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1. Introduction  

Plant invasions threaten natural and managed ecosystems throughout the world (Hobbs & 

Humphries, 1995). Invasive plants reduce species diversity through competition with native 

plant species, leading to local reductions in populations of native species. According to E.O. 

Wilson: “on a global basis…the two great destroyers of biodiversity are, first habitat 

destruction and, second, invasion by exotic species” (Simberloff et al., 1997). In some cases 

invasive plants act more as “passengers” than “drivers” of ecological change in degraded 

ecosystems (MacDougall & Turkington, 2005). In either capacity invasive plants are a 

significant biotic element to consider in evaluating the integrity of a given type of 

ecosystem. The spread of non-native plants throughout the world has a homogenizing 

impact on regional floras, particularly given the tendency of certain invasive species in 

forming monocultures or near monocultures. Yet the seriousness of plant invasions is 

sometimes called into question (Larson, 2007) and because invasion biology is a relatively 

young field (Davis, 2009), further research is required to better assess the impacts of invasive 

species on ecosystem function. 

Shrub-steppe ecosystems occur in North America in the rainshadow of the western 

mountain ranges. These habitats are characterized by relatively low preciptation and 

extremes of temperature with vegetation structure typified by scattered shrubs of various 

species such as Artemesia spp. (sagebrush) or Purshia tridentata (antelope-brush). Similar 

ecosystems are found throughout the world in high altitute temperate continental areas 

such as southwestern Russia, other parts of Asia, and South America. The South Okanagan 

Valley in British Columbia is representative of shrub-steppe ecosystems featuring P. 

tridentata prominently and is recognized federally as a biodiversity hot spot (Mosquin et al., 

1995). Isolated remnant grasslands are home to Provincially and Federally listed endangered 

wildlife and form a key component of the South Okanagan Conservation Strategy (Bryan, 

1996). A major contributor to the loss of biodiversity in these intermountain areas in British 

Columbia and throughout the Pacific Northwest of North America is the presence of 

extensive infestations of invasive species (Clements & Scott, 2011). Key invasive plants that 

degrade arid grasslands in this region include Centaurea diffusa (diffuse knapweed) and 
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Bromus tectorum (cheatgrass), which form large, spreading patches (Mack, 1981; Roché & 

Roché, 1999; Clements et al., 2007; Clements & Scott, 2011). 

Restoration of such areas is a serious challenge; a long-history of grazing, invasion of non-

native plants, other types of soil disturbance and habitat fragmentation in shrub-steppe 

habitats tends to simplify the ecosystem and reduce its integrity. Although Europeans 

arrived in the western U.S. decades earlier, it was during the 30 year period from the end of 

the U.S. civil war in 1865, that the steppe regions in western North America from British 

Columbia south to Nevada underwent a dramatic transformation from small isolated 

habitation by Europeans to the development of more permanent farmland and ranches 

(Meinig, 1968; Elliott, 1973). This resulted in the first serious weed invasion but many of the 

serious modern-day invaders such as B. tectorum did not arrive until around the turn of the 

20th century, but quickly made up for lost time covering large areas of these interior 

grasslands by 1914 (Mack, 1981; Mack, 1986). The large scale movement and grazing of 

cattle, coupled with the introduction of horticultural crops such as apples and other fruit 

trees in the 20th century has continued to provide disturbed conditions condusive to the 

spread of non-native plants (Krannitz, 2008; Clements & Scott, 2011). The native grassland in 

this area is dominated by shrubs such as P. tridentata and perennial bunchgrasses such as 

Pseudoroegneria spicata (bluebunch wheatgrass) and others such as Hesperostipa comata 

(needle-and-thread grass) (Atwood & Scudder, 2003; Erickson, 2003). The soils may often be 

shallow and sandy, but in the absence of heavy grazing or other pronounced disturbances, a 

microbiotic crust, dominated by mosses and lichens, is maintained and provides valuable 

ecosystem services such as soil moisture retention (Loope & Gifford, 1972; Atwood & 

Krannitz, 2000). 

A unique aspect of population dynamics in seed bearing plants is recruitment of 

populations over multiple time scales via seed banks. The invasive success of many non-

native species is attributed to a persistent soil seed bank (Baker, 1974; Holm et al., 1977; 

Roché & Roché, 1999). Seed banks of invasive species can be both indicative of past 

disturbances and predictive of future weed population dynamics, and thus have great 

significance to restoration ecology, although there is considerable scope for further work in 

this area (Bakker et al., 1996). Many non-native invasive plants, particularly annuals, 

produce persistent seed banks and thus are very difficult to remove from an ecosystem once 

established, particularly if disturbances such as soil tillage (Clements et al., 1996), fire 

(Mandle et al., 2011) or grazing (Clements et al., 2007) occur regularly. Seed bank sizes and 

dynamics vary according to ecosystem type (Leck et al., 1989), and are dependent on 

climatic factors, disturbance regimes, edaphic conditions and plant community structure. 

Thus the seed bank dynamics must be understood in these particular contexts. Two invasive 

alien plant species of particular interest in this system as previously mentioned are C. diffusa 

and B. tectorum. Both of these exhibit seed banks in response to disturbance, with the seed 

bank of C. diffusa tending to be more persistent (Clements et al., 2007). 

This chapter describes the results of a study examining various restoration treatments for 

the antelope brush ecosystem in the southern Okanagan and makes recommendations for 

the restoration of such systems. The objectives of the study, conducted from 1998-2003 were 

as follows: 
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1. measure temperatures under polyethylene sheets used in experimental solarization 
trials in the southern Okanagan,  

2. evaluate survival of diffuse knapweed and seeds of other native and non-native species 
in situ within solarization treatments, 

3. investigate effects of high temperatures on Centaurea diffusa (diffuse knapweed) and 
Sporobolus cryptandrus (sand dropseed) seed viability, using temperatures equivalent to 
those that would be experienced under solarization, and  

4. evaluate an array of alternative restoration treatments involving control of non-native 
species or seeding of native species.  

