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1. Introduction 

With improvement in the human life, the requisite of the new materials with special 

properties for many different applications ranging from food packaging and consumer 

products to use as medical devices and in aerospace technologies can be sensed, strongly. 

Polymeric materials offer this opportunity to scientists and engineers for designing these 

new materials. In this regard, precise understanding of Structure and Properties 

Relationship (SPR) should be very crucial. 

Recently, polymeric nanocomposites have opened a new research area and attracted strong 

attentions. The synthesis of polymer nanocomposites by inserting the nanometric inorganic 

compounds is an integral aspect of polymer nanotechnology (A. Lagashetty, 2005). These 

materials, depending upon the inorganic materials present, have particular and improved 

properties respect to pure polymers that invest their applications.  

Fourier transform infrared (FTIR) spectroscopy is a powerful and reliable technique that for 

many years has been an important tool for investigating chemical processes and structures. 

In the polymer fields, FTIR data is used in order to study characterization of chemical 

bonds, polymer microstructure, chain conformation, polymer morphology, crystallinity and 

etc, consequently is useful in SPR studies.  

The combination of infrared spectroscopy with the theories of reflection has made 

advances in surface analysis possible. Attenuated Total Reflectance (ATR) spectroscopy is 
an innovative technique for proving chemical information of a sample surface and the 

ability to quantify newly formed species, based upon Fick’s second law. The 
fundamentals of attenuated total reflection (ATR) spectroscopy date back to the initial 

work of Jacques Fahrenfort and N.J. Harrick, both of whom independently devised the 
theories of ATR spectroscopy and suggested a wide range of applications. The schematic 

showing ATR-FTIR configuration is illustrated in Fig. 1 (KS. Kwan, 1998). The penetration 
depth, d, can be estimated as: 
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ࢊ = ૚૛࣌ࢉ࢔࣊ሺ࢔࢏࢙૛ࣂ − ૛࢞࢔ ሻ૚ ૛ൗ  (1)

where ݊௖ is the refractive index of the ATR crystal and ݊௫ is the ratio between the refractive 
indexes of the sample and the ATR crystal ( ݅ݏwhich both of them are assumed to be 
constant in the considered frequency range. ߪ	is the wave number and ߠ is the incident 
angle. The penetration depth for PVDF as an example by rhe assumption of ݊௖ = ʹ.Ͷ, ݊௫ = ͳ.ͷ	and ߠ = Ͷͷ° from 500 to 4000 cm-1 is approximately 0.5-4 µm (Y. Jung Park, 2005).  

 

Scheme 1. Schematic illustration of ATR-FTIR configuration (KS. Kwan, 1998) 

Graphene and graphite have recently attracted strong attention as versatile, environmentally 
friendly and available carbon materials which can be used as inexpensive filler in the 
composite materials (S. Stankovich, 2006, 2007 & L. Al-Mashat, 2010) .Crystalline graphites 
are used in polymeric systems in order to improve polymer properties such as thermal and 
electrical conductivity, IR absorption, flame retardancy, barrier resistance, electromagnetic 
shielding, lubrication and abrasion resistance. When the crystalline graphite is exfoliated to 
individual graphene sheets, the specific surface would be as large as 2600 m2. g-1 and novel 
electronic and mechanical properties appeared (Steurer, 2009). Actually graphene sheets are 
one-atom two-dimensional layers of sp2- network carbon that their fracture strength should 
be comparable to that of carbon nanotubes with similar types of defects (S. Stankovich, 
2007). How to exfoliate the flakes of natural graphite was first described in a US patent in 
1891 (Inagaki, 2004). An exfoliation phenomenon was studied mostly and occurs when the 
graphene layers are forced apart by the sudden vaporization or decomposition of 
intercalated species (E. H. L. Falcao, 2007). 

