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1. Introduction 

The prediction of infrared (IR) emission spectra from the exhaust gases of rocket plumes 

finds numerous applications in the strategic identification of rockets. These rocket 

fingerprints could be classified, thus allowing for the distinction between friend and foe. 

Likewise, the plume radiation intensity could also be reduced for stealth purposes, where 

accurate prediction of the spectra could be used to determine whether rockets have the 

required stealth characteristics during their design phase already. This would reduce the 

high manufacturing and testing costs involved in later stages.  

The challenge of predicting the plume radiance is describing the thermodynamic combustion 

process within the rocket chamber, the plume structure and the rocket plume chemical 

composition. The factors guiding these processes are the rocket motor design parameters, as 

well as the rocket motor fuel chemistry. In addition, environmental conditions have a 

significant impact on the plume structure and the plume chemical composition.  

Previously, attempts were made to model the middle IR band emission spectra (2 to 5.5 µm) 

from the rocket fuel chemistry and the physical properties during combustion by making 

use of techniques such as quantum mechanics and computational fluid dynamics. These 

methods proved to be too time consuming and the accuracies of the predictions were not 

acceptable (Roodt, 1998).  

More recently, Roodt (1998) was the first to show that the IR spectra could be modelled with a 

multilayer perceptron neural network using the elemental composition and other physical 

properties of the rocket motor fuel as input. Although these models were successful, there 

were some indications that they were not optimal and in this investigation the use of 

multilayer perceptrons similar to the ones used by Roodt (1998), as well as linear partial least 

squares (PLS) and neural network PLS (with and without weight updating) are considered. 

In addition, the modelling problem is considered in terms of a forward mapping, i.e. 

prediction of the emission spectra of the rockets from their design parameters, as well as a 

reverse mapping, where the rocket design parameters are predicted from the middle-IR 

spectral absorbances of the rocket plume. 
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2. Partial least squares (PLS) and neural network models 

2.1 Linear PLS 

The advantage of PLS lies in the fact that a multivariate regression problem can be 
decomposed into a number of uncorrelated univariate or SISO (single input, single output) 
data mappings. This is especially useful when the available data are sparse, such as when 
dealing with relatively small sets of samples across many highly correlated input, as well as 
output variables.  

The linear PLS algorithm has various forms like the one given by Lorber et al. (1987). The 
nonlinear iterative partial least squares (NIPALS) algorithm for training PLS models was 
pioneered by H. Wold (1966). The NIPALS algorithm may be computationally less efficient, 
but it is well understood and serves as the basis for nonlinear neural network PLS algorithms. 
The objective of the NIPALS algorithm is to project input and output matrices X and Y 

(consisting of rows corresponding to data sample points i = 1, 2, … n) onto a subset of latent 
variables, T and U, which are referred to as the input and output scores, respectively. The 

dimensionalities of variable spaces of X and Y are denoted by k = 1, 2, … m and j = 1, 2, … l 
respectively. The output scores can then be fitted to the input scores by linear least squares 
regression in order to obtain the so-called inner linear relationship coefficients, ba for  
a = 1, 2, … h: 

௔࢛  = ௔ܾ௔࢚ +  ௔ (1)ࢋ

Here the h primary latent dimensions explaining most of the model variance are retained. 
The decompositions of X and Y can be defined using the loading vectors p and q such that 
PLS outer models become: 

ࢄ = ෍ ࢀࢇ࢖௔࢚ + ௛ࡲ
௔ୀଵ  (2)

ࢅ = ෍ ௔்ࢗෝ௔࢛ + ௛ࡱ
௔ୀଵ  (3)

The matrices, F and E are the resulting residual matrices when a model with h ≤ min(n,m) 
latent dimensions is used for the approximation of X and the prediction of Y. The remaining 

latent dimensions usually explain random noise that may be present in the data. The 
predicted scores of u are calculated using the inner model 

ෝ௔࢛  +  ௔ܾ௔ (4)࢚

The linear projections constituting the NIPALS algorithm (see Appendix A) are described in 

Baffi et al. (1999a), where it is further shown that the n × h score matrix, T can be related to 
the input matrix, X by 

ࢀ  =  (5) ࡾࢄ

where R is obtained from  
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ࡾ  =  ሻ  (6)ࢃ்ࡼሺࢃ

This is a useful expression, since T can be expressed in terms of W, the PLS input weights, 
without having to break down X into its residuals for each latent dimension. A matrix of 
linear inner model regression parameters on the diagonal and zero-values off the diagonal, 
B can now be defined. Equations (5) and (4) can further be used to obtain  

෡ࢅ  = ்ࡽ෡ࢁ = ்ࡽ࡮ࡾࢄ =  ௉௅ௌ (7)࡮ࢄ

where BPLS is the m × l matrix of overall regression coefficients which converges to multiple 
linear regression coefficients for h = m. 