2. Study area 

The study was conducted in a semi-desert shrub steppe ecosystem dominated by Purshia 

tridentata (antelope bitterbrush) in the southern, more arid section of the Okanagan Valley in 

British Columbia, Canada. This ecosystem occurs within the northernmost extension of the 

intermountain plateau which extends southward to Nevada. The southern Okanagan valley 

receives just over 300 mm of precipitation annually. Precipitation is bi-modal: early summer 

(June) and mid-winter (December – January) (Chilton 1988). The native bunchgrass 

community persists but is highly invaded by non-native grasses and forbs, particularly 

where heavy grazing has occurred (Atwood and Scudder, 2003; Clements et al., 2007; 

Krannitz, 2008). The soil is typically overlaid with a microbiotic crust comprised of a 

mixture of lichen, moss, liverworts, algae, fungi, and bacteria. Atwood and Krannitz (2000) 

found that five days after a rainfall event in this region, crusted soils retained an average of 

31% of the initial soil water, while bare soils retained just 9.5%. 

The research was conducted at the Osoyoos Desert Centre, a site located several km 

northwest of Osoyoos, British Columbia (Fig. 1). The Osoyoos Desert Society acquired 50-ha 

of shrub steppe with a P. tridentata system heavily invaded by non-native plants but still 

containing substantial native plant diversity. The P. tridentata shrub steppe is susceptible to 

livestock grazing, with heavy grazing resulting in reduction of native species and increased 

cover of invasive nonindigenous species (Krannitz, 2008). Historically, cattle grazed the 

Osoyoos Desert Centre site every year between March and June. Prior to the establishment 

of the Centre, about 40 cattle were removed from the site. 

 

Fig. 1. Antelope brush (Purshia tridenta) landscape at the Osoyoos Desert Centre study site, 
near Osoyoos, British Columbia, Canada; photo courtesy of the Osoyoos Desert Centre 

3. Research methods 

In 1998, when the Osoyoos Desert Centre was established, plots were set up on the site in 
five replicates to examine the impact of various restoration treatments.  

www.intechopen.com



 
Diversity of Ecosystems 

 

396 

3.1 Restoration treatments 

Six different restoration treatments were put in place utilizing 10 x 10 m plots at the 
Osoyoos Desert Centre site (Table 1). 

 

Treatment Year initiated 

Solarization 1998 

Native bunchgrass hayseeding 1998 

Removal of livestock grazing (controls) 1998 

Manual + chemical control of Centaurea diffusa 1999 

Broadcast seeding of natural grasses 2000 

Addition of native vesicular arbuscular mycorrhizae and native seed 2000 

Table 1. Restoration treatments at the Osoyoos Desert Centre site, 1998-2003, showing 
treatment type and year initiated 

3.1.1 Solarization 

Solarization plots were randomly chosen from a subset of plots with a high percent cover of 
diffuse knapweed (two plots per replicate for a total of 10 plots). Solarization plots averaged 

27± 12 SD% cover of diffuse knapweed. Polyethylene sheets were placed over the entire 10  
10 m plot in 1998, and left in place for a minimum of two growing seasons. The plastic was 
removed from 5 of the plots in April 2000 (plastic removed from 1 plot per replicate). 
Vegetation data were collected from the plots before the plastic was put down and following 
its removal (June 2000 and 2002). 

3.1.2 Native bunchgrass hayseeding 

The hayseeding experiment was initiated on two plots per replication (10 plots total) in 
September 1998. As seed matured, seed heads and plant stalks were cut from four native 
bunchgrasses; Aristida longiseta (red three-awn), Hesperostipa comata (needle and thread 
grass), Sporobolus cryptandrus (sand dropseed), and Pseudoroegneria spicata (bluebunch 
wheatgrass). The plant material was collected from natural shrub-steppe communities 
within the South Okanagan Basin Ecosection. Approximately 200 litres of plant material (50 
litres from each species) was distributed evenly over each 100 m2 plot. 

3.1.3 Removal of livestock grazing (controls) 

In 1998, two randomly chosen 100-m2 plots in each replication were established as control 
plots (10 plots total). Species identity and percent cover data were collected annually, in 
June, from 1998 to 2002. The control plots were monitored to document changes in the plant 
community without livestock grazing or restoration activity. 

3.1.4 Manual and chemical control of Centaurea diffusa 

The manual control of C. diffusa experiment was to determine the most effective time to 
hand weed C. diffusa, and whether weed density was related to the timing of the manual 
control. The first hand pulling was scheduled for early May, after which monthly treatments 
were scheduled if weed density was greater than 25% of the original C. diffusa cover.  
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The experiment for the chemical control of C. diffusa was implemented in 2000. C. diffusa 
plants in two 100-m2 plots per replication (10 plots) were spot sprayed with an over-the-
counter broadleaf herbicide, Killex, at the recommended label rate of 1.85 kg active 
ingredient per hectare in May 2000. Killex, a combination of 2,4-D, mecoprop, and dicamba 
was used in the chemical control experiment to determine if adequate control of C. diffusa 
could be obtained using a less expensive broad-leaf herbicide with less residual than the 
commonly used Tordon 22K (picloram). 

3.1.5 Addition of native vesicular arbuscular mycorrhizae and native seed 

Five 100-m2 plots were divided into four 25-m2 subplots and two treatments (Nurse plant 
inoculant and Soil-Root inoculant) and two control plots (no inoculant) were randomly 
established in each plot. The experimental plots were tilled, inoculated or not then seeded with 
the native grass seed mix at 28 kg per ha. The experiments were installed in the fall of 2000 and 
percent cover data for the seeded native grasses were collected in June 2001 and 2002. 

3.1.6 Broadcast seeding of natural grasses 

Broadcast seeding experiments were initiated in October 2000. The 100-m2 plots were 

double split, producing four 25-m2 subplots. One-half of the plots were tilled to mimic soil 

disturbance that would be associated with development projects. Shrubs remained, but 

existing herbaceous vegetation was cut and removed from the plot before tilling and the soil 

was packed after tilling. Standing herbaceous vegetation was also cut and removed from the 

no-till plots. Non-native species remaining in the plots were spot treated with the herbicide 

glyphosate applied at the full label rate. 