However, the mentioned properties of graphene-polymer nanocomposites are strongly 
dependent on the uniformly dispersion in polymeric matrices which is affected by 
functional groups present on the graphene surface.  
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The modification of graphene sheets via organic oligomeric and polymeric chains is a 
favorable way to promote the compatibility of these nanoparticles with polymeric media. So 
understanding of the functional groups present on the graphene surface should be very vital 
for designing of modification procedure.  

Poly(vinylidene fluoride) (PVDF) is a semicrystalline engineering polymer with very good 
resistance to chemicals, oxidation, and UV radiation (J. H. Yen, 2006). PVDF is known for its 
polymorphism crystalline structure and complicated microstructure. It is one of the most 
widely studied polymers due to its non-linearity, piezo- and pyro-electricity (L. T. Vo, 2007 
& K. Pramoda, 2005). PVDF can crystallize in at least five well-known crystalline phases (E. 
Giannetti, 2001, A. Lovinger, 1982 & N. S. Nalwa, 1995): 

ǂ and ǅ with conformation of the alternating trans-gauche (TG+TG- ) which the ǂ is the most 
common form and is the most thermodynamically stable. 

 

Scheme 2. ǂ and ǅ form with alternating trans-gauche conformation (J. H. Yen, 2006) 

ǃ with all trans (TTT) planer zigzag conformation is polar form and has been extensively 
studied for its potential applications. This form develops under mechanical deformation (K. 
Matsushige, 1980) (S. Ramasundaram, 2008) , growth from solution (J. Wang, 2003 & R. L. 
Miller, 1976), addition of metal salts (X. He, 2006 &W. A. Yee, 2007) ,melt crystallization at 
high pressures (D. Yang, 1987), application of a strong electric field (J. I. Scheinbeim, 1986), 
blending with carbonyl-containing polymers (C. Lbonard, 1988 & K. J. Kim, 1995), and 
recently, addition of nanoparticles (S. Ramasundaram, 2008, T. Ogoshi, 2005 & L. He, 2010). 
This structure provides some unique properties for PVDF piezo- and pyro-electric activity: 

 

Scheme 3. ǃ form all trans planer zigzag conformation (J. H. Yen, 2006) 
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Ǆ and ǆ with T3G+T3G- conformation is also polar but less than ǃ form. 

 

Scheme 4. Ǆ and ǆ crystalline form with T3G+T3G- conformation (J. H. Yen, 2006) 

Subsequently due to specific chain conformation in crystal unit cell and providing the 
highest remnant polarization, ǃ phase has attracted more attention than the others in pyro- 
and piezoelectric applications (J.Jungnickel, 1996). 

Poly methylmethacrylate (PMMA) can interact with graphene sheets by the interaction of 
delocalized π-bonds of graphene with π-bonds of PMMA. On the other hand, as reported in 
articles, PVDF/PMMA blend is a miscible system. Consequently, in attempt to achieve a 
homogenous dispersion of nanographene layers in PVDF matrix, the use of PMMA chains 
as a compatiblizer can be useful.  

In addition, presence of PMMA chains in the close touch with PVDF molecules causes the 
formation of polar crystalline form in PVDF (J. Wang, 2003). Furthermore, previous studies 
on the CNTs indicated TTT molecular chain prefers to be absorbed on the CNT surface 
compared with TGTG' molecular chain, and the configuration in which H atoms and CNT 
surface are face-to-face are more stable than that where F atoms and CNT surface are face-
to-face. Since in the PVDF, the negative charge transfer from H to C atom and the negative 
charge is accumulated around the F atoms, the interaction between the H atoms with 
positive charge in PVDF and C atoms with π oribital in CNT should be stronger (S. Yu, 
2009) 

FT-IR is a powerful and reliable technique for description of chemical characterization of 
graphene and also study of the structure and properties relationships in 
PVDF/PMMA/graphene polymer blend nanocomposite. The interactions between these 
three components including: PVDF, PMMA and graphene sheets can be revealed and 
described by using this technique. As well, exploration of PVDF chains conformations 
(crystalline structures) are affected by presence of graphene sheets and PMMA chains can be 
done which is very important in order to design the new material with special properties.  