2.2 Multilayer perceptron neural networks 

Artificial neural networks (ANNs) are a non-linear function mapping technique that was 
initially developed to imitate the brain from both a structural and computational perspective. 
Its parallel architecture is primarily responsible for its computational power. The multilayer 
perceptron network architecture is probably the most popular and is used here. 

A multilayer perceptron neural network (Bishop, 1995; Haykin, 1999) consists of an input 
and an output layer of nodes, which may be separated by one or more layers of hidden 
nodes (see figure 1 below). Each node links to another node with a weighted connection, ω. 

Considering a network with a single hidden layer, where the hidden and output layers are 

denoted by superscripts (1) and (2) respectively, then for r = 1, 2, …, H hidden nodes the 
nonlinear functional relationship is represented by equation (8): 

௜݂௝ ቀ࢞௜ , ષሺଵሻ, ௝ࣚሺଶሻ, ,ሺଵሻࢼ ௝ሺଶሻቁߚ = ෍ ߸௝௥ሺଶሻ߶௜௥ ൝෍ ቀ߸௥௞ሺଵሻݔ௜௞ቁ + ௥ሺଵሻ௠ߚ
௞ୀଵ ൡு

௥ୀଵ + ௝ሺଶሻߚ
 (8)

Here Ω(1) is the H × m matrix of weights (ωrk) in the hidden layer, ω represents a vector of 

weights for a single node and β is a bias value associated with each node. The function φ is a 
sigmoidal activation function, typically of the form: 

߶ሺݖሻ = tanhሺݖሻ = ͳ − ሻݖʹ−ሺ݌ݔ݁ ͳ + ሻ൘ݖʹ−ሺ݌ݔ݁  
(9)

The advantage of this form of the function is that its derivative is simple to calculate, i.e. 

 ߶ᇱሺݖሻ = ͳ − ߶ଶሺݖሻ (10) 

This derivative form becomes useful when calculating the Jacobian matrix used when the 
weights of the network are updated within the neural network PLS algorithm below. 

The performance of an ANN is measured by the root-mean-square error (RMSE) which is 
also the function to be minimised. The Levenberg-Marquardt optimization algorithm 
(Marquardt, 1963) and resilient propagation algorithm (RPROP) (Riedmiller & Braun, 1993) 
were used to train the neural networks in this study. 
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Fig. 1. Multi-layered perceptron neural network with one hidden layer. 

ܧܵܯܴ = ට∑ ௜௡௜ୀଵܧܵܵ ݈݊ൗ  (11)

n refers to the training vector number (i.e. observation) and SSEi is the sum-square error of 
the ith training vector for all l output nodes: 

௜ܧܵܵ = ෍൫ݕ௧௥௨௘,௝௜ − ௣௥௘ௗ,௝௜ݕ ൯ଶ௟
௝ୀଵ  (12)

The weight matrices are initially randomised. A subset of the input dataset is applied to the 
network input nodes and the outputs of the hidden and output nodes are calculated. The 
SSE is calculated as in equation 12 upon which the weight matrices are updated using the 
optimisation framework. The procedure is repeated for the remaining input dataset to 
calculate the RMSE which completes a single iteration. A number of these iterations are 
necessary to minimise the RMSE.  

2.3 Neural network PLS 

When applying linear PLS to nonlinear problems, it may not be sensible to discard the 
minor latent dimensions, as they may contain valuable information with regard to the 
mapping. It may therefore be advantageous to derive a nonlinear relationship for the PLS 
inner model. This can be accomplished by use of a multilayer perceptron neural network 
such as described above and illustrated in figure 2.  
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Fig. 2. Diagram illustrating the NNPLS algorithm wherein data are transformed to latent 
scores, then neural networks used to learn the scores (adapted from Qin & McAvoy, 1992). 