The seed mix consisted of four perennial native bunchgrasses (Aristida longiseta, Hesperostipa 

comata, Sporobolus cryptandrus, and Pseudoroegneria spicata) and one annual agronomic grass 

Lolium multiflorum (annual ryegrass). All native grass seed used in the mix was collected 

from the area immediately adjacent to the research site. The native grasses were combined 

evenly in the mix (25% live seed per species) and seed rates were 28 kg per ha (1027 seeds 

per m2) and 41 kg per ha (1504 seeds per m2). Application rates were adjusted to account for 

the germination rate of the collected seed. Each seed rate was broadcast on one-half of the 

100-m2 plot and the soil was rolled after seeding. 

3.2 Above-ground plant population monitoring 

Plant species identity and percent cover data for all vascular plant species were collected 
annually for each of the 10 x 10 m plots, in June, from 1998 to 2002. Soil texture data 
collected from the plots in 1998 identified differences in soil texture between the 
replications. Replicates 1-4 contained significantly more silt and significantly less sand than 
Replicate 5. As a result, for many of the experiments, data from Replicates 1 to 4 were 
analysed separately from data collected from Replicate 5. 

3.3 Seed bank studies 

A hand coring device was used to collect 2.3  10 cm soil cores. In May of 1999, three cores 

were randomly taken from each 10  10 m plot sampled and bulked, except in the case of the 
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solarization plots wherein the sampling procedure was repeated three times to obtain a 

larger sample of C. diffusa seeds (collecting a total of nine 2.3  10 cm cores from each plot). 

Seeds were extracted from the soil using the soil flotation method (Malone, 1967). The soil 

was dispersed using an aqueous solution of sodium hexametaphosphate (50 g L-1) and 

sodium bicarbonate (25 g L-1). Magnesium sulfate (75 g L-1) was added to the aqueous 

solution to extract the seeds by flotation. Each soil sample was mixed slowly with 400 ml of 

the chemical solution, and agitated for two minutes. The organic matter was decanted 

through a 1.25 mm sieve, with a finer 0.1 mm sieve below. Any seeds appearing on the 1.25 

mm were collected. The solution was then re-mixed with the inorganic material to allow any 

remaining seeds to achieve flotation. This solution was then re-decanted twice more through 

the 0.1 mm sieve. The organic material trapped by the 0.1 mm sieve was placed to dry in a 

Petri dish for a minimum of one week before the seeds were counted.  

Germination tests were done on seeds of the following species as they were extracted from 

the samples: Sporobolus cryptandrus, Centaurea diffusa, Stipa comata and Bromus tectorum. 

Seeds were placed into Petri dishes with a Whatcom filter paper and moistened with 

deionized water. The dishes were then placed in a growth chamber set at 14 hours light at 

25°C and 10 hours dark at 15°C. After two weeks under these conditions, the germinated 

seeds were counted using a dissection microscope. 

3.4 Experimental exposure of seeds to high temperatures 

Temperatures within the solarization plots ranged as high as 78.0 C (Table 2). The maximum 

ambient temperature recorded was 39.9 C. The mean daily high temperature for the period 

when temperatures were recorded from July 27-Oct. 9 was 26.9 C.  

 Solarization temperatures Ambient air temperatures 

Time 
period 

Highest 
Recorded 

Mean 
daily 
max

# days 
above 
40 C

Highest 
recorded 

Mean daily 
max 

August 75.1 64.3 (11.1) 28.4 (1.6) 39.9 30.8 (5.1) 

September 62.5 52.9 (9.7) 21.2 (4.8) 30.88 24.3 (4.7) 

July 27- 
October 9 

78.0 57.3 (13.0) 56.2 (8.0) 39.9 26.9 (6.4) 

Table 2. Temperatures (± standard deviation) at the soil surface under solarization 
compared to ambient air temperatures in 1999 at Osoyoos, British Columbia, Canada 

The temperatures under solarization were marginally higher than temperatures of 60-70 C 

reported in Mississippi (Egley, 1983), 42-52 C recorded in Israel (Horowitz et al., 1983), and a 

57 C maximum recorded in Syria (Linke, 1994). As indicated by the ambient temperatures, 

summer temperatures near 40 C are not uncommon in the southern Okanagan valley, and 

thus solarization treatments attain high temperatures. The peak temperatures usually 

occurred in early afternoon, but as the example readings from the first week of August 

indicate (Fig. 2), the duration of periods above 40 C frequently persisted at least 5 hours. On 

this basis, an experimental period of 5-h exposure was chosen for heat-shock experiments, 

along with a 1-h exposure for comparison. 
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Fig. 2. A seven day sequence of hourly recorded temperatures within a solarization plot in 
the southern Okanagan valley of British Columbia, Canada (plot #507 which had the highest 
recorded temperatures) 

Seeds of both the invasive alien species, C. diffusa, and the native species S. cryptandrus 

were tested for resilience to high temperatures that would be experienced under 

solarization treatments. Seeds for C. diffusa heat shock tests (Mangrich & Saltveit, 2000) 

were collected from the field in the fall and stored dry at room temperature prior to 

exposure to high temperatures in the laboratory. Seeds of S. cryptandrus for testing were 

randomly selected from the seed bank samples collected at the Osoyoos Desert Centre 

study site. 

Seeds in Petri dishes were exposed to a given temperature for either 1 h or 5 h, with Petri 

dishes lined with dry or damp filter paper to signify dry or wet treatments, respectively. 

Temperatures tested for C. diffusa were 40, 50, 60, 70, 80, 90, and 100 C; temperatures tested 

for S. cryptandrous were 70 and 110 C. The 5 h period was to simulate the approximate 

duration of exposure to peak temperatures experienced daily under solarization in the field. 

After the high temperature exposure, seeds were removed from the oven and tested for 

germination (Fig. 3).  

Seeds were tested for germination in a growth cabinet maintained at a day/night regime of 

25 C/15 C, and a 14-h photoperiod, consistent with the germination requirements of diffuse 

knapweed (Nolan & Upadhyaya, 1988). Seeds were placed on moist filter paper. Protrusion 

of the radical by about 2 mm was the criterion for germination. After two weeks, 

ungerminated seeds were tested for viability using the tetrazoium method (Lakon, 1949; 

Van Waes & Debergh, 1986). A 1% 2, 3, 5-triphenyltetrazolium chloride (TTC) solution was 

made by dissolving 5 g of TTC in 500 ml of sterile distilled water. The pH was adjusted to 7 

with 1 M NaOH. Seeds were dissected to expose the embryos and soaked in water prior to 

adding the tetrazolium solution. The embryo was evaluated for color change within 8 h. 
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White embryos that turned pink were recorded as viable. Seeds with embryos that failed to 

change color, or that were soft and showing signs of decay were evaluated as nonviable. In 

the case of seeds of C. diffusa exposed to 100 C, the embryos took on a distinctly different 

appearance, and thus the results for the tetrazolium test were not reported. 