2. Experimental 

2.1 Materials 

The graphite used in this study was natural graphite powders with the size of >150 μm, and 
bulk density of 1.65 gr/cm3 supplied by Iran Petrochemical Co. The PVDF pelletlet (Kynar® 
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1000HD) was provided by Atofina Co. The methyl methacrylate (MMA) and Methacyilic 
anhydride were supplied by Aldrich Co. and MMA used after purification and distillation 
in order to remove inhibitors. Concentrated sulfuric acid and nitric acid with concentration 
of 63% were used as chemical oxidizer to prepare expanded graphite. The initiator, Benzoyl 
peroxide (BPO), dichloromethane (CH2Cl2), dimethylformamide (DMF), triethylamine 
(TEA) were bought from Merck Co. and used as received. 

2.2 Preparation of exfoliated graphite 

The method which was used in this study is as same as general procedure employed in 
industry for producing exfoliated graphite. Natural graphite powders as starting material 
were treated with a mixture of 4:1 sulfuric and nitric acid at 80°C for 24h to produce 
Graphite Intercalated Compounds (GIC)s. Graphite can accept many species into the gallery 
between graphite layer planes to form GICs.  

Sulfuric acid is the most conventional intercalate for achieving a high degree of exfoliation 
of natural graphite and so it is used most commonly in the industry. Nitric acid was also 
added as an oxidant to generate some functional groups such as hydroxyl, carboxyl, epoxid 
groups on the surface and edge of graphene sheets.  

The suspension of acid-treated graphite was added to excess distilled water, and this was 
followed by centrifugation with 5000 rpm and washing with water until the pH of the 
centrifuge drainage extraction was natural. 

These particles dried at oven at 100°C for 12h and vacuumed oven at 80°C for 8h. The 
oxidized graphite was heat-treated at 1050 °C for 45s to obtain expanded graphite. Actually, 
In Chung’s review, exfoliation phenomena were classified into reversible and irreversible 
ones. When the oxidized graphite was heated to around 300°C,it expanded to a fractional 
expansion of about 30 and upon cooling collapsed, again. This expansion–collapse 
phenomenon was reversible, and was thus called reversible exfoliation.  

But if it is heated to a higher temperature (e.g., 1000°C), the intercalating compound and 
some of functional groups decompose completely and at the same time the host graphite 
flakes exfoliate up to about 300× in volume, particularly by rapid heating. This exfoliated 
graphite never returns to the original thickness upon cooling to room temperature, that is, 
we have irreversible exfoliation. The expanded graphite was immersed in absolute ethanol 
and sonicated for 30 min in order to exfoliate and break down to individual layers. The 
dispersion was filtered and dried at oven at 80°C for 8h and vacuumed oven at 80°C for 4h 
to remove residual moisture in the graphite particles (S. Mohamadi N. S.-S., 2011).  

2.3 Modification with methacrylic anhydride 

The above Functionalized Graphite, which is called FG, was reacted with methacrylic 
anhydride to provide some organic groups and vinyl moieties on the surface of graphene. 
Actually, the functional groups which were introduced in the previous process could 
further react with methacrylic anhydride through hydroxyl groups. A 250-mL flask was 
charged with 100 mL of DMF, 10 mL TEA and 100 mg FG and after sonication for 30 min, 
a solution of containing 5 mL methacrylic anhydride and 90 mL DMF was added in to the 
mixture.  
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This mixture was allowed to react at 90°C for 24h under magnetic stirring. After that the 
Modified Graphite, for simplicity it is called MG, were collected by filtration and followed 
by thorough washing with distilled water to remove any residual TEA and then washed 
with CH2Cl2, in order to remove any unreacted methacrylic anhydride. The washed 
particles were dried in oven and vacuum oven at 80°C for 8h, separately. 