A neural network has the advantage that it is a universal approximator and the inner PLS 
model is therefore not limited to some predefined functional form. In Qin & McAvoy (1992) the 
neural network PLS (NNPLS) algorithm is introduced by replacing the linear inner relationship 
in equation (4) with a feed-forward multilayer perceptron neural network, such that 

ෝ௔࢛  = ݂൫࢚௔ , ࣚሺଵሻ, ࣚሺଶሻ, ,ሺଵሻࢼ  ሺଶሻ൯ (13)ߚ

The NIPALS algorithm now replaces the inner linear regression coefficient calculation 
(Appendix A, step x) by a neural network training step. The use of a nonlinear function as inner 
PLS relationship influences both the inner and outer mappings of the PLS algorithm. If the inner 
mapping is highly nonlinear, this approach may no longer be acceptable. This problem was 
addressed by S. Wold et al. (1998) by updating the PLS weights, w using a complicated, non-
intuitive Taylor series linearization method. More recently, Baffi et al. (1999b) proposed an 
error-based (EB) input weight (w) updating procedure using a Taylor series expansion to 
improve the weight updating procedure originally suggested by S. Wold et al. (1998).  

3. Experimental data 

The data set of rocket motor features consisted of 14 elemental rocket propellant 
compositions and 4 rocket motor design parameters. The elemental compositions were 
molar values calculated from a 100 kg basis and included the elements C, H, O, N, Al, K, F, 
Cu, Pb, S, Cl, Si, Ti and Fe. The design parameters consisted of the nozzle throat 
temperature (TC), pressure (PC), nozzle diameter (DT) and the expansion ratio of the outlet 
nozzle diameter to the nozzle throat diameter (EC).  
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The data set of IR emission spectra consisted of radiometer absorbance values at 146 

different wavelengths in the middle-IR band (2 to 5.5 µm). 

Two types of rocket motor propellants were used, namely a composite (C) and a double-
base (DB) type. The C-type propellants consisted of heterogeneous grains where the fuel 
and oxidiser were held together in a synthetic rubber matrix. The DB-types had 
homogeneous grains containing small amounts of dispersed additives. There were 12 C-
type and 6 DB-type rocket motor propellants.  

Each rocket motor type was fired a number of times (see table 1) and the IR emission spectra 
were recorded for each test as replicate measurements. The total set of recorded IR 
emissionspectra thus comprised 420 measurements. The spectra were recorded by Roodt 
(1998) using a spectral radiometer at varying distances, i.e. 500 m, 350 m, 250 m and 200 m. 
The data were preprocessed in order to compensate for the varying absorbance path lengths 
and atmospheric conditions (Bouguer’s law) as described in Roodt (1998). 

 

DB1 DB2 DB3 DB4 DB5 DB6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

39 21 31 20 20 22 15 24 24 17 18 26 44 15 25 14 23 22 

Table 1. The number of middle-IR emission spectra repeat measurements taken from tests 
for each of the rocket motor types. 

A principal components analysis was done on a standardised IR emission spectrum data set 
including all 420 data samples. Results showed that 86.7% of the total variance of the 
wavelength variables could be explained by the first two principal components. The map of 
squared correlation coefficients in figure 3 confirms this result. 

 

Fig. 3. A map of squared correlation factors of the IR emission spectral absorbance values to 
investigate the presence of potentially redundant correlated information in the variable space. 
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A correlation map of the rocket motor design features in figure 4 shows that there is very 
little correlation between the variables representing the rocket motor parameters. 

 

Fig. 4. A map of correlation factors of the rocket motor design parameters and chemistry to 
investigate the presence of potentially redundant correlated information in the underlying 
structure. 

4. Construction of models 

All data in the forward mappings (prediction of emission spectra) were mean-centred and 

scaled to unit variance during the training of the models.  

