = 0.001], where tobs(4,8) is the
protected t-test value calculated between the 4-subband SRS and the 8-subband SRS word
accuracies, tcrit(15) is the critical value at the desired α level for 15 degrees of freedom. In
contrast, no significant difference was revealed amongst the 16, 24, and 32-subband SRSs in
terms of ASR word accuracy [tobs(16,24) ≈ tobs(24,32) ≈ tobs(16,32) ≈ 0 < tcrit(15) = 2.13, α =
0.05]. The ASR word accuracies of each SRS in this group are significant better than those of
the 8-subband SRS [tobs(8,16) = 2.79, tobs(8,24) = 2.80, tobs(8,32) = 2.78, tcrit(15) = 2.13, α = 0.05].

For the ASR results with PLP-based speech feature vectors, the same statistical analyses had
been performed on the ASR word accuracies in Table 2 and the same conclusions would be
revealed. In summary, increasing the number of the SRS frequency subbands from 4 to 16
made significant improvement in terms of ASR word accuracy. Interestingly, the 16, 24, and
32-subband SRSs could achieve an ASR word accuracy comparable to that attained with the
original clean speech signals (the ASR word accuracies computed on the 250 original clean
speech utterances with MFCC-based and PLP-based speech feature vectors were 99.76% and
99.70%, respectively).

3.3.5 Conclusions and perspectives

We have investigated the automatic recognition of cochlear implant-like SRS, which is
synthesized from subband temporal envelopes of the original clean speech. The MFCCs
and the PLP coefficients were used as speech features and the ASR system, which is
speaker-independent and HMM-based, was trained on the original clean speech training
database of TI-digits. It was shown that changing the bandwidth of the subband temporal
envelopes had no significant effect on the ASR system word accuracy. In addition, increasing
the number of frequency subbands of the SRS from 4 to 16 improved significantly the
performance of the ASR system. However, there was no significant difference amongst the
16, 24, and 32-subband SRS in terms of ASR word accuracy. It was possible to achieve an ASR
word accuracy as good as that attained with the original clean speech by using SRS with 16,
24, or 32 frequency subbands and by using both MFCC-based and PLP-based speech features.

The MFCCs or the PLP coefficients, along with the delta and acceleration coefficients, were
concatenated together in the acoustic feature vector and were used in both the training and
the testing conditions. The results presented in this chapter suggest that SRS with 16, 24, and
32 subbands contain sufficient spectral information for speech recognition with HMM-based
ASR system using the MFCCs or the PLP coefficients along with the delta and acceleration
coefficients. The SRS and original clean speech are quite different in the signal domain since
the SRS is synthesized from original clean speech temporal envelopes, only. The spectral
distortion analysis, based on the WSM distortion measure, showed that there are significant
spectral distortions in the synthesized SRS compared to the original clean speech signal.
Despite of these spectral distortions which are induced by the SRS synthesis, and although
the ASR acoustic models are trained on the clean speech training database (TI-digits), the ASR
word accuracy, computed on original clean speech signals of a testing set of TI-digits, is still
maintained with the synthesized SRS of 16, 24, and 32 subbands.

133Acoustic Simulations of Cochlear Implants in Human and Machine Hearing Research

www.intechopen.com



18 Will-be-set-by-IN-TECH

Therefore, the 16-, 24-, and 32-subband SRS models might lead to the design of new acoustic
features and suggest new speech models, for ASR, that could be robust to noise and other
sources of acoustic variability. In this respect, performing ASR with HMMs trained on SRS
could assess the relevance of SRS as a model for speech recognition. In addition, the fact that
cochlear implant-like SRS is synthesized from speech temporal envelopes, only, might help
in reducing ASR irrelevant spectral information due to environment. In (Do et al., 2012), we
perform the ASR experiments with the noise contaminated speech signal. The SRS are used in
both training and testing conditions. That is, the ASR system is trained on the SRS which was
synthesized from the training original clean speech. This system is be used to recognize the
SRS which is synthesized from noisy contaminated speech signals. Experimental results show
that the use of SRS helps in improving significantly the ASR performance in the recognition
of noisy speech (Do et al., 2012).

4. General conclusions and discussions

In this chapter, we have introduced the applications of acoustic simulations of cochlear
implants in human and machine hearing research. We have reviewed the conventional
applications of the acoustic simulations of cochlear implants in (1) determining the number
of independent channels needed to achieve high levels of speech understanding, and in
(2) simulating the effect of electrodes insertion depth on speech identification accuracy.
In addition, we have introduced novel applications of acoustic simulations of cochlear
implants, abbreviated as SRS, both in cochlear implant research and machine hearing research
(or automatic speech recognition). Conventional as well as recently proposed synthesis
algorithms have been used to synthesize the SRS signals (Nie et al., 2005; Shannon et al., 1995).
These novel applications show that the acoustic simulation of cochlear implant is an important
tool, not only for cochlear implant research but also for other hearing-related applications,
namely noise robust ASR (Do et al., 2012).

However, for any studies performed on acoustic simulations of cochlear implants, the results
should be interpreted with cautions when applied on human subjects who are cochlear
implant users. In fact, the results could be slightly different due to the changes that occur
in their auditory system following the severe and profound deafness. In this respect, results
of the studies performed with acoustic simulations should be used as general indicators to
conduct useful subjective studies. Authentic conclusions could be afterward interpreted from
the results of studies performed on human subjects. On the other hand, in section 3.3, it was
shown that changing the bandwidth of the subband temporal envelopes has no significant
effect on the ASR word accuracies. In addition, changing the number of subband from 8 to 16
increases significantly the ASR word accuracies. Physically, these facts suggest that ASR word
accuracies are more affected by the change of spectral information distributing on the whole
spectral band rather than the change of local spectral information in each subband.
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