2.4 Preparation of PMMA/ graphene masterbatch 

The PMMA-graphene masterbatch (PMMA-G master) was prepared via polymerization of 
MMA with BPO as an initiator. 300 mg of MG was dispersed in 15 mL MMA via 
ultrasonication for 30 min. The polymerization was initiated by (1.1% wt) of BPO respect to 
monomer in flask at 90°C, until the polymerization was solidified, completely. Later then, 
the prepared masterbatch was kept in vacuum oven at 120°C to remove any remaining 
MMA. The content amount of graphite was kept in 2.5 wt%. 

2.5 Preparation of PVDF/PMMA/graphene nanocomposite 

PVDF and PMMA-G master solutions were prepared separately by dissolving in DMF at 
50°C with stirring for 1 day. Both of the resulting solutions were blended, so that the final 
concentration of mixture adjusted in 12% wt. on the weight of PVDF/PMMA-G master 
respect to solvent. The mixture was sonicated for about 30 min, stirred 2 days and spread on 
a well-cleaned glass slide of petridish. The prepared sample was carefully evaporated at 
60°C in an oven for 20 h and then divided into three parts and annealed at three different 
temperatures of 50, 90 and 120°C in vacuum oven for 24 h. three samples with varying 
PVDF/PMMA-G master ratios of 80:20, 70:30 and 60:40 were prepared and analyzed. For 
convenience the samples were named as 80:20, 70:30, 60:40 and 70:30 No G, respectively (S. 
Mohamadi, 2011).  

2.6 Characterization 

The Fourier transform infrared (FT-IR) analysis was performed on a Bruker Equinox55 
Analyzer, equipped with a DTGS detector and a golden gate micro ATR from 600 –3500 
cm-1. Scanning electron microscopic (SEM) and TEM images were obtained on a Zeiss 
CEM 902A (Oberkochen, Germany) and Philips-CM-120, Netherlands at an accelerating 
voltage of 120 KV, respectively. The thermal behavior was measured with a DSC Q100 
from the TA instruments with the heating and cooling ramp of 10 ºC min-1 from room 
temperature to 250 ºC under argon flow. The X-ray diffraction (XRD) patterns of the 
samples were recorded by Philips, Netherlands advanced diffractometer using Cu(Kǂ) 
radiation (wavelength: 1.5405Ǻ) at room temperature in the range of 2θ from 4 to 70° with 
a scanning rate of 0.04°. S−1.  

3. Results and discussion 

As reported by others in several literatures, presence of the relatively broad peak at 3427 cm 

-1 and also the peak at 1402 cm -1 in the FTIR spectra of graphite oxide indicate existence of 
hydroxyl groups. In addition, the peaks at 1720, 1640, 1580 and 1060 cm-1 can be assigned to 
the stretching vibration of carboxyl, carbonyl moiety of quinine, aromatic C=C bonds and 
epoxide groups, respectively (scheme 1) (C. Hontoria-Lucas, 1995) . To determine which 
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functional groups existed in the graphene sheets after heat treated of graphene oxide (FG) 
and functionalization with methacrylic anhydride, the related FTIR spectra has been 
illustrated in Fig. 1.  

 

Fig. 1. FTIR spectrums of FG (a) and MG (b). 

As can be seen in Fig. 1 (a) most of carboxyl groups in the graphene oxide has decomposed 
during heat-treatment of graphite oxide so that the peak at 1720 cm-1 disappeared. In fact, 
during the acid treatment various oxygen-functional groups were produced on the 
graphene surface. While, in the heat-treatment step, the oxygen containing of graphene was 
reduced but some introduced functional groups remained and still the particles can contain 
significant amount of oxygen (Steurer, 2009).  

In addition, the peaks at 2960 and 2930 cm-1 are related to the asymmetric and symmetric 
stretching vibration of pendant methyl groups. Symmetric vibrations are generally weaker 
than asymmetric vibrations since the former lead to less of a change in dipole moment. 
Actually, during sonication it may graphene flakes are broken and this pendant methyl 
groups came into sight.  