4.1 Model validation 

Although the complete data set consisted of 417 measured IR spectra, it covered only 18 

different rockets, i.e. it contained 399 replicates. These replicates were not used in the 

validation of the models. Instead, leave-one-out cross-validation (Hjorth, 1994) was used to 

assess the quality of the models, i.e. the set of n (= 18) independent samples was split into  

n-1 training samples, while the nth point was reserved for model validation. The training-

validation split was repeated n times until each data point had been omitted once for 

validation. A validation set of n predictions on the ‘unseen’ data was therefore derived from 

all the available data and a predicted residual estimate sum of squares (PRESS) was 

calculated on the validation set. 

ܵܧܴܲ ௝ܵ = ෍ ݁௜௝ଶ௡
௜ୀଵ  (14)
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The PRESS-values calculated for the output variables normally passed through a minimum 

with increased model complexity, as the model started to map random noise in the data and 

was used to guide the complexity of the constructed models. A residual score defined as 

SSP, which had the same form as equation (12), except that it was calculated on all n data 

points was used when training on the overall model. 

The fraction of the variance (R2-value) of an output variable explained by the model is 

defined as the variance explained by the model over the total variance using the prediction 

error, SSE (SSEPj or PRESSj): 

ܴଶ = ∑ۇۉ ሺ݂ሺ࢞௜ , ሻࣂ − തሻଶ௡௜ୀଵݕ ∑ ሺݕ௜ − തሻଶ௡௜ୀଵ൘ݕ ۊی 	 = 	 ܯܵܵ ܵܵܶൗ = ͳ − ܧܵܵ ܵܵܶൗ  (15)

In the case of both the forward and reverse mappings there are a large number of output 

variables. In order to be able to compare the performances of the candidate models, the 

PRESSj- and SSEPj–values were summed over all j = 1, 2, … l output variables to yield single 

PRESS- and SSEP-values for each model. The model yielding the lowest PRESS-score was 

expected to best predict validation data and therefore best generalize the input-output 

relationships. 

During cross-validation of the linear PLS model, model fitting was therefore repeated 18 

times (once for each of the 18 rockets) for each latent dimension as the overall complexity 

increased. In the case of the feed-forward multilayer perceptron neural network, 18 training 

sessions were required each time a node was added to the hidden layer.  

4.2 Degrees of freedom 

In the case of the forward mapping where the IR emission spectra were to be predicted by a 

given set of rocket motor features, there were 18 input and 146 output variables. Clearly, for 

a simple linear least squares model, the model requires 19 degrees of freedom (18 input 

variables plus the bias). However, the situation is more complicated when nonlinear models 

are fitted to the data.  

Statistical theory requires that a regression model has to be built from an overdetermined 

system. For this reason it is required that there should be at least 3 to 5 lack-of-fit degrees of 

freedom (nlof) available as a check on the suitability of the model (Brereton, 1992; Draper & 

Smith, 1981). Hence in this case, for the simplest linear regression model using a total 

number of n sample points of which there are nr replicates, the maximum required number 

of model degrees of freedom, df, excluding bias, becomes: df = n –nr– nlof – 1 = 420 – 402 – 3 

– 1 = 14.  

For m input variables the pseudo-dimension for prediction by a multilayer perceptron 

neural network requires that at least m+1 independent samples are available per node for 

building a model (Sontag, 1998; Schmitt, 2001). It therefore appears that a larger set of data 

points is required to fit nonlinear models, such as neural networks that generally have a 

large number of parameters (weights) to fit. 
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Lawrence et al. (1997) have shown an example of a single-layer perceptron neural network, 
where the optimal model built on 200 independent data points consisted of 661 parameters. 
Justification for this result is given by the fact that the nonlinear optimization algorithm for a 
neural network does not reach a global optimum. Lawrence et al. (1997) further stated that 
the Vapnik-Chervonenkis (VC) dimension is somewhat conservative in estimating the lower 
bound for the required number of data points. 

Partial least squares and principal components regression can be used to reduce the 
dimensionality of the input space, in this case attempting to reduce the degrees of freedom 
of the models to 14 or less without losing the most important information in the input data. 

The evaluation of the degrees of freedom of a nonlinear model built on a data set so close to 
full rank can only be possible if the degrees of freedom associated with each model can be 
estimated reliably. Van der Voet (1999) suggested a method of defining pseudo-degrees of 
freedom (pdf) based on the performance of a model, as in (14)  

݂݀݌  = ݊൫ͳ − ඥܧܵܯ ௥ܲ௦ ⁄ܸܥܧܵܯ ൯ (16) 

Here MSEPrs is the mean square error of resubstitution for the entire data set per output 
variable and MSECV is the mean square error of leave-one-out cross-validation. This 
method has been developed mainly to help with the estimation of the degrees of freedom of 
complex models and results are consistent with df = m+1, for m input variables, in the case 
of linear regression models. 

