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1. Introduction  

Jamaica Bay (the Bay) is located within the Boroughs of Brooklyn and Queens, New York 

City, and covers 67.3 square kilometers and opens into the Atlantic Ocean via Rockaway 

Inlet (Fig. 1). The Bay contains disturbed tidal salt marsh wetlands and upland 

ecosystems, mud flats, parks, landfills, residential urban communities, commercial and 

retail facilities, and J. F. Kennedy International Airport. Also present are tidal creeks, 

navigational channels, and areas of open water. In the early 1900s, Jamaica Bay was an 

extensive estuarine ecosystem that sustained large expanses of tidal salt marsh. Jamaica 

Bay was renowned for its abundant and diverse shellfish and ecological importance as a 

nursery and feeding ground for numerous bird species (JBERRT 2002) and various fish 

species rely on the Bay for habitat (USFWS 1997). Jamaica Bay is also valuable for various 

bird species during seasonal migration (NYCDEP 2006). Other wildlife including 

amphibians and reptiles also rely on these salt marsh wetlands as primary habitat 

(Tanacredi & Badger 1995). 

The Jamaica Bay ecosystem is part of the Gateway National Recreation Area, a unit of the 

National Park Service, and is connected to the lower bay of New York Harbor by Rockaway 

Inlet. The Jamaica Bay Federal navigation channel extends from offshore of Rockaway Point, 

Queens, through Rockaway Inlet and bisects at the southern edge of Floyd Bennett Field 

(Barren Island), Brooklyn, with one branch extending north into the upper part of Jamaica 

and a second branch extending east into lower Jamaica Bay (Fig. 1). The dominant littoral 

drift is to the west along the south shore of Long Island (Kana 1995) and has almost doubled 

the length of the Rockaway spit since the early 19th century (Englebright 1975). Along the 

northern New Jersey shoreline, the dominant littoral drift is to the north which causes the 

elongation of Sandy Hook. These shoreline patterns are attributed to the effect of Long 

Island in shielding the area from waves from north and northeast. Since the 1930s the 

Rockaway inlet has been stabilized by jetties. Urbanization of the Rockaway Beach barrier 

island during the 20th century has effectively halted the delivery of sand to Jamaica Bay via 

overwash during periods of storm surge. An increase in water depth, such as that caused by 

dredging of navigation channels, modifies the hydrodynamics and generally leads to an 

increase in tidal range. Within the Bay alteration to the tidal range also changes the marsh 
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hydroperiod, e.g., plants at the same elevation are inundated for a longer portion of the tidal 

cycle than at that same elevation prior to dredging of the channels in Jamaica Bay. This may 

further enhance tidal currents and exacerbate erosion. Mean tidal range within Jamaica Bay 

varies between 1.5 m and 1.6 m. 

 
 
 
 
 

 

 
 
 
 

Fig. 1. Jamaica Bay, located within the Boroughs of Brooklyn and Queens, New York City, 
opens into the Atlantic Ocean via Rockaway Inlet. 

The undertaking of tidal salt marsh restoration projects on the order of magnitude presented 

herein, lead by the U. S. Army Corps of Engineers, will be a unique opportunity to measure 

and assess the success of such large scale efforts. To prevent continued loss of wetlends 

decisive action must be taken by placing emphasis on improving compliance and 

maintaining a true baseline (Race & Fonseca 1996). Race & Fonseca (1996) further noted that 

past mitigation projects nationwide indicate that the success rate remains low overall. Elders 

Point East and Elders Point West will establish baselines for future restoration/mitigation 

efforts in Jamaica Bay and elsewhere. Roberts (1993) reported that the sober reality 

regarding marsh losses is likely to be that mitigation projects have a high degree of failure. 

Reporting results of tidal salt marsh restoration projects in Jamaica Bay may be pivotal for 

establishing baselines and achieving success for future efforts.  
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2. Historical marsh loss in Jamaica Bay  

2.1 Trends 

Jamaica Bay was historically more land than open water (Fig. 2), however, vegetated 

emergent marsh islands in the Bay are being lost at an alarming rate (Hartig et al. 2001, 

GATE & JBWPAC 2007). In 1907, 3430 hectares (ha) of the Bay was shallow water and 6549 

ha consisted of marsh islands (Hartig et al. 2002). Most of the wetland loss in Jamaica Bay 

prior to early 1970s can be attributed to human activity such as dredging or filling (Black 

1981). When direct anthropogenic sources of loss are removed, a pattern of consistent marsh 

island loss persists. Excluding areas affected directly by dredging and filling, of the 950 ha of  

 
 
 

 
 
 

Fig. 2. Jamaica Bay and Rockaway Inlet 1899. 
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vegetated marsh island in the Bay in 1951, only 355 ha remained as of 2003. During that 49 

year period, 63% of the Bay’s salt marsh islands were converted from emergent vegetated 

habitat to submerged and intertidal habitat (Table 1). The calculated average rate of marsh 

loss increased throughout that time period from 6.9 ha y-1 from 1951-1974 to 13.4 ha y-1from 

1989-2003 (Table 2) (GATE & JBWPAC 2007). Recent analysis (2003-2008) indicates that the 

rate of loss may be decreasing to 7.7 ha y-1(Christiano 2010). 

 

 Time Period 

 1951* 1974 1989 2003 

Vegetated Marsh 

(hectares) 
950 652 539 355 

* From 1951 to 1974, 23 ha of marsh island were calculated as lost due to the construction of West Pond 

and 115 ha lost as a result of the Broad Creek and Goose Pond marsh impoundments. Other factors 

accounted for the loss of the remaining 161 ha. 

Table 1. Total area of vegetated marsh islands in Jamaica Bay (from GATE & JBWPAC 
2007). 

 

 Time Period 

 1951-1974 1974-1989 1989-2003 

Average Rate of Loss 

(hectares /year) 
6.9 7.3 13.4 

Table 2. Rate of marsh loss of vegetated marsh islands in Jamaica Bay (from GATE & 

JBWPAC 2007). 