In the case of MG, (Fig. 1 (b)) appearance of a new peak at 1740 cm-1 which has been 
assigned to vibration of esteric carbonyl group is due to the formation of esteric linkages 
between hydroxyl groups of FG and methacrylic anhydride (Scheme 6). Modification of 
FG by methacrylic anhydride (MG), causes appearance of the new methyl groups which 
show the peaks at 2960 and 2930 cm-1. Furthermore, C=C band at 1580 cm-1 has become  
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Scheme 5. Graphite oxide (P. Steurer, 2009) 

more broader in MG rather than FG may due to presence of aromatic and aliphatic double 

bonds.  

ATR-FTIR spectrum of pure PVDF film which was annealed at 50°C, from 550-3500 cm-1 is 

also shown in Fig.2. The observed pattern originates from oscillations of large parts of the 

skeleton and/or the skeleton and attached functional groups. Below 1500 cm−1, most single 

bonds absorb at similar frequencies, and the vibrations couple. 

 

Scheme 6. Modified graphen with methacrylic anhydride (S. Mohamadi, 2011) 
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Fig. 2. ATR-FTIR spectrum of pure PVDF film which was annealed at 50°C 

It should be pointed that since the ǃ- and Ǆ-phase are similar to each other in short 

segmental conformations the identification of crystal phase between ǃ and Ǆ in FTIR 

spectrum is still in dispute. On the basis of the data from literature the absorption band at 

763 cm-1 is related to In-plane bending or rocking vibration in ǂ phase (N. Betz, 1994 & S. 

Lanceros-Me ndez, 2001), the band at 840 cm-1 stretching in ǃ or Ǆ phase (G. Chi Chen, 1994 , 

V. Bharti, 1997, B. Mattsson, 1999 & M. Benz, 2002), the band at 1173 cm−1 is associated to the 

symmetrical stretching of –CF2 group (M. Rajendran, 2010). The band at 1234 cm−1 is related 

to the Ǆ phase and 1453 cm-1 is assigned to in-plane bending or scissoring of CH2 group (M. 

Rajendran, 2010 & Garton, 1992).  

In addition, some irregularities of head-to-tail addition, leading to defect structures, can 

occur during polymerization for several reasons in polymers of the vinylidene class, 

sequence isomerism may occur. The transmission band at 677 cm−1 points to the presence of 

head-to-head and tail-to-tail configurations (B. Hilczer, 1998). Such defects are produced 

during the polymerization process and reduce the dipole moment of the all-trans 

conformation. 

Fig. 3 shows ATR-FTIR spectra for pure PVDF film (a), G-PMMA master (b), 80:20 (c), 70:30 

(d), 70:30 NoG (e), 60:40 (f) which were annealed at 50°C from 550-2000 cm-1. When MG was 

incorporated in PMMA matrix (G-PMMA master), the absorption originating from MG 

particles alone were hardly visible. G-PMMA master spectrum clearly shows several 

characteristic peaks at 1723, 1449 and 1142 cm-1 which are related to the presence of PMMA 

chains, assigned to ester carbonyl (C=O), O–CH3 and C-O (ester bond) stretching. 

Polymer- polymer interactions may also affect PVDF chain conformations. Specific 

interactions are very sensitive to the distance between the interacting groups and to their  
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Fig. 3. ATR-FTIR spectra of pure PVDF (a), G-PMMA master (b), 80:20 (c), 70:30 (d), 70:30 
NoG (e), 60:40 (f) which were annealed at 50°C. 

relative orientation: hydrogen bonding strength falls off rapidly when the atomic distance 
increases or when the bond is bent instead of linear. This infers that the efficiency of the 
contact between two unlike chains depends on their respective conformation (eventually 
tacticity) and flexibility. The chains are expected to adopt an optimate conformation for 
interacting (C. Lbonard, 1988). 

To identify the nature of the interactions in the polymer blend nanocomposite, we choose 
the band at 1720 cm-1 which is due to the stretching vibration of the C=O group in PMMA as 
a characteristic peak of PMMA. This band shows a little shift to the higher frequencies and 
has become broader in both of the polymer blend with no graphen and nanocomposites. 
These changes can be ascribed by the interaction between PMMA and PVDF chains (I. S. 
Elashmawi, 2008 & M. M. Colemann, 1995).  