5. Results 

The regression models, cross-validation cycles and statistical analyses were programmed 
using the MATLAB® Release 12 software package. The neural network toolbox available in 
this package was used for the training of the multilayer perceptron neural networks. 

5.1 Forward mapping 

The results in table 2 show that the NNPLS model was the most parsimonious. The NNPLS 
model yielded the lowest PRESS-value, SSEP-value and average pseudo-degrees of freedom.  

 

 Linear PLS MLP NNPLS 

Complexity 11 LD 2 H 11 LD 

PRESS 688.50 613.23 258.10 

SSEP 76.28 52.74 45.41 

X-Block %η2 99.69 NA 99.76 

Y-Block %η2 90.52 93.43 94.34 

Y-Block max %η2 94.98 98.31 98.98 

Average RCV2 0.461 0.417 0.626 

Average RCV,max2 0.541 0.548 0.746 

Average R2 0.876 0.803 0.825 

Average R2max 0.957 0.907 0.954 

Average pdf 12.42 12.91 12.33 

Parameters 220 476 307 

Table 2. A summary of performance scores of each candidate model for the forward 
mapping problem. The Y-block variances are calculated on the overall optimised models. 
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The Y-block variance (η2) is the percentage of the output variance explained by the model 
over all output variables. This is analogous to the R2–values calculated for the individual 
output variables. The values indicated by maxima were those where the pure error 
component had been subtracted. Only the linear PLS model was able to perform better than 
the NNPLS model on the R2-scores calculated for the overall model. The reason for this is 
the fact that except for C5, the C-class rocket motor irradiance spectra were most accurately 
predicted using the linear PLS model.  

Furthermore, the NNPLS model appeared not only to retain the linear latent projections, but 
also introduced nonlinearity in the inner models to compensate for the shortcomings of the 
linear PLS algorithm. This is shown in figure 5, where the PLS inner model scores are 
plotted to show the shape of the curve fitted by the neural network. The output scores after 
the first latent dimension seem to have near linear relationships with the input scores. 

 

Fig. 5. The target and predicted PLS output scores vs. the input scores for the first 4 latent 
dimensions using the overall NNPLS model. 
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The advantage of linear PLS can be seen in figure 6. The regression coefficients can be 
collapsed into a single coefficient per input variable, as shown in equation 7. In this way the 
input variables with the most significant leverages could be determined for certain ranges of 
wavelengths in the spectrum. The improved predictions using nonlinear PLS could be 
attributed to the distinctions made between DB- and C-class rocket motor designs. This 
suggests that with the availability of more data, it may be useful to build separate linear PLS 
models for each of the DB- and C-class rocket motor types. 

 

Fig. 6. A plot of the regression coefficients of the linear PLS model for all 146 output 
variables. 

The NNPLS model appears to be the best, owing to its better generalization ability. The low 
average RCV2–values and the relatively poor prediction on DB2 (figure 7) were not entirely 
unexpected, since the model had to extrapolate, as a result of the lack of data similar to DB2. 
The linear tendency in input-output relationships shows that some predictions on unseen 
data can be fairly accurate, such as that for C4 (figure 8). The overall model predictions for 
DB2 and C4 (trained on all data), together with their 95% confidence intervals are shown in 
figures 9 and 10. 

As a note of interest, Qin & McAvoy (1992) have shown that NNPLS models can be 
collapsed to multilayer perceptron architectures. In this case it was therefore possible to 
represent the best NNPLS model in the form of a single layer neural network with 29 hidden 
nodes using tan-sigmoidal activation functions and an output layer of 146 nodes with 
purely linear functions.  