 

Fig. 3. Germinating seeds of Sporobolus cryptandrus; photo by Hannah Buschhaus 

4. Restoration treatment results 

More than 70 vascular plants were recorded in the above-ground communities in the 

Osoyoos Desert Centre plots during the 5-year study. Only 28 species were identified in the 

seed bank (Table 3), although several species in the seed bank were unidentified. This 

asymmetry between above-ground and seed bank communities is common to most 

ecosystems, including the antelope brush ecosystem (Clements et al., 2007). 

The four dominant species in terms of density m-2 identified in the seed bank were 

Sporobolus cryptandrus (66-67% over the two sampling periods), Centaurea diffusa (10-14%), 

Polygonum douglassii (6-9%) and Verbena bracteosa (6%). This was similar to the pattern 

seen in another study which encompassed 10 sites in the southern Okanagan, but did not 

include the Osoyoos Desert Centre Site (Clements et al. 2007) with the exceptions that B. 

tectorum was more abundant at these other sites and V. bracteosa did not figure 

prominently. Bromus tectorum comprised 2% of the seed bank on average in the Osoyoos 

Desert Centre study; in the study spanning 10 sites B. tectorum seed comprised 21% of the 

seeds found in the seed bank (Clements et al. 2007). 

Of these four dominant seed bank species, only C. diffusa was not native, and as long-term 

strategies for restoration of plant communities and associated ecosystems are developed, 

seed banking native species such as S. cryptandrus, P. douglassii, and V. bracteosa can be 

valuable facets of such a strategy, and represent significant potential species for seeding 

(Clements et al., 2007). 
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Species 
Density m-2 

in 1999 
Density m-2 

in 2002 

Achillea millefolium 9 17 

Arabis hoelboelii 9 0 

Arenaria serpyllifolia 62 26 

Astragalus purshii 9 0 

Bromus tectorum 832 1223 

Centaurea diffusa 6945 7147 

Collinsia parviflora 0 245 

Delphinium bicolor 18 35 

Gypsophila paniculatum 1053 1276 

Lewisia rediviva 0 9 

Linaria dalmatica 88 262 

Microsteris gracilis 327 122 

Myosotis arvensis 0 26 

Myosotis stricta 318 0 

Phacelia linearis 9 0 

Plantago patagonica 522 926 

Polemonium micranthum 318 507 

Polygonum douglasii 2875 6361 

Potentilla recta 0 44 

Pseudoroegneria spicata 53 253 

Purshia tridentata 44 166 

Rumex acetosella 257 87 

Setaria virdis 0 17 

Sporobolus cryptandrus 32176 47803 

Verbascum thapsus 9 52 

Verbena bracteosa 2796 4115 

Vicia americana 0 17 

Zygadenus venenosus 9 149 

Table 3. Mean densities per m2 for the 28 vascular plant seeds identified in the seed bank in 
the 10 x 10 m plots across all treatments at the Osoyoos Desert Centre site in 1999 and 2002. 

4.1 Restoration treatment results by treatment 

The results of the restoration treatments revealed some major changes in the plant 

community over the five year period, both in terms of the above-ground cover (Atwood & 

Scudder, 2003) and in terms of the seed banks among the six restoration treatments. 
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4.1.1 Solarization 

In terms of above-ground vegetation, five weed species were recorded in the solarization 

plots in 1998 prior to the treatment. In June 2000, two months after the plastic was removed 

three of the species as well as two new weeds were found in the plots. The average cover of 

C. diffusa, and Verbascum thapsus (mullein) was greatly reduced from the 1998 level, but it 

was evident from the above-ground vegetation growth and seed banks (Fig. 4) that 

solarization had not killed the seeds. Bromus tectorum (cheatgrass) was the third species 

evident in the plots in June 2000, however seed from it and two new weed species that were 

found, Meliotus alba (sweet white clover) and Sisymbrium loeselii (Loesel’s tumble= mustard), 

likely moved into the plots between April and June. Agropyron cristatum (crested 

wheatgrass) and Tragopogon dubius (yellow salsify) were recorded in the solarization plots in 

1998 but were not evident in 2000. 
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Fig. 4. Mean seed bank composition of solarization plots at the Osoyoos Desert Centre, 
comparing 1999 seed banks (solid bars) to 2002 seed banks (hatched bars); for full species 
names see Table 3 

Seed bank analysis also indicated that seeds of many plant species were present both after 

one year of the treatment (1999) and after the solarization treatment in 2002 (Fig. 4). The 

same four species that dominated the seed bank throughout all plots were dominant in the 

solarization plots: S. cryptandrus, C. diffusa, P. douglassii and V. bracteosa. Interestingly all four 

species increased between 1999 and 2002 despite the solarization treatment, with S. 

cryptandrus exhibiting an increase from a mean of 7 seeds per sample to 24 seeds per sample. 

As was the case in the above-ground vegetation the invasive alien species C. diffusa and B. 

tectorum were present in the plots after the plastic was installed in 1999, although only C. 

diffusa seeds were found in 2002 samples. 
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Germination tests done on seeds of B. tectorum, C. diffusa, and S. cryptandrus revealed that 

some of the seeds were clearly viable despite the extremely high temperatures experienced 

under the plastic (Fig. 5). In fact, the pattern of germination among the three species, with S. 

cryptandrus exhibiting >40% germination, and C. diffusa and B. tectorum exhibiting much 

lower germination percentages was consistent with the pattern seen in all restoration 

treatments. 
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Fig. 5. Percent germination of seeds of three species (Bromus tectorum, Centaurea diffusa and 
Sporobolus cryptandrus) from the soil under solarization treatments at the Osoyoos Desert 
Centre site in 1999 (solid bars) and 2002 (hatched bars) 

4.1.2 Native bunchgrass hayseeding 

The hayseed material added new species to the hayseed plots. Pseudoroegneria spicata was 

not recorded in the hayseed plots in 1998 but in 2002 P. spicata accounted for about 1% of the 

cover. Hesperostipa comata was also newly recorded in Replicate 5 hayseed plots in 2002 

where H. comata cover averaged of 9.0% ± 5.5% but its cover did not increase in Replicates 1-

4. The hayseed material did not significantly increase the percent cover of S. cryptandrus, 

and the seed bank comparison between 1999 and 2002 showed an 80% decline in mean 

number of seeds of S. cryptandrus per sample. 