Based on aerial photography interpretation, the New York State Department of 

Conservation (NYSDEC 2001) estimated that approximately 567 hectares (ha) of tidal salt 

marsh island within Jamaica Bay have been lost since 1924, with the rate of loss rapidly 

increasing in recent years. Elders Point is currently comprised of two separate islands, 

Elders Point East (Elders East) and Elders Point West (Elders West) that together total 

about 4.9 ha prior to the restoration project led by the U. S. Army Corps of Engineers 

(USACE), NY District in 2005 (Fig. 3). Elders Point was historically one island, comprising 

approximately 53.4 ha but over the last more than 80 years, marsh loss in the center of the 

island severed the connection creating two distinct islands separated by mud flat. At 

Elders Point, between 1994 and 1999, an estimated 89 ha of salt marsh was lost at a rate of 

17.8 ha per year (USNPS 2001). Hartig et al. (2002) reported marsh loss for Elders Point 

from 1924 through 1999 with an increasing rate of loss from 0.5% (1924 – 1974) to 8.5% 

(1994 – 1999). It is estimated that if these trends continue, all remaining salt marsh within 

the Bay will be lost over the next three decades. Steinberg et al. (2004) have speculated that 

by 2024 all of the interior tidal marsh islands will be lost based on the current rate of 

deterioration. 
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Fig. 3. Aerial view of Elders Point (East and West), Jamaica Bay preconstruction conditions 
(2005) where green represents Spartina alterniflora hummocks, opaque tan areas indicate 
mud flats, remainder is open water . 

2.2 Possible causes  

Regional sea level rise has been identified as a contributing factor in Jamaica Bay salt marsh 
loss (Swanson & Wilson 2008). Within the Bay the low marsh has accreted at 0.8 cm yr-1 and 
high marsh at 0.5 cm yr-1. Prior to 1974 when the New York State Department of 
Environmental Conservation (NYSDEC) gained regulatory authority over intertidal 
wetlands, marsh losses have been caused by urbanization and associated land development 
activities, such as dredging and filling. The historic rate of sea level rise within Jamaica Bay 
is approximately 2.7 mm yr-1 (Gornitz et al. 2001) in comparison to the mean eustatic sea 
level rise of 1.2 mm yr-1 (NRC 1987) to 1.5 mm yr-1 (Gornitz 1995) during the past century 
and predicted 1.7 mm yr-1 in the next 100 years (IPCC 2007). The difference between the 
eustatic (global) and the New York (regional) sea level trend has been attributed to local 
subsidence resulting from crustal readjustments to the removal of ice following the retreat of 
the last glacial period (Dean et al. 1987). The south shore of Long Island, New York is the 
extent of the leading edge of the Wisconsinan glaciation ice sheet (ca. 20,000 years ago). The 
area to the south was upwarped while land to the north was depressed beneath the weight 
of the ice sheet. Much of the Atlantic coast has subsided while the land that was under the 
ice has rebounded. Marsh losses over the past century do not appear to be related to sea 
level rise (Kolker 2005); however, sea level rise is likely to be a cause of marsh loss in the 
future (Hartig et al. 2002). Based on 210Pb chronology data Jamaica Bay marsh islands have 
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accreted at rates in excess of the long-term rate of sea level rise at the Battery, NY (0.28 cm y-1) 
(Kolker 2005). Analysis by Hartig et al. (2002) indicates that over the next 80 years, current rates 
of accretion would only be adequate to maintain Jamaica Bay marsh islands under the most 
conservative predictions for future sea level rise. 

Marsh loss occurs through the undercutting and collapse of peat along the perimeter of 
marsh islands, widening of tidal creeks, and the development and expansion of pools within 
the marsh interior (Hartig et al. 2002, GATE & JBWPAC 2007). While the causes of marsh 
loss are poorly understood or not known, Hartig et al. (2002) suggest that water logging is 
contributing to the loss of marsh islands in the Jamaica Bay through the development and 
growth of interior pools and the subsequent collapse of the root system. Belowground 
biomass contributes to marsh elevation (Valiela et al. 1976, DeLaune et al. 1994, Morris & 
Bradley 1999). Diminished root production can also lead to a loss in marsh elevation. 
Without sufficient accumulation of belowground organic matter (peat), a marsh that exhibits 
high aboveground biomass could quickly convert to mudflat or open water if aboveground 
vegetation dies off (Mendelssohn et al. 1981, DeLaune et al. 1994). In addition, roots bind 
sediments and slow sediment compaction (Redfield 1972, DeLaune et al. 1994, Rybczyk & 
Cahoon 2002, Cahoon et al. 2002, 2003). Subsidence has been found to be lower in a 
vegetated marsh compared to adjacent unvegetated pools (Erwin et al. 2006). The hydrology 
of a tidal marsh can be defined as the frequency (how often) and duration (how long) that a 
marsh is flooded. Mechanisms that will alter hydrology, and thus increase water logging, 
include increased sea level rise, changes in tidal range, changes in the rate of accretion, and 
subsidence. Eutrophication and goose grazing have also been identified as possible causes 
of wetland loss in Jamaica Bay. 

Changes in sediment availability, distribution and accumulation may contribute to the loss 
of marsh islands in Jamaica Bay (Gordon & Houghton 2004, Goodbred et al. 2004). 
Westward growth and stabilization of the Rockaway Inlet, dredging and ocean disposal of 
sediments from the Rockaway Inlet, development within the watershed, shoreline 
hardening channelization of runoff through storm sewers and combined sewer overflows, 
and trapping of sediments within navigation channels and borrow pits (e.g., Grassy Bay) are 
mechanisms by which sediment availability, distribution, and accumulation may have been 
altered within the Bay. Inorganic mass of marsh sediments has decreased at Yellow Bar 
Hassock (Fig. 1) and JoCo marshes (Fig. 1) since European settlement (Peetet et al. 2008) 
while organic matter has increased over the same period (Peetet et al. 2004). Kolker (2005), 
using 210Pb chronology data, determined that accretion rates were higher in the latter half of 
the twentieth century and lower in the first half. Accretion rates at Big Egg marsh (Fig. 1) 
were lowest from 1900 to 1920 (0.14 - 0.18 cm y-1) and highest from 1995 to 1999 (0.63 – 0.64 
cm y-1). East high marsh accretion rates were lowest from 1900 to 1950 (0.09 – 0.14 cm y-1) 
and highest from 1950-1980 (0.57 – 0.75 cm y-1). Accretion rates at JoCo were lowest during 
the 1920s (0.18 cm y-1) and highest during the 1960s (0.59 cm y-1) (Kolker 2005). Accretion 
rates at the same marshes from 1974 to 2000 were 0.41, 0.35, and 0.46 cm y-1, respectively 
(Kolker 2005, Cochran et al. 2009). Recent short-term accretion rates (2003-2009) measured at 
Black Bank (Fig. 1) and JoCo marshes are similar (0.48 and 0.44 cm y-1, respectively) (Cahoon 
2008). Hydrodynamic modeling indicates that there is little deposition of sediment within 
navigation channels, however deep pits, such as Grassy Bay (Fig. 1), may serve as sinks for 
fine sediments (Wilson & Flagg 2008). Additional research is needed to better understand 
the sources and distribution of sediments within the Bay. 
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While sediment accretion rates within Jamaica Bay marshes exceed the rate of long-term sea 

level rise, changes in tidal hydrodynamics have resulted in water level increases within the 

Bay that exceed regional sea level rise (Swanson & Wilson 2008). Dredging and other 

development activities have increased the volume of the Bay by 350% (NYDEP 2007) and 

the mean depth from approximately 1 m to 5 m (Swanson & Wilson 2008). In addition, 

during the twentieth century, Jamaica Bay experienced an overall increase in tidal range and 

an amplification of tidal range from west to east as a result of development activities as well 

as the westward migration and subsequent stabilization of the Rockaway Peninsula. 