The strong absorption peak which appeared at 1173 cm-1 is assigned to the symmetrical 
stretching of –CF2 groups, was choose as characteristic peak of PVDF in polymer blend 
nanocomposites. The precise consideration reveals shifting of this band to the higher 
frequencies in the synthesised samples comparing to pure PVDF. Since this shifting is 
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slighter for 70:30 NO G than polymer blend nanocomposites, it can be imagined this change 
is related to the specific interactions between PVDF and graphene surface in the 
nanocomposites. Also, it can be concluded GNPs increase the compatibility of PVDF and 
PMMA. 

On the other hand as mentioned above, presence of polymer-polymer interactions can also 
affect the polymer conformations. PVDF exhibits short bond sequences tt and tg; the 
probability of a gg bond is negligible because of steric hindrance. Energy calculations 
emphasize that PMMA conformation remains close to all trans conformation of PVDF. In 
our study, presence of graphene particles along with PMMA chains makes it complex due to 
PVDF-PMMA, PVDF-graphene and PMMA-graphene interactions.  

The surface morphology of the casted films was studied using SEM analysis. In each sample, 

the surface which is exposed to the air is examined. The distinguishable spherulitic structure 

on the top surface of pure PVDF film could be seen which had extended from 9 µm to about 

15 µm with increasing the annealing temperature from 50 to 120°C. But in 70:30 some new 

elongated ribbon like crystals on the spherulitic structures can be observed which became 

more visible with increasing annealing temperature to 120°C (Fig. 4). Y. J. Park et al reported 

the oriented align crystalline PVDF lamella which has bamboo-like structure can be 

achieved when PVDF film casted from polar solvent such as DMF and DMSO and 

crystallize in the confined spaces of the specific mold at high temperature. In their view, 

these structures are due to the formation of Ǆ crystals (Y. J. Park, 2005).  

 

Fig. 4. The surface morphology of the casted 70:30 film were annealed at 50, 90 and 120°C. 
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We analyzed ATR-FTIR spectrum of 70:30 sample which were annealed at 50, 90 and 120° C 
(Fig. 5). From the previous reports on the spectral features of each crystal phase in PVDF, 
two IR absorptions band at 762 cm-1 and 1234 cm-1 as the representative of ǂ- and Ǆ-phase 
were selected to compare the peak intensities in each annealed samples. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. ATR-FTIR spectra of 70:30 were annealed at 50, 90 and 120° C. 
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It indicated with increasing annealing temperature the percentage of Ǆ-phase on the surface 
increased while ǂ-crystal decreased at 90° C and then didn’t change significantly, at 120°C. 
In this regards, this new droplet like structure identities on the top of the films can be 
related to Ǆ-phase. Of course, this result is in agreement with X-ray Diffraction (XRD) and 
Differential Scanning Calorimetery (DSC) results (Fig. 6).  

 

 