4.1.3 Removal of livestock grazing (controls) 

The removal of livestock had a marked effect on vegetation components across the site. 

Although there was no change in the average cover of shrubs during the five years, herb 

and native grass cover increased significantly (P < 0.05) and non-native (weed) cover 

decreased significantly (P < 0.05).  

The largest reduction in weed cover occurred between 1998 and 1999, the year following the 

removal of cattle. Weed cover dropped 71% in Replicates 1 to 4 and 77% in Replicate 5 over 

the four years. Centaurea diffusa was the dominant weed on site in 1998 but in 2002, 

Agropyron cristatum (crested wheatgrass), which had been seeded by the former lessee, was 

the dominant non-native species. In terms of seed banks, small increases were seen in the 

native species S. cryptandrus but also in non-native species such as C. diffusa (Fig. 6). 
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Fig. 6. Mean seed bank composition of control plots at the Osoyoos Desert Centre, 
comparing 1999 seed banks (solid bars) to 2002 seed banks (hatched bars); for full species 
names see Table 3; note A. spicatum = P. spicata 

4.1.4 Manual and chemical control of Centaurea diffusa 

The May 1999 hand weeding (manual treatment) of C. diffusa drastically reduced the 

average cover in the plots between 1999 and 2002 and there was a significant difference in 

the average cover between the manual treatment plots and control plots (no-treatment) in 

1999 and 2000 as a result of the one hand weeding in May 1999 (P<0.05). However, C. diffusa 

was decreasing across the site and by 2001 there was no difference in the cover of C. diffusa 

between the plots that received treatment and those that did not. There was an average of 

2.5 C. diffusa seeds per sample in the manual removal plots in 1999; the C. diffusa seed bank 

persisted through to 2002 at the same level. 

Chemical control with Killex reduced C. diffusa cover from an average of 30.33% ± 2.74% in 

2000 to 0.33% ± 0.21% in 2001. However, in 2001 there was no difference in the average 

cover of C. diffusa between plots treated with Killex and control plots (P > 0.05). Over the 

five years of the methods research project, C. diffusa decreased rapidly across the site. Over 

the long-term, the control plots (i.e., merely removing livestock) showed the same level of 

decline as the plots where C. diffusa was treated. Gayton (2011) showed that the period from 

1998-2002 was the beginning of a long-term decline in populations of C. diffusa on the site 

due to predation by several insects introduced to the region to provide biological control, 

resulting in virtually zero percent cover on the site by 2009. 
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4.1.5 Addition of native vesicular arbuscular mycorrhizae and native seed 

Although initially very little difference was seen due to the addition of native vesicular 

mycorrhizae, by 2001, there was a significantly higher average cover of P. spicata in the plots 

inoculated with VAM and this relationship was still evident in 2002. Cover of the native 

grasses did not change significantly between 2001 and 2002 except for H. comata, which 

more than doubled in this one year. The seed bank of S. cryptandrous in these plots increased 

three-fold between 1999 and 2002, but the 2002 level was just 12 seeds per sample. 

4.1.6 Addition of native seed 

Significantly greater cover of native grasses occurred in no-till versus tilled seedbed 

preparation (P<0.05). After one growing season, cover of seeded grasses in tilled plots 

averaged 9.13% ± 1.59 compared to 26.57% ± 2.99 in no-till plots.  

After one growing season there were significant differences in the percent cover of the 

native grass seedlings, but it differed by species. There was little response in % cover by 

P. spicata or S. cryptandrus but A. longiseta and H. comata responded differently in the 

different replications; S. cryptandrus did tend to exhibit moderate increases from 1999 to 

2002 in the seed bank in all seeding treatments. The average cover of A. longiseta was 

significantly higher in the sandy soils of Replicate 5 (P <0.05) and the average cover of H. 

comata was significantly higher in Replicates 1 to 4, which contained soils with a higher 

silt content (P <0.05). 

4.2 Overall restoration treatment results  

On the Osoyoos Desert Centre research site, locally collected natural grasses established 

successfully as a result of both hayseeding and broadcast seeding. Broadcast seeding was 

more effective than hayseeding on undisturbed soils and seeding rate (1027 seeds per m2 

versus 1504 seeds per m2) did not affect establishment. Further work is required to 

determine if the level of plant establishment is a reflection of the carrying capacity of the 

local soils, given their low moisture and nutrient availability (Wicklow, 1994) or the result of 

self-induced seed dormancy, which has limited germination in harsh environmental 

conditions (Halvorson & Lang, 1989; Allen et al., 1994; O’Keefe, 1996). 

The hayseed appeared to repress one of the most common native grasses on the site, S. 

cryptandrus. The average cover of S. cryptandrus fell slightly in Replicates 1-4 over the four 

years as compared to an 18% increase in cover in the control plots. The cover of S. 

cryptandrus did not decrease in Replicate 5 where light availability was likely higher, even 

with the hayseed cover. Sabo et al. (1979) reported germination of S. cryptandrus increased 

with light availability. In contrast, the hayseed cover enhanced P. spicata and H. comata 

establishment. Pseudoroegneria spicata, absent from the research plots before seeding, only 

established in areas that received the hayseed mulch or vasicular arbuscular mycorrhizae 

(VAM) inoculant. All of the seeded grasses are mycorrhizal (Trappe, 1981) and VAM is 

particularly critical for the establishment of warm season grasses (Clapperton & Ryan, 2001), 

which would include A. longiseta and S. cryptandrus. To date, VAM colonization levels that 

will improve grass establishment are unknown. 
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Species establishment was also influenced by soil type. Aristida longiseta had higher 
establishment in sandier soils, while H. comata did best in siltier soils. Both species are 
promoted as drought tolerant species and yet the limited establishment of A. longiseta and 
restricted conditions favouring establishment of H. comata suggests that they were affected 
by dry conditions experienced in the South Okanagan during the interval of the study. 
Weaver (1968) found that A. longiseta decreased during extended droughts.  