Increases in tidal range have resulted in high tide water levels that are currently 56-78% 

greater than sea level rise. Prior to 1899, mean tidal range was generally uniform throughout 

the bay (0.12 m) and tidal height varied from 1.22 m at Plum Beach Channel to 1.28 m at 

Canarsie (Fig. 1). Combined changes in sea level and increases in sea level rise and tidal 

range result in tidal height today of 5.0 ft (1.65 m) at Barren Island (modern proxy for Plumb 

Beach Channel) and 1.58 m at Canarsie Pier (Swanson & Wilson 2008). The rate of marsh 

loss observed in Jamaica Bay greatly exceeds that which has been observed in other Long 

Island marshes (Kolker 2005). These marshes have experienced rates of sediment accretion 

(Kolker 2005) and sea level rise (Kolker 2005, Swanson & Wilson 2008) similar to Jamaica 

Bay; however, tidal range in these marshes has not changed much (Swanson & Wilson 

2008). Thus, increases in the frequency and duration of marsh flooding due to changes in 

tidal range are likely to contribute to the loss of emergent salt marsh islands within Jamaica 

Bay (Swanson & Wilson 2008). 

Nitrogen loading is frequently indicated to be a factor that may cause or contribute to marsh 

loss in Jamaica Bay (O’Grady 2001, USNPS 2001, NYCDEP 2007). Nitrogen loading in 

Jamaica Bay has increased substantially in the past 110 years from an estimated 35.6 kg d-1 

N, which entered the bay via submarine groundwater discharge, to 15,785 kg d-1 that enters 

the bay via wastewater discharge, subway dewatering, landfill leachate, submarine 

groundwater discharge, and atmospheric deposition (Benotti et al. 2006). High nitrogen 

levels may result in the reallocation of energy from roots to shoots in Spartina alterniflora 

(Valiela et al. 1976, Morris & Bradley 1999, Turner et al. 2004). High nitrogen loading may 

also amplify microbial activity and increase the rate of peat decomposition (Valiela et al. 

1985). The U.S. Environmental Protection Agency (USEPA) is currently conducting research 

to evaluate soil respiration, above- and belowground biomass, and root structure at marshes 

in Jamaica Bay (Wigand et al. 2008). In 2009, the USNPS (U.S. National Park Services, P. 

Rafferty, co-author on this paper) initiated research to evaluate the role of eutrophication on 

plant function (allocation of resources between above and belowground biomass) at three 

marshes in Jamaica Bay. 

Sulfide toxicity may also contribute to the loss of salt marsh islands in Jamaica Bay. Labile 
organic carbon resulting from phytoplankton blooms in the eutrophic Bay or direct inputs 
from water pollution control plants and combined sewer overflows may increase sulfate 
reduction in marsh sediments and result in elevated pore water sulfide concentrations. 
Prolonged exposure to high pore water sulfides in greenhouse studies results in stunted 
growth (>2mM) or death (>4mM) of S. alterniflora (Koch & Mendellsohn 1989). S. alterniflora 
seedlings are more sensitive to sulfide exposure than mature plants (Seliskar et al. 2004). 
Reactive iron can serve as a sink for sulfide via the precipitation of iron sulfides (Berner 
1980, Goldhaber & Kaplan 1974, as cited in Cochran et al. 2009). A 2007 study at JoCo, Elders 
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East, and Elders West marshes found pore water sulfide concentrations (2-3mM) that are 
considered to be stressful to S. alterniflora. Generally these concentrations were observed at 
depths of 20 cm or greater and thus are at the lower extent or below the root zone. This 
study also found that Jamaica Bay marshes have a high degree of pyritization, thus 
indicating sulfide saturation of the sediment reactive iron pool (Cochran et al. 2009). This 
will result in a decreased capacity of sediment to buffer pore water sulfide levels and may 
result in the buildup of toxic sulfide levels (Berner 1984, Leventhal & Taylor1990, Raiswell & 
Canfield 1998, as cited in Cochran et al. 2009). 

2.3 The sustainability of tidal salt marsh restoration efforts in Jamaica Bay, New York  

With the completion of Elders Point East and Elders Point West there is an unprecedented 

opportunity for monitoring the long term success of such large scale restoration projects. 

The sustainability of restored/mitigated tidal marsh islands within Jamaica Bay will be 

critical for incremental environmental improvements in this heavily urbanized ecosystem. 

The next element for restoration in Jamaica Bay will be Yellow Bar scheduled to begin in 

2012 and will be the third large scale restoration project for the Bay. The ongoing 

multiagency effort to monitor benchmarks for success will be a unique opportunity for 

lessons learned and improving the sustainability of such restoration efforts in Jamaica Bay in 

addition to similar tidal salt marsh systems elsewhere. 

3. Restoration methods  

One of the navigation missions of the U. S. Army Corps of Engineers is to maintain 

navigable waterways at coastal inlets and may include placement of dredged material to 

create, restore, or mitigate salt marsh wetlands (Sánchez 2008). The Army Corps of 

Engineers has been involved with the creation and restoration of wetlands for more than 30 

years through the beneficial use of material dredged from navigational channels (Yozzo et 

al. 2004). Restoration at Elders Point East was the first such project led by the Army Corps of 

Engineers for Jamaica Bay and is part of a multi-phased effort with the first phase 

successfully constructed on Elders East in 2006. The second phase of these restoration efforts 

was Elders Point West with construction completed in 2010. Construction of the third 

restoration element for the Bay is anticipated to begin sometime in 2012. 