Moreover, it is interesting to note that the optimal models (PLS, neural network and NNPLS) 
yielded similar average pseudo-degrees of freedom (MSECV/MSEPrs-ratios). The large 
numbers of parameters (as shown in table 2) support the conclusions by Lawrence at al. (1997) 
that there can be more variables than independent data points in nonlinear modelling. The 
pseudo-degrees of freedom appear to be a more consistent way of measuring model 
complexity than simple comparison of the number of parameters of each model. 
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Fig. 7. Examples of plume irradiance predictions for ‘unseen’ DB-class rocket motors 
obtained during leave-one-out cross-validation of NNPLS with 11 latent dimensions. 

 

Fig. 8. Examples of plume irradiance predictions for ‘unseen’ C-class rocket motors obtained 
during leave-one-out cross-validation of NNPLS with 11 latent dimensions. 
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Fig. 9. Examples of plume irradiance predictions for DB-class rocket motors obtained for the 
overall NNPLS model using 11 latent dimensions. 

 

Fig. 10. Examples of plume irradiance predictions for C-class rocket motors obtained for the 
overall NNPLS model using 11 latent dimensions. 

DB2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 25 50 75 100 125 150

Wavelength Number

A
b

s
o

rb
a

n
c
e

 U
n

it
s

Mean target data

Predicted values

95% prediction confidence interval

C4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 25 50 75 100 125 150

Wavelength Number

A
b

s
o

rb
a

n
c
e

 U
n

it
s

Mean target data

Predicted values

95% prediction confidence interval

www.intechopen.com



 
Infrared Spectroscopy – Materials Science, Engineering and Technology 446 

5.2 Reverse mapping 

The optimal scores of the prediction abilities for each of the candidate models are shown in 
table 3. In the reverse problem it would be possible to find the optimal model complexity for 
each individual output variable. However, for the sake of simplicity, it is more sensible to 
compare the models by pooling the results for all output variables. Except for the R2-scores, 
the average performance scores over all output variables did not differ much from the 
results shown in table 3. 

 

 Linear PLS MLP NNPLS 

Complexity 2 LD 2 H 3 LD 

PRESS 475.6 329.1 273.8 

SSEP 307.08 245.61 171.18 

X-Block %η2 95.3 NA 99.84 

Y-Block %η2 26.9 41.49 59.22 

Average RCV2 0.183 0.351 0.322 

Average R2 0.351 0.615 0.615 

Average pdf 3.75 7.07 6.19 

Parameters 296 297 462 

Table 3. A summary of performance scores of each candidate model for the reverse mapping 
problem. The Y-block variances are calculated on the overall optimised models. 

Even though the relatively low average RCV2–value is a poor result, it does not necessarily 

reflect adversely on the true performance of the NNPLS model. This is owing to the data of 

output variables K, F, S, Si, Ti and Fe consisting of numerous zero entries and the inability of 

the model to handle these irregularities. The RCV2–values for C, H, O, N, Al, Cu, Pb, Cl and 

EC range between 0.6 and 0.8. 

It was difficult to exactly determine the optimal model for linear PLS. In table 4 it is shown 

that a linear PLS model with 3 or 4 latent dimensions could have been chosen to increase the 

Y-block explained variance. This would have moved the average pdf-values closer to larger 

values of the other models. These results show that there is a requirement for nonlinear 

structures in the model building. 

A few of the predictions for unseen data obtained from leave-one-out cross-validation are 

shown in figures 11 and 12. The square root of MSECV (RMSECV) is calculated for each 

individual output variable in order to obtain a measure of the standard deviation of the 

error of prediction. The same predictions made from the overall model built on all the 

available data are shown in figures 13 and 14.  
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LD X-Block %η2 Y-Block %η2 Avg pdf PRESS SSEP 

1 92.44 13.57 1.87 466.1 362.83 

2 95.25 26.85 3.75 475.6 307.08 

3 98.63 32.61 4.91 551.1 282.89 

4 99.60 43.81 7.45 664.3 235.89 

5 99.85 60.05 8.66 632.3 167.72 

12 99.99 88.47 15.35 1971.9 48.42 

Table 4. The sum-squared residuals obtained from building a linear PLS model for the 
reverse modelling problem. 

 

Fig. 11. Examples of rocket motor parameter predictions for ‘unseen’ rocket motors in the 
DB-class obtained during leave-one-out cross-validation of the NNPLS model (3 latent 
dimensions). 
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Fig. 12. Examples of rocket motor parameter predictions for ‘unseen’ rocket motors in the C-
class obtained during leave-one-out cross-validation of the NNPLS model (3 latent 
dimensions). 