Solarization was not an effective weed control method for the primary weeds on the 
Osoyoos Desert site. Centaurea diffusa and V. thapsus germinated readily following the 
removal of the plastic, indicating the 75 C recorded under the plastic during treatment was 
not sufficient to kill the seeds (see also section 5). In addition, solarization resembles 
broadcast herbicide treatment, exposing large expanses of bare soil after treatment. 
Revegetating solarized areas with native species will also require a consistent and long-term 
weed control program. 

Manual and chemical control of C. diffusa did reduce the weed component, however results 
were confounded by biological control agents, which were also onsite. In one-year weed 
cover in the plots monitored for the effect of the removal of livestock declined by about 75% 
and over five years there was a significant increase in native grass and herb cover. The rapid 
decline of C. diffusa was puzzling since the species is known to have an extensive and long-
lived seed bank. Reduced soil disturbance is a factor, because C. diffusa did germinate in the 
tilled plots. The presence of few viable knapweed seeds on the site may be indicative of the 
successful result of Sphenoptera jugoslavica (a beetle utilized as a biological control agent), 
which occurs throughout the area. Similarly, throughout the region major declines in C. 
diffusa due to success of biological agents have been observed (Myers et al., 2009; Gayton, 
2011). By 2002, A. cristatum was the dominant non-native species on the site. 

5. Solarization and high temperature exposure 

As well as the indications from both above-ground cover and seed bank sampling of the 
solarization plots, experimental exposure of seeds of C. diffusa and S. crypandrus to 
temperatures even higher than solarization temperatures served to confirm that seeds of 
both species are highly resilient to high temperatures. 

5.1 Solarization and high temperature impacts on seeds of Centaurea diffusa 

Fewer diffuse knapweed seeds per sample occurred in the non-solarization samples than 

in the solarization samples (P<0.05, student's t-test). There were 0.98  1.1 SD and 2.2  2.6 
SD diffuse knapweed seeds per sample, in non-solarization and solarization samples, 
respectively. This amounted to a total of 71 seeds in the solarization plots and 39 seeds in 
the non-solarization plots. Three seeds from non-solarization plots and one seed from the 
solarization plots germinated. No other non-solarization plot seeds were found viable by 
the tetrazolium test, while 2 additional seeds from solarization plots were evaluated as 
viable. There was no difference (P<0.05) between mean viability of seeds per sample, 

which was 0.10  0.31 SD and 0.06  0.24 SD seeds per sample for solarization and non-
solarization plots, respectively. The relatively low viability of diffuse knapweed seeds of 
4% within solarization plots is similar to a value of 3% recorded in another study of seed 
banks in the southern Okanagan (Clements et al., 2007). Germination and viability tests 
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indicate it is possible for diffuse knapweed seeds to remain viable despite exposure 
within solarization treatments to temperatures frequently ranging over 40 C with peaks 
greater than 70 C. 

Germination did not differ with the length of the heat shock treatment, although there were 
differences in the percent of germination between wet and dry seeds (Table 4). There were 
no differences among seeds exposed to 40 C, whether wet or dry with all treatments 
exhibiting germination of 60% or higher. Non-heat shocked control germination percentages 
ranged from 40-70%. Germination was significantly reduced to less than 15% for wet seeds 
exposed to 50 C and no germination was observed for wet seeds exposed to temperatures of 
60 C and higher. By contrast, dry seeds germinated following exposure of temperatures up 
to 90 C, although the germination percentage was significantly reduced. The germination 
percentage for dry seeds progressively declined with increasing temperatures. Germination 
of 21 ± 29 SD % and 18 ± 25 SD % was recorded after 1-h and 5-h exposures of dry seeds to 
90 C, respectively. No germination of dry seeds was observed following exposure to 100 C, 
and the seed embryos exhibited a liquefied appearance.  

 

Temperature (C) 5 h wet 1 h wet 5 h dry 1 h dry 

40 60 (24) Aa 80 (13) Aa 83 (16) Aa 76 (23) Aab 

50 12 (16) Bb 13 (28) Bb 52 (31) Aab 71 (34) Aabc 

60 0 (0) Bb 0 (0) Bb 69 (28) Aab 90 (12) Aa 

70 0 (0) Bb 0 (0) Bb 56 (38) Aab 56 (15) Abc 

80 0 (0) Bb 0 (0) Bb 42 (23) Abc 44 (38) Acd 

90 0 (0) Ab 0 (0) Ab 18 (25) Acd 21 (29) Ade 

100 0 (0) Ab 0 (0) Ab 0 (0) Ad 0 (0) Ae 

Table 4. Mean % germination (± standard deviation) for Centaurea diffusa seeds heat shocked 

for either 1 h or 5 h at various temperatures; means within a row followed by the same 

upper case letter are not significantly different at the 5% level; means within a column 

followed by the same lower case letter are not significantly different at the 5% level (Fisher's 

Protected LSD test) 

Although no seeds incubated in a moist environment germinated above 50 C, the 
tetrazolium test indicated that some seeds were viable after exposure to higher 
temperatures, although percent viability was significantly lower for these treatments than 
for the dry incubated seeds (Table 5). Even after exposure to 90 C, seed viability of 2 ± 5 
SD % and 12 ± 13 SD % was recorded in the 5-h wet and 1-h wet heat shock treatments, 
respectively. Viability was reduced at 60 C or higher, with less than 30 % of wet seeds 
exposed to temperatures of 60 C still viable. Within the dry heat shock treatments, 
viability was generally >90%, up to and including 80 C. Viability of dry incubated seeds 
was significantly reduced for 90 C heat shock treatments compared to lower 
temperatures, but still remained substantial at 38 ± 43 SD % and 54 ± 29 SD % for 1-h and 
5-h exposures of dry seeds, respectively. Though the tetrazolium test does not predict 
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seed viability with complete reliability, the indication that even more seeds were likely 
capable of germinating than actually germinated further supports the likelihood of large 
numbers of diffuse knapweed seeds surviving solarization treatments. Whether or not 
sub-lethal high temperatures actually induced seed dormancy, as was the case for Sida 
spinosa, Amaranthus retroflexus, Abutilon theophrasti, Anoda cristata, and Ipomoea lacunosa 
(Egley, 1990) cannot be inferred from the data recorded in this study, nor is it known 
whether high temperatures induce dormancy in diffuse knapweed seeds. As seen in other 
species, it is possible that temperatures of 50-60 C may break dormancy in some seeds, 
possibly stimulating germination and subsequently mortality of emerging seedlings 
(Rubin & Benjamin, 1984).  