These current restoration efforts involve a multi-agency group led by the U. S. Army Corps 

of Engineers, NY District to restore the tidal wetlands of Elders Point East and Elders Point 

West. Critical to these efforts are the partnering agreements with the Port Authority of 

NY/NJ (for Elders East) and NYDEC and NYDEP (for Elders West) as well as the land 

owning agency, U.S. National Park Service. The USNPS wrote the monitoring protocol and 

their in-kind contributions essentially doubled the monitoring budget annually. For Elders 

Point East federal, state, and local agencies, with diverse missions, worked collaboratively 

for more than ten years towards the success of this effort. The cooperative funding among 

the various agencies has also been a success. Elders Point East was initially a CAP 

(Continuing Authorities Program) project. When funding for the program changed and less 

CAP money was available, it was pairing of the need for funding for a Restoration Project 

with the need for a harbor deepening project (i.e., Mitigation Project) that allowed this effort 

to come to fruition. 
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Restoration efforts at Elders Point East and West are being extensively monitored to ensure 
worthwhile ecological goals have been provided and are a long term sustainable benefit to 
Jamaica Bay. Monitoring parameters include vegetation, nekton, surface elevation (sediment 
erosion/accretion) benthic marco-invertebrates, goose/waterfowl grazing impacts, and 
habitat change. Challenges that need to be better understood, resolved, and overcome 
include compaction and erosion of placed material, and subsidence. The geomorphic 
sustainability and plant survival will be an ongoing challenge with the existing physical, 
chemical, and biological stresses that are present in the Bay. With potential for increase in 
storm surge via climate change, there are physical benefits to tidal salt marsh wetlands 
that will act as an energy dissipater against wave action (Dean 1978), but at the same time 
add further stress to this highly urbanized ecosystem. The objectives of this work are to 
analyze change in elevation (geomorphology) and to evaluate the initial response for 
vegetation at the restoration site at Elders East and West. At this time vegetation data is 
not available for Elders West. 

 

Fig. 4. Design fill template for Elders Point East and Elders Point West based on the 1974 
shoreline limits. 

3.1 Elders Point East  

Elders Point East used material from the maintenance dredging of the Rockaway Inlet 
navigational channel (120,800m3/ 158,000 yd3), Ambrose Channel (35,170 m3/46,000 yd3), 
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and purchased from Amboy Aggregate (34,405m3/45,000 yd3) totaling 190,374 m3 (249,000 
yd3) which was composed primarily of sand (98%). The project involved the placement of 
fill (e.g., sediment from maintenance dredging), regrading the site to appropriate elevations 
for the target community, and planting with native coastal plant species. This design was 
based on the approximate extent of the 1974 marsh coverage as reported by NYSDEC. A 
mixture of S. alterniflora, Spartina patens, and Distichlis spicata was planted since it is 
representative vegetation throughout the New York Harbor estuary. Figure 4 is the design 
fill template for Elders Point East and indicates the planting scheme for S. alterniflora, tri-
plug plantings (combination of all three species), and existing S. alterniflora hummock 
relocation. Approximately 580,000 S. alterniflora plugs, 45,876 S. alterniflora pots, 33,640 tri-
plugs (S. alterniflora, Distichlis spicata, and S. patens) were planted over a total of 16.2 ha. 
Most of the project (i.e., > 95%) was planted with S. alterniflora. Figure 5 is an aerial view 
showing the construction of Elders Point East which illustrates the grids created for 
plantings. The individual grids (cells) included waterfowl fencing to minimize predation by 
the Canada Goose population. 

 

Fig. 5. Aerial photograph taken near high tide during construction of Elders Point East 
October 2006. 

3.1.1 Methods for morphological monitoring (survey) Elders Point East  

Plantings on Elders Point East were completed in spring 2007, and the baseline 

monitoring data were collected in July 2007 using real time kinetic global positioning 

system (RTK-GPS) survey equipment. The first set of follow-on monitoring data was 
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taken in May 2009, again using RTK-GPS technology. The July 2007 data points were 

collected most densely throughout the southern portion of the island and were regularly 

spaced approximately 20 feet on-center. Data points were the least dense within the 

south-central portion of the island, where the muddy conditions can be very difficult to 

transverse. In the northern half of the island, data were collected along transect lines 

spaced approximately 100 feet apart. The May 2009 and July 2010 data points were 

collected along profile lines spaced approximately 100 feet apart, each beginning toward 

the center of the island and moving radially outward toward the shoreline. The average 

distance between points along the profile lines was approximately 30 feet and prominent 

features such as the vegetation line and the centerlines of the tidal creeks were also 

captured. Data collection was focused along the perimeter of the island where it was 

anticipated that sediment transport would be the most active. The collected data were 

post-processed using the National Geodetic Survey’s Online Positioning User Service 

(OPUS) and were plotted with ESRITM ArcMap® version 9.3. Both data sets were overlaid 

on top of one another and the areas that did not have a high coincidence of points 

between the data sets were blocked or “masked,” from being used to create a 3-

dimensional surface. These areas were blocked because their inclusion would have 

resulted in a greater degree of interpolation between the two data sets. By only capturing 

those areas with a higher coincidence of points between the two data sets, the resultant 

surface is more reliable. A resultant surface between the two data sets was created using 

ArcMap®’s Spatial Analyst extension. From this surface, areas of sediment erosion, 

deposition and of no sediment transport were determined. 

3.2 Elders Point West  

Elders Point West, with construction initiated in late 2009 and completed in mid-2010, 

involved beneficial reuse of dredge material from Anchorage Channel, the main 

navigational channel for New York Harbor. The total quantity of placed material was 

230,877 m3 (301,976 yd3) composed primarily of sand with some silt which created 23.4 ha 

of new tidal marsh area. The project involved the placement of fill, regrading the site to 

appropriate elevations for the target community. The planting scheme for Elders West 

was different from that at Elders East and may allow for a better understanding of species 

success once that vegetation data becomes available. For this planting scheme no S. 

alterniflora plugs or pots were included. All the low marsh plants were relocated S. 

alterniflora hummocks from the project site which covered approximately 7.0 ha. Of the 

23.4 ha of tidal marsh created, 1.62 ha was high marsh transition zone, 0.49 ha upland 

seeded area, 1.62 ha of no planting acting as a planting control area. A total of 0.61 ha was 

low marsh hummock relocation, replanted so that they were evenly spaced throughout 

the designated transplant area. There was also 1.62 ha of no planting zone with a 6.1 m 

low marsh planted perimeter, 0.65 ha of upland planting and seeding, 7.65 ha of low 

marsh vegetation, and 0.41 ha of seeded area planted by National Resources Conservation 

Service. The planted areas included 85,580 high marsh transition plants with a variety of 

tidal marsh wetland vegetation, 240 shrubs, and 60 wetland trees covering approximately 

1.6 ha. Figure 6 is an aerial view of Elders Point West showing the grids that include 

waterfowl fencing similar to Elders East. 
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Fig. 6. Construction of Elders Point West July 2010. 