 

Fig. 13. Examples of rocket motor parameter predictions DB-class rockets obtained for the 
overall optimum NNPLS model trained with 3 latent dimensions on all data points. 
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Fig. 14. Examples of rocket motor parameter predictions for C-class rockets obtained for the 
overall optimum NNPLS model trained with 3 latent dimensions on all data points. 

Similarly to the forward problem the better predictions are obtained for the C-class rocket 

motors due to the more data available in this class of rocket designs. The physical design 

parameters, EC, PC and Dt show the largest confidence intervals. Even so, the predictions on 

unseen data are better than expected given the small amount of available data. 

6. Appendix 

The NIPALS algorithm for PLS according to Baffi et al, (1999a): 

i. Mean centre or standardise the inputs and outputs, X and Y. Initialise the algorithm by 
setting the output scores, u equal to a column of Y. For each latent dimension, a = 1, 
2, … h follow steps ii to xiii below: 

ii. Calculate the input weights, w, by regressing X on u:  

்࢝  = ࢄ்࢛ ⁄்࢛࢛  (A1) 

iii. Normalise w to unit length: 

࢝  = ࢝ ⁄‖࢝‖  (A2) 

iv. Calculate the input scores:  

࢚  = ࢝ࢄ ⁄்࢝࢝  (A3) 

v. Calculate output loadings by regressing Y on t: 
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்ࢗ  = ࢅ்࢚ ⁄்࢚࢚  (A4) 

vi. Normalise q to unit length: 

ࢗ  = ࢗ ⁄‖ࢗ‖  (A5) 

vii. Calculate new output scores u: 

࢛  = ࢗࢅ ⁄்ࢗࢗ  (A6) 

viii. Check for convergence on w: If not return to step ii 
ix. Calculate the input loadings, p by regressing X on t:  

்࢖  = ࢄ்࢚ ⁄்࢚࢚  (A7) 

x. Calculate the inner linear regression coefficient b: 

 ܾ = ்࢛࢚ ⁄்࢚࢚  (A8) 

xi. Calculate the input residual matrix:  

ࡲ  = ࢄ −  (A9) ்࢖࢚

xii. Calculate the output residual matrix: 

ࡱ  = ࢅ −  (A10) ்ࢗෝ࢛

xiii. If additional PLS latent dimensions are required replace X and Y with F and E 
respectively and return to step ii for calculation of latent dimension a + 1. 

7. Conclusions 

The building of data-driven models in this study was constrained by the sparsity of the 
available data, as there were only 18 independent samples (rocket motor designs) available. 
In addition the input and output data were highly multivariate with 18 rocket motor design 
parameters and 146 spectral wavelengths in the middle IR band. One advantage is that the 
IR spectral measurements were repeated a number of times (4 to 44 repeats per rocket 
motor).  

The variables (wavelengths) associated with the IR emission spectra were highly correlated. 
Principal components analysis (PCA), linear and nonlinear PLS showed that at least 86% of 
the total variance could be explained by the two primary latent dimensions. The forward 
and reverse modelling results showed that dimensional reduction with a linear model (PLS) 
produced better models than a nonlinear model (multilayer perceptron neural network 
trained with the back propagation algorithm) without dimensional reduction. 

The NNPLS algorithm with Levenberg-Marquardt training of the inner feed forward neural 
network models produced the best predictions of the forward models. The average RCV2-
value of 0.63 (0.75 for maximum RCV2) for all 146 output variables on unseen data was 
satisfactory when considering the lack of available data. The average R2–value of more than 
0.80 obtained for the overall model trained on all data was also an encouraging result. The 
average pseudo-dimension for the NNPLS model with 11 latent dimensions was 12.33. This 
left about 5 lack-of-fit degrees of freedom as a check for the model complexity. 
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Despite these promising results, the best candidate models for both the forward and reverse 
problems cannot be regarded as adequate for practical applications. However, considering 
the lack of available data, the results can be regarded as acceptable to motivate funding for 
the collection of more data and rigorous testing. The fact that the input-output relationships 
appear to have almost linear relationships in some latent dimensions is promising, as this 
could lead to the development of robust models.  
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