 

Temperature (C) 5 h wet 1 h wet 5 h dry 1 h dry 

40 85 (20) Aa 96 (9) Aa 98 (5) Aa 96 (9) Aa 

50 42 (48) Bb 66 (38) ABb 96 (9) Aa 94 (9) Aa 

60 2 (5) Bc 6 (9) Bc 98 (5) Aa 96 (9) Aa 

70 28 (24) Bbc 22 (33) Bc 98 (5) Aa 90 (17) Aa 

80 22 (29) Bbc 10 (12) Bc 86 (22) Aa 96 (9) Aa 

90 2 (5) Cc 12 (13) BCc 54 (29) Ab 38 (43) ABb 

Table 5. Mean % viability (± standard deviation) for Centaurea diffusa seeds heat shocked for 

either 1 h or 5 h at various temperatures; percent viability includes seeds germinating under 

optimal conditions and seeds that were viable according to the tetrazolium test; means 

within a row followed by the same upper case letter are not significantly different at the 5% 

level; means within a column followed by the same lower case letter are not significantly 

different at the 5% level (Fisher's Protected LSD test) 

The 1-h and 5-h in vitro tests in the current study only examined the effect of a single 

exposure to high temperatures. It is not known whether long-term temperature fluctuations 

over the season would increase mortality of diffuse knapweed seeds due to exposure to high 

temperatures. It is also unclear what effect condensation on the soil surface beneath the 

plastic has on seed germination and viability. Studies where seeds of other species were 

incubated at high temperatures over longer periods of time (i.e., one week or more) also 

recorded high survival rates of seeds (Horowitz et al., 1983; Egley, 1990). Although 

Horowitz et al. (1983) found that 2-4 wks of solarization provided control of many annual 

weed species, there were still some seeds that retained viability after 8 wks. 

5.2 Solarization and high temperature impacts on seeds of Sporobolus cryptandrus 

As shown in Fig. 5, seeds of S. cryptandrus maintained relatively high germination 

percentages even when exposed to the relatively high temperatures experienced in 

solarization treatments, with S. cryptandrus seeds from solarization treatments in 1999 

exhibiting 30% germination, and S. cryptandrus seeds in 2002 exhibiting 58% germination. In 

the control treatments, S. cryptandrus seeds exhibited 10% and 33% germination in 1999 and 
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2002 respectively; in the hayseeding experiments S. cryptandrous seeds exhibited 34 and 66% 

germination, respectively. 

As in the case of C. diffusa, seeds of S. cryptandrus maintained a high level of viability, 
when heat shocked at temperatures experienced under solarization (i.e., 70 C) and at even 
higher temperatures (110 C). Of the 82 seeds of S. cryptandrus we heat shocked at 70 C, 
32% were viable; of the 45 seeds of S. cryptandrus we heat shocked at 110 C, 16% were 
viable. Unlike the C. diffusa seeds that were heat shocked which were collected the 
previous fall from seed heads on the plants, the source of seeds for the S. cryptandrus heat 
shock trails was seeds extracted from the soil at the Osoyoos Desert site. Thus, the 
moderate level of viability at 70 C and yet substantial viability at 110 C was observed 
despite other factors that already would have lead to decline in seed viability in the soil 
environment prior to heat shocking. 

6. Implications for restoration of ecosystems 

6.1 Solarization as a means of managing invasive species 

The temperatures experienced under the polyethylene under field conditions were 

extremely high, even by comparison to other locations, such as Mississippi, where 70 C is 

unlikely to be observed on a frequent basis (Egley, 1983). The survival of viable C. diffusa 

seeds under these conditions, and after heat-shock treatments of even higher temperatures 

under laboratory conditions renders the elimination of the C. diffusa seed bank by 

solarization unlikely. It should also be considered that some C. diffusa seeds may be located 

deep enough within the soil profile to avoid the extreme temperatures at the soil surface 

(Rubin and Benjamin 1984; Standifer et al., 1984). Standifer et al. (1984) found seed mortality 

due to solarization decreased with depth in the soil, and was primarily effective in the top 5 

cm. As observed elsewhere, solarization would reduce the seed bank population to some 

degree while exhibiting its primary impact on above-ground plants (Horowitz et al., 1983; 

Egley, 1990). Furthermore, solarization may have limited impact on perennial or biennial 

species, whose growth may actually be stimulated by solarization (Stapleton & DeVay, 1986; 

Sauerborn et al., 1989; Linke, 1994). Given that C. diffusa is a biennial or short-lived 

perennial, it would be interesting to investigate the effect of solarization on its perennating 

tissues. 

The long-term ramifications of the small reduction in seed viability of C. diffusa, following a 
short-term exposure to excessive temperatures, on plant community dynamics are unclear. 
Without re-seeding native plant species, C. diffusa could re-establish from the seed bank and 
nearby seed sources, particularly in the wake of the disturbance caused by the removal of 
above-ground vegetation by solarization. With sufficient re-seeding of desired plant species, 
the impact of emerging C. diffusa seedlings may be minimal, particularly in light of the 
relatively low percentage of C. diffusa seeds that remain viable in the seed bank (Clements et 
al., 2007). The scale of solarization treatments is also a critical issue. The efficiency of 
solarization in minimizing weed interference has been demonstrated in horticultural crops 
(Braun et al., 1988; Horowitz et al., 1983; Jacobsohn et al., 1980; Linke, 1994). However, 
restoring large areas of natural habitat is more difficult, particularly in the face of 
disturbance-adapted weeds like C. diffusa that are abundant over large areas and possess 
persistent seed banks resilient to high temperatures. Solarization is an efficient weed control 
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technique in horticultural crops (Jacobsohn et al. 1980; Horowitz et al. 1983; Braun et al. 
1988; Linke 1994) and may be an inexpensive and labour-saving tool for reducing weeds in 
natural habitats protected from chemical treatments or disturbed soils where weeds 
dominate. This study suggests solarization will not control diffuse knapweed in the South 
Okanagan, however many issues require further study.  