3.2.1 Methods for morphological monitoring (survey) Elders Point West 

Plantings on Elders Point West were completed in spring 2010, and final as-built survey 

data were collected in September 2010. A second survey was conducted in May 2011, near 

the end of the maintenance period of the construction contract for Elders West. On each 

occasion, survey data were collected with sufficient density to generate 0.5 foot contour lines 

for the entire project site. An elevation surface for each survey was generated using the 

ArcGIS Spatial Analyst extension and a third surface was generated by differencing the 2010 

and 2011 elevation surfaces. From this surface areas of sediment erosion, deposition, and of 

no sediment transport were determined. 

4. Results and discussion  

Perhaps an important outcome of this project is that federal, state, and local agencies, with 

diverse missions, worked collaboratively for more than nine years towards the success of 

this effort. The cooperative funding among the various agencies has also been a success. 

Elders Point East was initially a CAP (Continuing Authorities Program) project and when 

funding for the program changed and less CAP money was available, it was the pairing of 

the need for funding for a Restoration Project with the need for a harbor deepening project 

(i.e., Mitigation Project) that allowed this effort to come to fruition. The construction of 

Elders East and West did not occur at the same time as a result of funding availability. 

Figure 7 is an aerial view from 2009 showing the completion of Elders East and 

preconstruction conditions of Elders West. Figure 7 illustrates the vegetation has become 

well established through the third growing season (2009).  
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Fig. 7. Aerial view of Elders Point 2009, inset with arrow indicating location at Elders Point 
East. 

4.1 Elders Point East 

Patterns of morphological change (erosion and deposition) from July 2007 to May 2010 at 

Elders Point East are illustrated in Fig. 8. There is a range in elevation change from 

approximately – 0.8 m (loss, erosion) to + 0.6 m (gain, deposition) during this time. The 

GIS methodology used did not permit an overall assessment determining a net change 

(loss/gain) in volume at Elders Point East. It is apparent however that there is some loss 

(as much as 0.8 m) along the southwest side of the marsh and an overall gain (up to 0.6 m) 

on the northeast portion. The elevation in the central portion of Elders East is not included 

Elders Point East 

Elders Point East  

Elders Point West  

Restoration at Elders Point 2009  
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in Figure 8 since this is the interior of the island and not subjected to the same current 

velocities and sediment transport. Not shown in Figure 8 is the sand spit that extends 

from the northwest tip of Elders East which has been a well established natural feature of 

the sediment transport in this area of Jamaica Bay. This spit was not planted with 

vegetation, remains in relative equilibrium, and is not part of this current tidal marsh 

restoration effort. 

Sediment elevation change from 2007 to 2009 provides a point-in-time measurement of 

elevation change and is indicative of the tidal energy that is acting upon the restored 

marsh platform. Anecdotal evidence, particularly in the no planting treatment on the 

southwest side of the island at Elders Point East, suggested that the variation in plant 

response may be related to sediment movement. Linear models of individual vegetative 

metrics for 2009 and the sediment elevation change from 2007 to 2009 were not significant. 

It is possible that vegetative response is related to other elevation metrics (i.e., initial 

constructed elevation, 2009 elevation, elevation change from 2008 to 2009). In addition, 

coordinates for vegetative plots were collected with a Garmin rino 530 GPS unit; thus 

providing low accuracy for vegetative plot locations. The accuracy of the plot location and 

the size of the plot buffer both affect pixel selection for GIS computation of a mean 

elevation change for each plot. 

For the first six months after the initial fill occurred (2006) much of the settlement would 

have taken place and therefore that data would not reflect a meaningful trend for change of 

elevation. The observed areas of loss (south west side of the marsh) and gain (north east 

side) are consistent with observed historic sediment transport in this area of Jamaica Bay. 

There is an existing sand spit that extends from the North West tip of Elders Point East and 

curves north east for more than 200 m and is visible at mean low water (MLW). This 

observed pattern of deposition is consistent with observed losses along the south west side 

of the island that are seen from this data (Fig. 8). Overall there was no appreciable change in 

elevation of placed material that would have lead to adverse conditions for the vegetation. 

For example, exposed roots were not observed in areas on Elders East where elevation 

change was measured to be on the order of 0.7 meters. 

Vegetation monitoring at the Elders East and reference marsh (JoCo) seeks to evaluate the 

response of vegetation to restoration and to determine if vegetation communities at the 

two marshes are converging. Following two full growing seasons, the vegetation 

communities in the restored and reference marsh have converged with respect to total 

canopy cover, S. alterniflora stem density, total standing aboveground biomass and annual 

net belowground production. Total vegetative canopy cover and bare ground canopy 

cover on the restored and reference marsh are equivalent. Messaros et al. (2010) 

determined that vegetative cover and S. alterniflora stem density were greater in the 

fertilized treatment; no differences were detected between treatments for total standing 

above- and belowground biomass as well as annual net belowground production. These 

results suggest that fertilization may affect vegetation form (i.e., the morphology of the 

aboveground portions of the plant) but not above- or belowground production. The 

complete discussion for Elders East four year post-construction vegetation monitoring 

results is available in Messaros et al. (2010). 
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Fig. 8. Elders Point East elevation changes during the monitoring period of July 2007 to 
July 2010. 

www.intechopen.com



 
The Functioning of Ecosystems 

 

164 

Messaros et al. (2010) concluded that no significant difference (p=0.6) was detected in total 

vegetative cover between the reference (JoCo) and restored (Elders East) marshes. 

Average densities (number of stems 0.25m-2) for vegetation (within 0.25m2 plots) indicate 

no significant difference was detected in stem density of S. alterniflora between JoCo and 

Elders East (p=0.1). Stem density of S. alterniflora was significantly greater in the fertilizer 

treatment than in the no fertilizer treatment (p=0.002). No difference in stem density of S. 

maritima was detected between the fertilizer treatments (p=0.3). Two hummock relocation 

areas have been monitored. In 2008, stem counts and height of S. alterniflora were also 

evaluated. All vegetative metrics differed significantly between the two hummock 

relocation areas. Canopy cover, stem density, and height of S. alterniflora were all greater 

within Relocation Area I. The relocation areas differ with respect to when hummocks 

were transplanted (June vs. October 2006); however, there may be other confounding 

factors. For example, canopy cover of S. maritima is also significantly greater at Relocation 

Area I. Recruitment of S. maritima at the end of the second full growing season would not 

be related to the timing of hummock transplant. Relocation Area I is noticeably wetter 

than Relocation Area II and a small tidal creek has developed adjacent to Relocation Area 

I, thus suggesting differences in hydrology. There are many possible explanations for 

partial success for restoration projects including poor hydrology (Race & Fonseca 1996). 