Fig. 6. X-ray diffraction pattern (A) and DSC thermograms of first and second heating (B) of 
70:30 films annealed at 50, 90 and 120°C for 24h (S. Mohamadi, 2011) 
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On the basis of the reported data in literatures, WAXD data of neat PVDF contain 100, 020, 
110, 021 reflections at 2θ= 17.9°, 18.4°, 20.1°, and 26.7° for ǂ- and only 200/110 reflection at 
2θ= 20.8° for ǃ-crystalline form (A. Kaito, 2007, L.Yu, 2009 & G. Guerra, 1986). Ǆ-crystal 
planes are known to have overlapping reflections with (020), (110) and (021) ǂ-crystal planes 
and also 200/110 reflection of ǃ-phase. The (100) peak of ǂ- phase at 2θ= 17.9° is the only 
peak that doesn’t have any overlapping with Ǆ-phase. Also the sharp diffraction peak at 
26.38° in 70:30 is related to the crystallographic plane of graphite with d-spacing of 3.37Ǻ, 
indicating that the graphite retained its crystalline structure in nanocomposite but there is a 
different degree of stacking order and disordered microstructure (K. P. Pramoda, 2010 & T. 
Ramanathan, 2007). Furthermore, the film which was annealed at 50°C shows the 100, 020, 
110 reflections of ǂ-phase and 200/110 reflection of ǃ-crystal In XRD pattern of the films 
were annealed at 90°C, 200/100 reflection of ǃ-crystal has become stronger, while the 100 
peak of ǂ has not changed considerably. It means with increasing temperature to 90°C, the 
growth of ǃ-crystals is more favorable than ǂ-crystals. Increasing the annealed temperature 
to the 120°C caused the substantial variation in the intensity of reflections. The decrease in 
the intensity of 200/100 reflection of ǃ-crystal and increase in 020, 110 reflections of ǂ- or Ǆ-
phase without any significant change in 100 reflection of ǂ-crystal implies some of ǃ-crystals 
convert to Ǆ-crystals at 120°C. The DSC results also matched well with those of X-ray 
diffractions and indicated the existence of the different types of crystal structures. The new 
appeared endotherm in the film which was annealed at 177° C can be attributed to the 
melting of the new formed ribbon-like structures on the surface. 

Actually, in our work, it can be imagined PVDF chains which are trapped between graphen 
sheets and are in close contact with PMMA chains, crystallize in the confined spaces that are 
provided by graphen sheets and PMMA chains. It is demonstrated that exfoliated graphene-
based materials are often compliant, and when dispersed in a polymer matrix are typically 
not observed as rigid disks, but rather as bent or crumpled platelets (J. R. Potts, 2011). 
Consequently, as can be seen in TEM image of 70:30 sample (Fig. 7), the wrinkled surface of  

 

Fig. 7. TEM image and Wrinkled surface of graphene sheets in 70:30 polymer blend 
nanocomposite (S. Mohamadi, 2011) 
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the graphene sheets can act as micropattern molds for crystallization of PVDF. In other 
words, a well-defined feature of micropattern can be provided by the wrinkles on the 
surface of graphene sheets.  

Crystallization results basically in the succession of two events: the primary nucleation of a 
new phase and then the three-dimensional growth of lamellae; these steps can be followed 
by lamellar thickening, fold surface smoothing, or reorganization into more perfect crystals. 
As reported by others, with increasing the annealing temperature in PVDF/PMMA blend 
film, the amount of ǂ phase increases due to easier local internal chain rotation at higher 
temperature and most of ǃ and Ǆ form convert to ǂ form. 

While in our study with increasing the annealing temperature the amount of ǂ phase 
decreased and Ǆ form increased. It can be said graphene sheets can stabilize the ǃ- and Ǆ-
phase at elevated temperature due to restricting effect of graphene sheets on TT 
conformation chains as is illustrated in scheme: 

 

 

 

 

Scheme 7. Schematic illustration of to restricting effect of graphene sheets on TT (A) and 
TTTG+TTTG- (B) conformation chains 
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4. Conclusion 

In this study, modification of graphite was carried out via introduction of hydroxyl groups 
and then vinyl groups on the surface of graphite by oxidation and estrification reaction 
respectively. The modified graphene (MG) was used to prepare the PMMA-graphene as a 
master batch by in-situ polymerization and followed by solution blending with PVDF in 
different ratios. The series of prepared polymer blend nanocomposite films were annealed at 
three different temperatures of 50, 90 and 120°C, and characterized.  

FTIR results for FG and MG confirmed presence of different oxygen containing function 
groups on the surface of FG and vinyl organic moieties on the MG sheets. 

ATR-FTIR spectra revealed the specific interaction between PVDF and PMMA chains in 
polymer blend nanocomposites. The surface morphology of 70:30 film which was annealed 
at 120°C, some new elongated ribbon like crystals formed. From ATR-FTIR data of this 
sample the identity of these new structures on the film surface can be related to the 
formation of Ǆ crystals. 
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