6.2 Recommendations for managing shrub-steppe ecosystems incorporating 
knowledge of seed bank dynamics  

The importance of removing or at least reducing disturbance by livestock was clear from 
this study as even apart from other restoration measures, livestock removal was effective in 
increasing the native species component in these shrub-steppe plant communities. Likewise 
in a study of 10 sites with varying grazing regimes in the same region of the southern 
Okanagan valley, Krannitz (2008) found that more bare soil was associated with livestock 
grazing, with particularly large impacts seen in sandy versus rocky sites, and in areas not 
protected by antelope brush shrubs. The presence of bare soil meant that there was a 
corresponding loss in microbiotic crust cover, and this meant reduced overall health of the 
native plant community primarily due to lack of moisture retention without crust (Atwood 
& Krannitz, 2000; Krannitz, 2008).  

Another mechanism by which differences in microbiotic crust may impact plant 
communities is through variations in seed bank dynamics depending on degree of crust 
cover. Crust cover is predicted to affect seed burial and longevity of the seeds; in soil 
samples with a large portion of the crust constituents (i.e., lichens and mosses), seeds in 
our samples were often located among the microbiotic vegetation, hence relatively close 
to the soil surface. In general, seed survival nearer to the surface is reduced (Harper, 1977; 
Clements et al., 1996), but it is probable that seeds falling among microbiotic crust would 
be preserved longer than seeds occurring on the soil surface (Langhans et al., 2010). Seed 
bank studies in the southern Okanagan point to the need for more research in this area to 
enable ecosystem managers to fine-tune approaches to grazing levels, restoration 
plantings, and management of fire and other disturbances (Krannitz & Mottishaw, 2004; 
Clements et al., 2007). 

Few studies have investigated the relationship of seed bank dynamics to microbiotic crusts 
experimentally, and many of the few studies that have been done under laboratory 
conditions, therefore not matching conditions of normal seed dispersal (Prasse & 
Bornkamm, 2000; Su et al., 2007). A study in the north-western Negev desert of Israel found 
that increased roughness of the surface due to the presence of crust reduced the probability 
of seeds coming to rest, therefore lowered seed emergence and survival (Prasse & 
Bornkamm, 2000). However, other have found increased seed bank emergence with 
increased crust presence (Su et al., 2007). A study in the Teng-ger Desert in northeastern 
China observed much greater vascular plant emergence with moss crusts than algae crusts, 
with seeds more likely to become lodged in the moss crusts, even under high wind 
conditions (Su et al., 2007). Water status was also a major factor in the Chinese study, as it 
was in a study of crust types in Idaho within the Great Basin of North America (Serpe et al., 
2006), with more moisture producing greater seedling emergence. Serpe et al. (2006) also 
pointed out that seedling emergence responses can vary with specific crust structure; 
different seed and seedling morphotypes likewise have a major influence on the result. Thus 
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while studies from other regions provide some basis for understanding relationships 
between soil crusts and recruitment of vascular plants from the seed bank, there is a need 
for experimental studies within specific regions in order to know how best to restore semi-
arid steppe grasslands after crust degradation. 

In our study broadcast seeding was more effective than hayseeding on undisturbed soils 

and seed rate did not affect establishment. Rates of greater than 1000 seeds per m2 are 

thought to be high (Jacobs et al., 1999) and it appears applications that exceed that amount 

are unnecessary. The apparent repression by the hayseed of the most common grass 

species on the site, S. cryptandrus, may represent be an important management 

consideration if S. cryptandrus is considered a valuable component of the community, as a 

major constituent of the native seed bank. Strategically developing restoration 

management to encompass disturbance-adapted native species such as S. cryptandrus may 

be difficult.  

In contrast, the hayseed cover did enhance other native grass species such as P. spicata and 

H. comata establishment, and likewise vascular arbuscular mycorrhizal inoculant was very 

helpful to the establishment of some of the native grasses as has been seen in other studies 

(Camill et al., 2004; Anderson, 2008). It would be interesting to explore the connections 

between health of the microbiotic crust and the vigour of vascular arbuscular mycorrhizae 

in this system.  

In addition to its ineffectiveness in terms of destroying weed seeds, the result of solarization 

resembled that of applying broadcast herbicides because large expanses of bare soil were 

exposed after treatment. Manual and chemical control of C. diffusa did reduce weed 

biomass, but ultimately populations decreased with the removal of livestock removal 

coupled with the cumulative success of biological control. The populations of insects 

utilized in biological control of C. diffusa have increased enough to reduce the populations of 

C. diffusa to negligible levels at this site and many others in the region, even with the 

persistent seed bank of this species (Myers et al., 2009; Gayton, 2011). 

Based on the preceding discussion and results, we can make the following 

recommendations for restoration of communities within these arid shrub-steppe 

ecosystems: 

 Restoration measures should minimize soil disturbance 

 Measures to restore a diverse and healthy native plant community must include the 
microbiotic crust in these ecosystems 

 Livestock grazing must be monitored rigorously to limit unnecessary soil disturbance 

 Restoration planting, particularly if involving warm-season grasses, may be enhanced 
by incorporation of vesicular arbuscular mycorrhizae 

 Restoration planting and invasive species control should account for native species with 
seed banks such as Sporobolus cryptandrous 

 Spatial dispersion and amount of shrub cover should be carefully managed to promote 
native plants and reduce influence of grazing and non-native plants 

 Long-term planning should be developed to monitor ecosystem conditions, invasive 
species, and other important management factors such as biological control as well as 
the desired ecosystem trajectory 
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Fig. 7. Kiosk at the Osoyoos Desert Society site showing amidst the grassland ecosystem 

with scattered shrubs of antelope bitterbrush (Purshia tridentata); photo courtesy of the 

Osoyoos Desert Society 
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