Relocation area II is bordered by a sand ridge that prevents flooding except during the 

highest tides. Future analysis of elevation surveys should be conducted to determine if 

differences in elevation are affecting localized hydrology and vegetative response within 

these treatments. The densities of both S. alterniflora (p<0.001) and S. maritima (p=0.0008) 

stems were significantly greater in hummock Relocation Area I as compared to Relocation 

Area II. 

4.2 Elders Point West 

Patterns of morphological change (erosion and deposition) from September 2010 to May 

2011 at Elders Point West are illustrated in Fig. 9. There is a range in elevation change from 

approximately – 0.6 m (loss, erosion) to + 0.6 m (gain, deposition) during this time. The 

interior portions of the island appear unchanged with some deposition occurring on the 

southern shore. There are areas of loss on the east and west side of Elders West. It is likely 

that some of this observed elevation change is the placed material achieving equilibrium 

given the local currents, tides, and wind.  

The first year vegetation monitoring data was not available at the time this publication 

went to press. Since there is stability in the fill material, the critical substrate for plant 

growth, it may be speculated that there will be very similar trends in the plant community 

with Elders West as reported with Elders East. Critical to long term goals is the 

sustainability of the placed fill and subsequent plant growth. Once vegetation becomes 

established it will stabilize the fill and thereby lend itself to a successful plant community. 

While the results for Elders Point West are limited to the one year time point much of the 

fill placement achieves equilibrium in a relatively short time. This is based on 

observations noted from the four year monitoring of the fill placement at Elders  

Point East. 
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Fig. 9. Elders Point West elevation changes during the monitoring period of September 2010 
to May 2011. 
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5. Conclusion 

Based on the survey monitoring to date, no appreciable sediment transport (loss or gain) has 
occurred and the material has remained in place since the construction of the project in 2006 
at Elders Point East and Elders Point West in 2010. On the west side of the Elders East there 
is some decrease in elevation and likely a result of the historic patterns of sediment 
transport occurring in a northerly direction of the accreting sand spit at Elders East. Without 
conducting a sediment transport study the authors reserve a final conclusion but this 
pattern is consistent with historic observation. 

For the S. alterniflora plugs (representing >95% of the planted vegetation) the plant 
communities in the restored (Elders East) and reference marsh (JoCo) have converged with 
respect to total canopy cover, stem density, total standing aboveground biomass, and 
annual net belowground production. This occurred after two full growing seasons. In 2008, 
by the end of the second growing season, the restored marsh achieved 50% vegetative cover, 
with S. alterniflora the dominant species. No significant difference was observed in total 
vegetative cover and stem density between Elders Point East and JoCo marshes for S. 
alterniflora. It appears that the vegetation for this project is achieving the desired outcome 
and providing the anticipated ecological benefits. Total vegetative cover was significantly 
greater in the fertilizer treatment as compared to the no fertilizer treatment. There also 
appears to be a benefit of increased stem density in S. alterniflora when fertilizer is used. 
However no benefit was detected for total standing above- and belowground biomass as 
well as annual net belowground production with the use of fertilizer. This project was 
successful in preventing the return of invasive species such as Phargmities australis and also 
showed no impact from predation as a result of the installation of waterfowl fencing. 

Perhaps the most significant conclusion is that there appears to be morphologic stability 
with the placed material at both Elders Point East and Elders Point West. During the post 
construction monitoring period the majority of the material has remained unchanged. This 
may have far reaching implications for future sustainability for restoration/mitigation 
efforts in Jamaica Bay. Further monitoring is scheduled and subsequent analyses will be 
essential to develop a more complete understanding of the sediment and plant community 
dynamics and stability. The need to continue the monitoring programs at Elders Point East 
and West does not diminish the important observations that have been reported herein as 
additional efforts are planned in the near future (i.e., restoration of Yellow Bar). Large scale 
tidal salt marsh restoration efforts in Jamaica Bay may serve as a benchmark for similar 
projects elsewhere. 

6. Acknowledgment  

The authors would like to acknowledge the U. S. Army Corps of Engineers, New York 
District, for the lead role in this multi-agency project in cooperation with U. S. National 
Parks Services (Gateway) (USNPS), Port Authority of New York and New Jersey 
(PANY/NJ), New York City Department of Environmental Protection (NYCDEP), New 
York State Department of Environmental Conservation (NYSDEC), New York State 
Department of State (NYDOS), National Marine Fisheries Program (NIMFP), NOAA 
Fisheries: Office of Protected Resources, the National Resources Conservation Service 
(NRCS), and U. S. Fish and Wildlife Services (USFWS). 

www.intechopen.com



 
Tidal Wetlands Restoration 

 

167 

7. References  

Benotti, M. J., Misut, P. E., Abbene M., & Terracciano, S. A. (2006). “Historic nitrogen 
loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005.” U. S. 
Geological Survey Open File Report, SIR 2007–5051. 

Berner, R. A. (1984). “Sedimentary pyrite formation: an update.” Geochimica et Cosmochimica 
Acta, 48, 605–615. 

Berner, R. A. (1980). “Early diagenesis: a theoretical approach.” Princeton Series in 
Geochemistry, Princeton University Press, Princeton, New Jersey, 241 pp. 

Black, F. R. (1981). “Jamaica Bay: a history.” Study No. 3, Division of Cultural Resources, 
North Atlantic Regional Office, U. S. National Park Service, U.S. Department of the 
Interior, Washington, DC, USA. 

Cahoon, D. R. (2008). Personal communication. 
Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K. L., Proffitt, E., & Perez, B. C. (2003). “Mass 

tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after 
Hurricane Mitch.” Journal of Ecology, 91, 1093–1105. 

Cahoon, D. R., Lynch, J. C., Hensel, P., Boumans, R., Perez, B.C., Segura, B., & Day Jr., J. W. 
(2002). “High-precision measurements of wetland sediment elevation: Recent 
improvements to the sedimentation-erosion table.” Journal of Sedimentary Research, 
72, 730–733. 

Christiano, M. (2010). GIS Specialist, Gateway National Recreation Area. email 
communication received by P. S. Rafferty on 2/11/2010. 

Cochran, H. K., Kolker, A., Hirschberg, D. J., Renfro, A. A., Heilbrun, C., Goodbred, S., Beck, 
A., & Finiguera, M. (2009). “Sulfur cycling in salt marshes of Jamaica Bay: Possible 
links to marsh loss.” Draft final report submitted to: U. S. National Park Service, 
Narragansett, Rhode Island. 

Dean, R. G. (1978). “Effects of vegetation on shoreline erosional processes.” Wetland 
functions and values: The state of our understanding, Proceedings of the National 
Symposium on Wetlands, American Water Resources Association, Minneapolis, 
Minnesota, 436–456. 

Dean, R. G., Dalrymple, A. R., Fairbridge, R. W., Leatherman, S. P., Nummedal, D., O’Brien, 
M. P., Pilkey, O. H., Sturges III, W., & Wiegel, R. L. (1987). “Responding to changes 
in sea level: Engineering implications.” National Academy Press, Washington, D. 
C.  

DeLaune, R.D., Nyman, J. A., & Patrick, Jr., W.H. (1994). “Peat collapse, ponding and 
wetland loss in a rapidly submerging coastal marsh.” Journal of Coastal Research, 10, 
1021–1030. 

Englebright, S. (1975). “Jamaica Bay: a case study of geo-environmental stresses: a 
guidebook to field excursions.” New York State Geological Association, Hofstra 
University, Hempstead, New York. 

Erwin, R. M., Cahoon, D. R., Prosser, D. J., Sanders, G. M., & Hensel, P. (2006). “Surface 
elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds 
along the Mid-Atlantic Coast, USA, with implications to Waterbirds.” Estuaries and 
Coasts, 29, 96–106. 

Gateway National Recreation Area (GATE) and Jamaica Bay Watershed Protection Plan 
Advisory Committee (JBWPPAC). (2007). “An update on the disappearing salt 

www.intechopen.com



 
The Functioning of Ecosystems 

 

168 

marshes of Jamaica Bay, New York.” U. S. National Park Service, U.S. Department 
of the Interior, Staten Island, NY, 73 pp. 

Goldhaber, M. B. & Kaplan, I. R., (1974). “The sulfur cycle.” In: Goldberg, E.D., Ahhrenius, 
G., Dyrssen, D., & Garrels, R. M. (Editors), The Sea.Volume 5: Marine Chemistry, 
Wiley-Interscience, New York, pp. 569–655. 

Goodbred, S.L., Cochran, J. K., & Flood, R. D. (2004). “Sedimentation history and budgets 
for the Jamaica Bay estuary-marsh system: Seasonal to decadal dynamics revealed 
through radiotracer studies.” In: Proceedings, Jamaica Bay’s Disappearing Salt Marshes, 
New York: Jamaica Bay Institute, Gateway National Recreational Area, National 
Park Service, 18 pp. 

Gordon, A. L. & Houghton, R. W. (2004). “The waters of Jamaica Bay: impact on sediment 
budget.” In: Proceedings, Jamaica Bay’s Disappearing Salt Marshes, New York: Jamaica 
Bay Institute, Gateway National Recreational Area, National Park Service, 18 pp. 

Gornitz, V. (1995). “Monitoring sea level changes.” Climate Change, 31, 515–544. 
Gornitz, V., Couch, S., & Hartig, E. K. (2001). “Impacts of sea level rise in New York City 

metropolitan area.” Global and Planetary Change: Elsevier Science, Amsterdam, 32, 
61-88.  

Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., & Fallon, D. (2002). “Anthropogenic and 
climatic-change impacts on salt marshes of Jamaica Bay, New York City.” Wetlands, 
22(1), 71–89. 

Hartig, E. K., Kolker, A., Fallon, D., & Mushacke, F. (2001). “Climate change and a global 
city: the potential consequences of climate variability and change – metro east 
coast.” report for the U. S. Global Change Research Programs, National assessment of 
the potential consequence of climate variability and change for the United States, 
Columbia Earth Institute, New York. 

Intergovernmental Panel on Climate Change (IPCC) (2007). “The physical science basis, 
contribution of working group I to the fourth assessment report of the 
Intergovernmental Panel on Climate Change.” Cambridge University Press, 
Cambridge, U. K. 

Jamaica Bay Ecosystem Research and Restoration Team (JBERRT) (2002). Final Report 2002. 
Volumes I, II, and III. Gateway National Recreation Area, Staten Island, New York 
and Aquatic Research and Environmental Assessment Center, Brooklyn, New York  

Kana, T .W. (1995). “A mesoscale sediment budget for Long Island, New York.” Marine 
Geology, 126, 87-110. 

Koch, M. S. & Mendelssohn, I. A., (1989). “Sulfide as a soil phytotoxin: differential responses 
in two marsh species.” Journal of Ecology, 77(2), 565–578. 

Kolker, A. (2005). “The impacts of climate variability and anthropogenic activities on salt 
marsh accretion and loss on Long Island.” Stony Brook, New York: Stony Brook 
University, Ph.D. thesis, 278 pp. 

Leventhal, J. & Taylor, C. (1990). “Comparison of methods to determine degree of 
pyritization.” Geochimica et Cosmochimica Acta, 54(9), 2621–2625. 

Mendelssohn, I. A., McKee, K. L., & Patrick, W.H. (1981). “Oxygen deficiency in Spartina 
alterniflora roots – metabolic adaptation to anoxia.” Science, 214, 439–441. 

Messaros, R., Rafferty, P., & Woolley, G. (2010). “Challenges and successes of tidal wetlands 
restoration in Jamaica Bay, New York.” ASCE Conference Proceedings, Watershed 
Management 2010, 343-363. 

www.intechopen.com



 
Tidal Wetlands Restoration 

 

169 

Morris, J. T. & Bradley, P. M. (1999). “Effects of nutrient loading on the carbon balance of 
coastal wetland sediments.” Limnology and Oceanography, 44, 699–702. 

National Research Council (NRC) (1987). “Responding to changes in sea level, committee on 
engineering implications of changes in relative mean sea level.” National Academy 
Press, Washington, D.C. 

New York City Department of Environmental Protection (NYCDEP) (2007). “Jamaica Bay 
Watershed Protection Plan.”  

 http://home2.nyc.gov/html/dep/html/dep_projects/jamaica_bay.shtml#plan. 
New York City Department of Environmental Protection (NYCDEP) (2006). “Planning for 

Jamaica Bay’s future: Preliminary recommendations on the Jamaica Bay watershed 
protection plan.” Jamaica Bay Watershed Protection Advisory Committee, 
Flushing, New York. 

New York State Department of Environmental Conservation (NYSDEC) (2001). “Strategies 
for addressing loss of intertidal marsh in the Maine District.”  

 http://www.dec.state.ny.us/website/dfwmr/marine/twloss.html. 
O’Grady, J. (2001). “Why so little marsh grass is waving in the bay.” New York Time, New 

York, May 13. 
Peeteet, D., Liberman, L., Higgiston, P. (2004). “Paleoecology and marsh compositional 

changes over the last millennium, Jamaica Bay, New York.” In: Proceedings, Jamaica 
Bay’s Disappearing Salt Marshes. New York: Jamaica Bay Institute, Gateway National 
Recreational Area, National Park Service, 18 pp. 

Peeteet, D., Liberman, L., Higgiston, P., Sritrairat, S., & Kenna, T. (2008). “Yamekoto JFK –
Paleoenvironmental Change from Jamaica Bay Marshes.” Presented at: State of the 
Bay Symposium, New York.  

 http://www.nyc.gov/html/dep/pdf/jamaica_bay/jbaysymp-
Dorothy_Peteet_Palaeoecology.pdf. (Oct. 4, 2009). 

Race, M. S. & Fonseca, M. S. (1996). “Fixing compensatory mitigation: what will it take?” 
Ecological Applications, 6(1), 94-101. 

Raiswell, R. & Canfield, D. (1998). “Sources of iron for pyrite formation in marine 
sediments.” American Journal of Science, 298, 219–245. 

Redfield, A. C. (1972). “Development of a New England salt marsh.” Ecological Monographs, 
42, 201–237. 

Roberts, L. (1993). “Wetlands trading is a loser’s game, say ecologists.” Science, 260(25), 1890-
1892. 

Rybczyk, J. M. & Cahoon, D. R. (2002). “Estimating the potential for submergence for two 
wetlands in the Mississippi River Delta.” Estuaries, 25, 985–998. 

Seliskar, D. M., Smart, K. E., Higashikubo, B. T., & Gallagher, J. L. (2004). “Seedling sulfide 
sensitivity among plant species colonizing Phragmites infested wetlands.” Wetlands, 
24(2), 426–433. 

Steinberg, N., Suszkowski, D. J., Clark, L., & Way, J. (2004). “Health of the harbor: The first 
comprehensive look at the state of the estuary.” New York: Hudson River 
Foundation, 82 p. 

Swanson, R. L. & Wilson, R. E. (2008). “Increased tidal ranges coinciding with Jamaica Bay 
development contribute to marsh flooding.” Journal of Coastal Research, 24(6), 1565–
1569. 

www.intechopen.com



 
The Functioning of Ecosystems 

 

170 

Tanacredi, J. T. & Badger, C. J. (1995). Gateway, a visitor’s companion, Stockpile Books, 
Mechanicsburg, Pennsylvania.  

Turner, R. E., Swenson, E. M., Milan, C. S., Lee, J. M., & Oswald, T. A. (2004). “Below-
ground biomass in healthy and impaired marshes.” Ecological Research, 19, 29–35. 

U.S. Fish and Wildlife Service (USFWS) (1997). “Significant habitats and habitat complexes 
of the New York Bight watershed, southern New England – New York Bight, Final 
Report.” Coastal Ecosystem Program, Charleston, Rhode Island. 

U.S. National Park Service (USNPS) (2001). “The Jamaica Bay blue ribbon panel on marsh 
loss and coastal sea level rise, a future agenda for mitigation and pilot 
investigations, Final Report.” National Park Service, Gateway National Recreation 
Area. 

Valiela, I., Teal, J. M., Allen, S. D., Van Etten, R., Goehringer, D., & Volkmann, S. B. (1985). 
“Decomposition in salt marsh ecosystems – The phases and major factors affecting 
disappearance of above-ground organic matter.” Journal of Experimental Marine 
Biology and Ecology, 89, 29–54. 

Valiela, I., Teal, J. M., & Persson, N. (1976). “Production and dynamics of experimentally 
enriched salt marsh vegetation: Belowground biomass.” Limnology and 
Oceanography, 21, 245–252. 

Wigand, C., Davey, E., & Johnson, R. (2008). “Nitrogen effects on salt marshes.” Presented at: 
State of the Bay Symposium. New York.  

 http://www.nyc.gov/html/dep/pdf/jamaica_bay/jbaysymp-
Cathy_Wigand_Nitrogen_Talk.pdf (Oct. 4, 2009). 

Wilson, R. E. & Flagg, C. (2008). “Circulation and mixing: Implications for sediment 
transport.” Presented at: State of the Bay Symposium. New York, New York. 
http://www.nyc.gov/html/dep/pdf/jamaica_bay/jbaysymp-
Robert_Wilson_Circulation.pdf. (Oct. 4, 2009). 

Yozzo, D. J., Wilber, P., & Will, R. J. (2004). “Beneficial use of dredged material for habitat 
creation, enhancement, and restoration in New York-New Jersey Harbor.” Journal of 
Environmental Management, 73, 39–52. 

www.intechopen.com



The Functioning of Ecosystems

Edited by Prof. Mahamane Ali

ISBN 978-953-51-0573-2

Hard cover, 332 pages

Publisher InTech

Published online 27, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The ecosystems present a great diversity worldwide and use various functionalities according to ecologic

regions. In this new context of variability and climatic changes, these ecosystems undergo notable

modifications amplified by domestic uses of which it was subjected to. Indeed the ecosystems render diverse

services to humanity from their composition and structure but the tolerable levels are unknown. The

preservation of these ecosystemic services needs a clear understanding of their complexity. The role of the

research is not only to characterise the ecosystems but also to clearly define the tolerable usage levels. Their

characterisation proves to be important not only for the local populations that use it but also for the

conservation of biodiversity. Hence, the measurement, management and protection of ecosystems need

innovative and diverse methods. For all these reasons, the aim of this book is to bring out a general view on

the biogeochemical cycles, the ecological imprints, the mathematical models and theories applicable to many

situations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Roy C. Messaros, Gail S. Woolley, Michael J. Morgan and Patricia S. Rafferty (2012). Tidal Wetlands

Restoration, The Functioning of Ecosystems, Prof. Mahamane Ali (Ed.), ISBN: 978-953-51-0573-2, InTech,

Available from: http://www.intechopen.com/books/the-functioning-of-ecosystems/tidal-wetlands-restoration



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


